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Animate and inanimate objects differ in their
intermediate visual features. For instance, animate
objects tend to be more curvilinear compared to
inanimate objects (e.g., Levin, Takarae, Miner, & Keil,
2001). Recently, it has been demonstrated that these
differences in the intermediate visual features of
animate and inanimate objects are sufficient for
categorization: Human participants viewing synthesized
images of animate and inanimate objects that differ
largely in the amount of these visual features classify
objects as animate/inanimate significantly above chance
(Long, Stormer, & Alvarez, 2017). A remaining question,
however, is whether the observed categorization is a
consequence of top-down cognitive strategies (e.g.,
rectangular shapes are less likely to be animals) or a
consequence of bottom-up processing of their
intermediate visual features, per se, in the absence of
top-down cognitive strategies. To address this issue, we
repeated the classification experiment of Long et al.
(2017) but, unlike Long et al. (2017), matched the
synthesized images, on average, in the amount of image-
based and perceived curvilinear and rectilinear
information. Additionally, in our synthesized images,
global shape information was not preserved, and the
images appeared as texture patterns. These changes
prevented participants from using top-down cognitive
strategies to perform the task. During the experiment,
participants were presented with these synthesized,
texture-like animate and inanimate images and, on each
trial, were required to classify them as either animate or
inanimate with no feedback given. Participants were told
that these synthesized images depicted abstract art
patterns. We found that participants still classified the
synthesized stimuli significantly above chance even

though they were unaware of their classification
performance. For both object categories, participants
depended more on the curvilinear and less on the
rectilinear, image-based information present in the
stimuli for classification. Surprisingly, the stimuli most
consistently classified as animate were the most
dangerous animals in our sample of images. We conclude
that bottom-up processing of intermediate features
present in the visual input is sufficient for animate/
inanimate object categorization and that these features
may convey information associated with the affective
content of the visual stimuli.

Introduction

Human and nonhuman primates are remarkably fast
at visual object categorization (Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976; Perrett, Hietanen,
Oram, Benson, & Rolls, 1992; Thorpe, Fize, & Marlot,
1996; Hung, Kreiman, Poggio, & DiCarlo, 2005; Grill-
Spector & Kanwisher, 2005; Cauchoix, Crouzet, Fize,
& Serre, 2016). Given the number of processing stages
involved and the speed at which object categorization
occurs, this visual process is believed to be predomi-
nantly feed-forward (Riesenhuber & Poggio, 1999;
Serre, Oliva, & Poggio, 2007). That is, visual informa-
tion is processed hierarchically at increasing levels of
abstraction beginning with edge extraction in the
primary visual cortex (V1, e.g., Hubel & Wiesel, 1959)
to the processing of intermediate visual features (e.g.,
by area V4; Gallant, Braun, & Van Essen, 1993; Yue,
Pourladian, Tootell, & Ungerleider, 2014) to the
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processing of more complex visual features (Tanaka,
1996) and/or object categories (e.g., Tsao, Freiwald,
Tootell, & Livingston, 2006; Kriegeskorte et al., 2008;
Bell, Hadj-Bouziane, Frihauf, Tootell, & Ungerleider,
2009; Bi, Wang, & Caramazza, 2016) in the inferior
temporal (IT) cortex, where different regions respond
selectively to different object categories (Haxby et al.,
2001; Kanwisher, 2010). More recently, however, it has
been proposed that basic object categorization, such as
distinguishing between animate and inanimate objects,
may not depend exclusively on processing by regions in
the IT cortex; instead, processing by intermediate visual
areas, which compute intermediate object features,
might be sufficient for this distinction (Perrinet &
Bednar, 2015; Long, Konkle, Cohen, Alvarez, 2016;
Long et al., 2017). This hypothesis advocates that
animate and inanimate object categories differ sub-
stantially in their intermediate visual features, and these
differences are sufficient for animate/inanimate cate-
gorization. For instance, animate objects are more
curved compared to inanimate objects (Levin et al.,
2001; Perrinet & Bednar, 2015; Long et al., 2017). As
such, the amount of curvilinear information present in
the visual input may carry adequate information for
human and nonhuman primates to distinguish between
animate and inanimate objects with minimal IT cortex
involvement. Evidence supporting this hypothesis
comes from a recent study (Long et al., 2017)
demonstrating that participants could visually classify
animate and inanimate objects significantly above
chance based on the amount of curvilinear and
rectilinear information present in the images: The
authors generated synthetic stimuli (termed texforms)
from images of animals (animate objects) and man-
made objects (inanimate objects) using a texture
synthesis algorithm described in detail in Freeman and
Simonelli (2011). This algorithm (model) extracts a
group of image statistical descriptors across spatial
scales and orientations, including mean luminance,
contrast, skewness, and kurtosis, from spatially con-
strained windows throughout a target image. The
algorithm then iteratively adjusts the pixel values of a
random Gaussian noise image with the same spatial
dimensions as the original image using a variant of
gradient descent until this noise image has the same
image statistical descriptors within the same spatially
constrained windows as the original image. By pooling
and synthesizing image statistics from and within
separate but spatially constrained windows, the result-
ing stimuli preserve only the coarse form of the target
object but maintain the object’s intermediate features
(e.g., curvilinear, rectilinear, and some texture infor-
mation). These texform images could not be recognized
as the original object but carried sufficient information
to be classified above chance as animate and inanimate.

Even though the findings of Long et al. (2017) are
intriguing, it is unclear whether the participants used
top-down cognitive strategies or bottom-up visual
processing to perform the classification task. Although
the texform stimuli used in that study could not be
recognized as the original objects, a substantial amount
of global shape information was preserved in the
images. For instance, many of the stimuli in the
inanimate category had texforms with rectangular
shapes, and in fact, the participants perceptually rated
the texform images in the inanimate category as more
‘‘boxy’’ and those in the animate category as more
‘‘curvy’’ (see Figure 1). Thus, participants may have
used a simple, top-down cognitive strategy to classify
the images (e.g., rectangular shapes are less likely to be
animals) given that the experimental instructions stated
that the texform stimuli were created by ‘‘scrambling’’
animate or man-made objects.

Consequently, a remaining question is whether
bottom-up processing of intermediate visual features,
per se, in the absence of top-down cognitive strategies is
sufficient for animate/inanimate categorization. Here,
we examined this possibility using a procedure very
similar to the animate/inanimate classification task of
Long et al. (2017) with two important modifications.
First, we matched the animate and inanimate synthe-
sized stimuli, on average, on the perceived and
computationally calculated amount of curvilinear and
rectilinear information. Consequently, participants
could not rely on overall differences in the amount of
these features between the two object categories to
perform the task. Second, we eliminated global shape
information from the synthesized images (see Figures 1
and 2), preventing participants from using coarse shape
information (e.g., circular, rectangular, etc.) to perform
the task. Under these conditions, above-chance classi-
fication was only possible when the curvilinear/recti-
linear features present in each individual synthesized
image conveyed sufficient information for animate/
inanimate categorization.

Our findings are mostly consistent with, but greatly
extend, those of Long et al. (2017): We found that,
under the matched conditions of our experiment,
participants could still classify the synthesized animate/
inanimate stimuli significantly above chance. Impor-
tantly, however, the participants’ confidence ratings of
their classification performance did not predict classi-
fication accuracy. Therefore, it is unlikely that partic-
ipants used top-down cognitive strategies to perform
the tasks: Participants were not aware of their
classification performance. In contrast to Long et al.
(2017), classification accuracy was only predicted by
the amount of the image-based (calculated; see
Methods) curvilinear information present in each
image, indicating that the curvilinear information
present in the visual input was more important for

Journal of Vision (2018) 18(12):3, 1–12 Zachariou, Del Giacco, Ungerleider, & Yue 2



classification compared to the rectilinear information.
Finally and unexpectedly, the synthesized animate
images with higher classification accuracy were the
more dangerous animals in our sample of images,
implying that some affect-related information was
contained in these intermediate visual features.

Materials and methods

Experiment design

The experiment consisted of three behavioral ses-
sions: two image-rating sessions and an image-classifi-
cation session. During the rating sessions, two separate
groups of participants (n¼ 15 per group) rated the
synthesized animate and inanimate images: One group
of participants rated the images on the amount of
curvilinearity (how curvy each image was), and the
other group rated the images on amount of rectilin-
earity (how boxy/rectangular each image was). During
the classification session, a different group of partici-

pants (n¼ 20), who did not participate in the first two
sessions, classified the synthesized images as either
animate or inanimate.

Participants

Fifty healthy adults were recruited for the experi-
ment (33 females, age range 21–34 years). Thirty of
these (19 females, age range 22–34 years) participated
in the two rating sessions, and the remaining 20 (14
females, age range 21–28 years) participated in the
classification session. All participants were right-
handed with normal or corrected vision. All gave
informed consent under a protocol approved by the
institutional review board of the National Institute of
Mental Health.

Visual stimuli

First, 105 animate and 178 inanimate images were
downloaded from the Internet (using various search
terms on Google Images). The animate images com-

Figure 1. Three example inanimate objects used in Long et al. (2017) together with (a) their corresponding texform images, created

using the Freeman and Simoncelli (2011) algorithm, (b) their corresponding synthesized images created using the Portilla and

Simoncelli (2000) algorithm. The images under the ‘‘original,’’ ‘‘controlled,’’ and ‘‘texform’’ columns were directly extracted from

figure 1 of Long et al. (2017). The images under the ‘‘texform’’ column were created using the algorithm described in Freeman and

Simoncelli (2011) with some slight modifications outlined in Long et al. (2016). The images under the ‘‘synthesized’’ column were

created by using the algorithm described in Portilla and Simoncelli (2000), which we used in this study. Both the ‘‘texform’’ and
‘‘synthesized’’ object algorithms used the images under the ‘‘controlled’’ column as inputs.
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prised mammals, birds, fish, reptiles, and insects
(Figure 2A). The inanimate images comprised man-
made objects, such as tools, vehicles, buildings, and
various household items (Figure 2B). All object images
were digitally processed (see Supplementary Material
for a detailed description of this process) to have the
same size, background, mean luminance, and root-
mean-square contrast.

Quantifying the amount of curvilinear and
rectilinear information of the stimuli

After matching the stimuli on size, background,
mean luminance, and contrast, we calculated the
amount of curvilinear and rectilinear information
present in each image using a method very similar to
the one presented previously in Yue et al. (2014; a
detailed description of this procedure is given in the
Supplementary Material).

Using these calculated values of curvilinear and
rectilinear information, we selected a smaller set of
images from the entire sample of 105 animate and 178
inanimate objects with comparable amounts of recti-

linear and curvilinear information. This smaller set
consisted of 29 images per object category for a total of
58 images.

Creating synthesized images

We used an algorithm described in detail in Portilla
and Simoncelli (2000), to generate synthesized images
(Figure 2A and B) of animate and inanimate objects,
which maintained the intermediate visual features of
the original images. This algorithm uses steerable
pyramid filters to extract a group of image statistical
descriptors, including first-, second-, third-, and fourth-
order image statistics, from a target input image at the
level of the whole image in a spatially unconstrained
manner. These image statistics include mean lumi-
nance, contrast, skewness, and kurtosis. The algorithm
then permutes pixel values of a random Gaussian noise
image with the same dimensions as the original image
across multiple scales and orientations (using a variant
of gradient descent) until the image statistical descrip-
tors of the noise image converge to those of the original
image.

Figure 2. Example stimuli and sample trial displays from the rating and classification sessions of the experiment. (A) Examples of

animate images with their corresponding synthesized stimuli. (B) Examples of inanimate/man-made images with their corresponding

synthesized stimuli. (C) A sample trial display from the rating session of the experiment. This example depicts a trial in which a

participant rated the synthesized stimuli on degree of ‘‘boxiness’’ or how rectilinear the images appeared to him or her. The black bar

corresponds to the amount of ‘‘boxiness’’ this participant attributed to the stimulus image. (D) Sample trial display from the

classification session of the experiment. This example depicts a trial in which a participant classified the synthesized stimulus as

‘‘animate.’’ The black bar represents the confidence of the participant on his or her classification choice.
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The main difference between the algorithm used here
and the Freeman and Simoncelli (2011) algorithm used
in Long et al. (2017) is as follows: In the algorithm we
used (Portilla & Simoncelli, 2000), the image statistical
descriptors between an original image and its corre-
sponding synthesized image are matched in the global
image dimension. Conversely, the Freeman and
Simoncelli algorithm matches these image statistical
descriptors at the level of receptive field–like, spatially
constrained windows (similar in size to those of human
area V2). This is the main reason why the texform
stimuli in Long et al. (2017) preserve the coarse form of
the original objects.

Power spectrum analysis

We conducted a power spectrum analysis to quantify
the contrast energy carried by the high, median, and
low spatial frequency bands of each of the synthesized
images. This analysis allowed us to examine (see
Results) whether spatial frequency predicted classifica-
tion accuracy. The detailed description of this analysis
is given in the Supplementary Material.

Experimental procedure

The experiment, implemented using E-prime 2.0, was
run on a Windows 7–based PC. The stimuli were
presented on a desktop monitor (BENQ XL) at a
resolution of 1,024 3 768 pixels (0.0228 per pixel). The
viewable area of the display was 407 3 307 mm (238
visual angle horizontally by 178 vertically at a distance
of 100 cm away from the participants’ eyes).

Each rating session lasted 5 min. The presentation
order of the rating sessions, i.e., whether a participant
rated the synthesized images on amount of curvilinear
or rectilinear information, was counterbalanced across
participants. During these sessions, each of the 58
images (29/category) was presented once at the center
of the screen in randomized order against a white
background at a resolution of 384 3 384 pixels (159 3
159 mm; 98 3 98 visual angle) for 10 s. Directly below
each image on the display was a horizontal rectangular
bar, which was initially white at the onset of each trial
(matching the background color; Figure 2C). During
the trial, participants filled this bar with black by
moving a mouse to the right. Moving the mouse to the
left decreased the portion of black that filled the bar.
Depending on the rating session (curvilinear or
rectilinear ratings), participants were instructed that the
portion of the rectangular bar filled with black either
represented the amount of rectilinear (how box-like an
image looked) or curvilinear information present in an
image (how curvy an image looked). Specifically, for

the curvilinear rating group, participants were in-
structed to evaluate how many simple and/or complex
curve-like features (we showed participants examples of
these during the instructions) made up an image. The
rectilinear rating group was instructed to evaluate how
many triangular and/or rectangular features (examples
of these were also shown during the instructions) made
up an image. As such, the area of the bar covered with
black indicated a participant’s perceptual rating of how
curvilinear or rectilinear they thought each image was.
Participants left-clicked the mouse to record their
response, and immediately afterward, the next trial/
image was presented. Participants were also instructed
to respond as quickly as possible and that if they failed
to respond within 10 s from the onset of a trial that trial
aborted and their response was marked as ‘‘wrong.’’
This last instruction was provided in order to
encourage participants to respond within the time limit.
The area of the rectangular bar filled with black on
each trial was converted to a percentage of the total
area of the rectangle and recorded for later analysis.

During the classification session, performed by a
different group of participants, the synthesized stimuli
were presented at the same on-screen location with the
same white background and at the same size as in the
rating sessions. Each of the 58 images was presented
eight times (464 trials) in randomized order with a 1-
min break after the first four presentations of each
image (after the first 232 trials). In four of these image
presentations (randomly selected), the synthesized
images appeared upright, and in the remaining four,
the images appeared mirror-reversed and upside down
to prevent as much as possible the participants from
memorizing the stimuli. Each stimulus was presented
for 5 s. If a participant did not respond within the time
limit, that trial aborted and was marked as a no-
response trial. Like the rating sessions, participants
responded by selecting how much of a rectangular bar,
situated right below the images on the display, would
be filled with black (Figure 2D). For the classification
session, however, the rectangular bar was split into two
equal portions between the left- and right-hand sides of
the vertical center of the display. At stimulus onset,
both the left and right sides of the rectangular bar were
white. Participants could increase the amount of black
on each side of the rectangular bar by moving the
mouse either to the left or to the right. The black area
always increased away from the center of the display
and toward either the left or the right side of the
display. For instance, moving the mouse to the right
gradually increased the amount of the right part of the
rectangle that filled with black; moving the mouse to
the left gradually decreased the amount of the right
part of the rectangle filled with black until the vertical
center of the display. If the mouse continued to move in
the same direction, the left portion of the rectangular
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bar would gradually fill with black. For half the
participants, the right side of the rectangular bar
represented the animate category and the left side of the
bar represented the inanimate category. For the other
half of the participants, the order was reversed. On
each trial, a text label, located on both ends of the
rectangular response bar, indicated which side of the
bar corresponded to the animate and which side to the
inanimate category. The amount of the left or right side
of the rectangular bar filled with black indicated each
participant’s confidence in his or her response. For
example, if a participant wished to classify a stimulus as
animate on a given trial, the participant was required to
move the mouse in the direction that filled the side of
the bar corresponding to the animate category. The
area of the bar (left or right side) filled represented his
or her confidence on how animate the stimulus image
appeared. For each trial, we recorded a participant’s
binary choice (animate or inanimate) depending on
which side of the bar a participant decided to fill with
black and a confidence rating associated with his or her
choice. Participants were given no feedback during the
experiment regarding their classification accuracy.

The difference in the stimulus duration between the
curvilinearity/rectilinearity rating sessions (10 s) and
the classification task session (5 s) is because, on
average, participants were faster to classify the images
as animate/inanimate (average response time: 1,933 ms,
SD¼ 942 ms) than to rate the images on curvilinearity/
rectilinearity (average response time: 3,509.5 ms, SD¼
1,567.5 ms). The reason participants were slower during
the rating sessions is because they were instructed to
evaluate how many simple and/or complex curvilinear-
or rectilinear-like features made up each image, which
forced them to visually search each image for these
features. To this end, we selected a longer stimulus
duration for the rating sessions to allow ample time for
the participants to complete the task.

Statistical analyses

The behavioral measures collected during the rating
and classification sessions were analyzed as follows.
Excel was used to calculate d-prime values and criterion
C values for each participant. Independent, paired
samples and one-sample t tests (two-tailed) as well as
linear mixed effects ANOVAs were used in SPSS to
analyze the participants’ classification accuracy (per-
centage correct), d-prime values, criterion C values, and
confidence ratings. Bayesian t tests were also used in
SPSS to analyze the data when necessary. Linear
regressions were also conducted in SPSS in order to
evaluate whether or not the curvilinear and rectilinear
information present in the images and/or the partici-
pants’ confidence ratings predicted classification per-

formance. Multiple comparisons used Sidak
corrections when necessary.

Additionally, we conducted two different types of
permutation tests on the classification accuracy of the
participants in MATLAB (MathWorks, Natick, MA).
One set of permutation tests was performed at the
individual participant level and another at the group
level. The permutation tests at the individual partici-
pant level allowed us to account for the response bias of
each participant separately and to subsequently exam-
ine how many of the participants classified above,
below, or at chance level. The group-level permutation
tests allowed us to examine classification accuracy
separately for each object category (animate/inanimate)
by accounting for the response bias of the participants
at the group level. A detailed description of these
permutation tests can be found in the Supplementary
Material.

Results

Matching the amount of image-based
curvilinear and rectilinear information between
the two object categories

A series of control analyses contrasting the amount
of image-based and perceived curvilinear and rectilin-
ear information between the two object categories can
be found in the Supplementary Material. As antici-
pated, these analyses did not reveal significant differ-
ences between the two object categories: average
curvilinearity of the animate images: 0.94, SD¼ 0.3,
SEM¼ 0.012; of the inanimate images: 0.90, SD¼ 0.33,
SEM¼ 0.012; average rectilinearity of the animate
images: 0.76, SD¼ 0.24, SEM¼ 0.008; of the inanimate
images: 0.82, SD ¼ 0.27, SEM ¼ 0.009.

It should be noted that there was a significant
positive correlation between the perceived and image-
based measures of curvilinearity, t(1, 57) ¼ 1.92, p ¼
0.03, r¼0.28. This correlation, however, explained only
8% of the variance (r2¼0.078). The correlation between
the perceived and image-based measures of rectilin-
earity was not significant, t(1, 57)¼�0.01, p¼0.993, r¼
0.001. An internal reliability analysis on the perceived
measures of curvilinearity (Cronbach’s alpha ¼ 0.68)
and rectilinearity (Cronbach’s alpha ¼ 0.73) revealed
that the reliability of these perceived measures was
relatively low (Tavakol & Dennick, 2011). For this
internal reliability analysis, the perceived ratings of
each image were averaged separately for even- and odd-
numbered participants and used in the calculation of
Cronbach’s alpha. In summary, there appears to be a
weak relationship between the perceived and image-
based measures of curvilinearity/rectilinearity and, as
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expected, the image-based (calculated) measures are
more sensitive and more accurate than the corre-
sponding perceived measures.

Classification accuracy

Here we evaluated the classification accuracy of the
participants in categorizing the synthesized images as
animate or inanimate. We used three different tests to
explore the participants’ classification performance: (a)
For each participant, we calculated his or her overall
percentage correct accuracy. We then compared these
percentage correct scores to chance performance (50%
correct) using a one-sample t test in SPSS. (b) Using the
animate category as ‘‘signal,’’ we calculated d-prime
and criterion C values for each participant. We then
contrasted these d-prime values against ‘‘zero’’ using a
one-sample t test in SPSS. (c) Last, we conducted
permutation tests at both the individual participant and
group levels in order to evaluate if participants’
classification was above chance irrespective of object
category or whether above chance classification was for
only one of the two object categories. Additionally, we
used the permutation tests at the individual participant
level to evaluate how many of the participants’
classifications were above chance, at chance, and below
chance (consistently misclassified).

The one sample t test (two-tailed) contrasting the
participants’ overall classification accuracy (percentage
correct) to chance (50%) was significant, such that the
average accuracy for classification (54.62% accurate)
was significantly above chance, t(1, 19)¼ 3.931, p ¼
0.001, SEM¼ 1.1%, Bayes factor¼ 40.21, prior 0.7071.
Similarly, the one-sample t test (two-tailed) contrasting
the participants’ d-prime scores to zero (chance
performance) was also significant: The average d-prime
score of the participants (0.22) was significantly greater
than zero, t(1, 19)¼ 3.395, p ¼ 0.003, SEM¼ 0.065,
Bayes factor ¼ 14.02, prior 0.7071. The criterion C of
the participants (C ¼ 0.153) approached significance
but was not significantly different from zero, t(1, 19)¼
1.915, p¼0.071, SEM¼ 0.08, Bayes factor¼ 1.06, prior
0.7071.

Participants were 12% more likely to classify an
image as inanimate versus animate. As such, we
performed permutation tests (see Methods) to account
for this response bias. The group-level permutation
tests (see Supplementary Material for a detailed
description) indicated that the participants’ overall
accuracy (54.62%) occurred by chance with a proba-
bility p¼ 0.008. The classification accuracy for the
animate category occurred by chance with a probability
p , 0.0001 (accuracy adjusted for the participants’ bias
using the individual participant–level permutation tests
¼ 54.83%). The classification accuracy for the inani-

mate object category occurred by chance with a similar
probability of p , 0.0001 (accuracy adjusted for the
participants bias using the individual participant–level
permutation tests ¼ 52.78%). A paired samples t test
(two-tailed) on classification accuracy, adjusted for the
response bias of each object category, indicated that the
two did not differ significantly, t(1, 19)¼ 0.328, p ¼
0.747, SEM¼ 6.25%, Bayes Factor¼ 0.249, prior¼
0.7071.

Further, using the permutation tests at the individ-
ual-subject level, we binned participants into those who
classified the object categories significantly above
chance, at chance, and significantly below chance. This
distribution was as follows: 13 participants classified
the images above chance, four classified the images at
chance, and three participants classified the images
significantly below chance.

Last, in order to evaluate the internal reliability of
the classification accuracy of the participants, we
performed the following analysis. First, we split the
participants into two groups based on whether their
participant number was even or odd. Then, for each of
these even/odd groups, we calculated the classification
accuracy for each of the 58 synthesized images in the
animate and inanimate object categories. We then used
these per-image classification accuracies obtained from
the even- and odd-numbered participant groups to
calculate Cronbach’s alpha. The overall Cronbach’s
alpha, across all synthesized images for both object
categories was 0.87. The Cronbach’s alpha for the
synthesized animate images only was 0.83 and for the
inanimate images was 0.91. To this end, classification
accuracy was reliable across participants (Tavakol &
Dennick, 2011).

In summary, the participants’ classification accuracy
and d-prime scores were significantly above chance:
65% of the participants classified the images signifi-
cantly above chance, 20% classified the images at
chance, and the remaining 15% of the participants
misclassified the images. At the group level, partici-
pants classified both object categories significantly
above chance, and their classification performance did
not differ significantly between the two object catego-
ries.

The contribution of top-down cognitive
strategies to classification accuracy

To evaluate whether or not the participants were
consciously aware of their classification performance,
which would imply that they used top-down cognitive
strategies to perform the task, we conducted a linear
mixed effects ANOVA with the participants’ classifi-
cation accuracy, confidence ratings during classifica-
tion, and object category (animate or inanimate) as
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factors. The confidence ratings for each trial were
recorded as a continuous variable (between 0% and
100% for each category). We used a histogram to bin
the confidence scores into five bins in order to calculate
the classification accuracy for each bin, separately for
each object category and for each participant, and used
these values in the ANOVA. We split the confidence
ratings into five bins in order to have a comparable
number of trials across bins. This ANOVA did not
yield any significant main effects or an interaction
between the factors: object category, F(1, 172)¼ 0.747,
p¼ 0.561; confidence rating bin, F(1, 172)¼ 0.682, p¼
0.605; object category3 confidence rating bin, F(1, 172)
¼ 0.581, p ¼ 0.677. Consequently, classification
accuracy did not change significantly across confidence
rating bins, irrespective of object category.

As an additional step to evaluate whether or not the
participants’ confidence predicted their accuracy, we
correlated the participants’ overall classification accu-
racy with their overall level of confidence. Across
participants, this correlation was also not significant,
t(1,19) ¼ 0.562, p¼ 0.581, r ¼ 0.13.

Last, we conducted a linear regression ANCOVA
between the overall classification accuracy of each
image and the corresponding confidence ratings of the
images with object category (animate or inanimate) as
an interaction term. Object category, however, did not
interact significantly with the correlation between the
classification accuracy of each image and the corre-
sponding confidence rating (p ¼ 0.507). Similarly, the
correlation between the classification accuracy of each
image and the corresponding confidence rating was not
significant, t(1, 57) ¼�0.813, p ¼ 0.419, r¼ 0.11.

In summary, the participants’ confidence ratings did
not predict their classification accuracy. Additionally,
the classification accuracy of each image was not
predicted by its corresponding confidence rating. Thus,
there is no evidence that the participants were
consciously aware of their classification performance.

The contribution of image-based curvilinear and
rectilinear information to classification accuracy

We next attempted to identify what information the
participants used to perform the classification task.
Here, using a linear regression ANCOVA, we evaluated
the correlation between the participants’ classification
accuracy for each synthesized image and the amount of
image-based curvilinear and rectilinear information
present in the image (see Methods). Further, we
explored if/how this correlation varied between the two
object categories. For this analysis, we excluded the
perceived measures of curvilinearity and rectilinearity
because, as described earlier, the internal reliability of
these perceived measures was relatively low.

We found a significant interaction of the correlation
between the classification accuracy of each image and
the amount of image-based curvilinear information
present in the image across object category (p , 0.0001).
To unpack this significant interaction, we conducted
regression analyses separately for each object category
(Figure 3). For the animate category, the amount of
image-based curvilinear information in the images
positively predicted their classification accuracy, t(1, 28)
¼ 2.32, p¼ 0.028, rpartial (control for rectilinear)¼ 0.408; the
more curvilinear the animate image, the more accurately
it was classified. For the inanimate category, the amount
of image-based curvilinear information in the images
also predicted classification accuracy, but this correla-
tion was negative, t(1, 28)¼�3.05, p¼ 0.005,
rpartial (control for rectilinear)¼�0.506; the less curvilinear an
inanimate image, the more accurately it was classified.

The analysis on the image-based rectilinear infor-
mation, however, did not reveal a significant interac-
tion of the correlation between the classification
accuracy of each image and the amount of image-based
rectilinear information present in the image across
object category (p¼0.106). Additionally, the amount of
image-based rectilinear information present in the
images did not predict classification accuracy, t(1, 56)¼
6.56, p ¼ 0.335, r¼ 0.13.

Taken together, our data show that the amount of
image-based curvilinear information present in the
images, but not the amount of rectilinear information,
predicted the classification accuracy for both animate
and inanimate object categories.

The contribution of spatial frequency to
classification accuracy

We also explored whether participants used spatial
frequency information to classify the two object
categories. For this analysis, we conducted separate
linear regression ANCOVAs for each object category
between the classification accuracy for each image and
the power carried by (a) the low spatial frequencies in
each image, (b) the median spatial frequencies in each
image, and (c) the high spatial frequencies in each
image. None of these linear regression analyses,
however, yielded significant results—animate object
stimuli: low spatial frequency power, average power ¼
1.16, SD ¼ 0.25, t(1, 28) ¼ 0.205, p¼ 0.839, r ¼ 0.04;
median spatial frequency power, average power¼ 0.92,
SD¼ 0.42, t(1, 28)¼ 0.547, p ¼ 0.589, r¼ 0.105; high
spatial frequency power, average power ¼ 0.66, SD¼
0.44, t(1, 28)¼�0.218, p¼ 0.829, r¼�0.042; inanimate
object stimuli: low spatial frequency power, average
power¼ 0.31, SD¼ 0.09, t(1, 28)¼�0.820, p¼ 0.419, r
¼ 0.156; median spatial frequency power, average
power¼ 0.20, SD¼ 0.13, t(1, 28)¼�0.189, p¼ 0.851, r
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¼ 0.036; high spatial frequency power, average power¼
0.12, SD¼ 0.09, t(1, 28)¼�0.228, p¼ 0.821, r¼ 0.044.

In summary, the spatial frequency of the synthesized
stimuli did not predict the participants’ classification
accuracy, making it unlikely that participants used this
information for classification.

The relationship between the affective content
of the images and classification accuracy

By rank-ordering the synthesized animate images
according to classification accuracy (Figure 4), we
found that participants classified the dangerous animals
(e.g., a scorpion, a tarantula, a shark) more accurately
compared to less dangerous animals (e.g., a dolphin, a
butterfly, a kangaroo). To more carefully examine this
unexpected finding, we assigned valence and arousal
ratings to each animate image (separate ratings for
valance and arousal per image) using the International
Affective Picture System (IAPS; Lang, Bradley, &
Cuthbert, 2008). A detailed description of how valance
and arousal scores were obtained for the IAPS
database images can be found in Lang et al. (2008). For
this assignment, we used the ratings from the ‘‘all
subjects’’ section of the IAPS database. Six out of the
29 animate images in our sample did not have a

corresponding image in the IAPS database and were
excluded. When one of the synthesized animate images
in our sample corresponded to more than one image in
the IAPS database, that image was assigned the average
valence and arousal ratings of all the corresponding
images in IAPS. For example, one of our animate
images depicted a shark, but the IAPS database has
three different shark images (and one shark image
depicted together with a diver, which was excluded),
and so our shark image was assigned the average
valance and arousal level of the three shark images in
the IAPS database. Then, using a linear regression
analysis, we correlated the classification accuracy of the
synthesized animate images with their assigned valance
and arousal scores.

The valence scores of the synthesized animate images
correlated negatively with classification accuracy, t(1,
28)¼�2.330, p ¼ 0.028, rpartial (controlling for arousal) ¼
�0.422; the lower the valence (more unpleasant), the
higher the classification accuracy. The arousal ratings
of the animate images did not correlate with classifi-
cation accuracy, t(1, 28)¼ 0.771, p ¼ 0.448,
r(controlling for valance) ¼ 0.152. To evaluate whether the
significant correlation we observed between classifica-
tion accuracy and valance was due to visual differences
(as measured in this study) between the animate stimuli,
we repeated this analysis within the context of a partial
correlation, controlling for image-based curvilinearity;

Figure 3. The figure depicts how the classification accuracy of the animate (X) and inanimate (O) images varied as a function of the

amount of calculated curvilinear information present in the images. The best-fit line for the animate category is represented by the

solid black line, and the best-fit line for the inanimate category is represented by the dotted gray line. The average classification

accuracy was 54.62%, which is significantly above chance.
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rectilinearity; and low, median, and high spatial
frequencies. The correlation between classification
accuracy and valance, however, was not eliminated
when we controlled for these factors, t(1, 28)¼�2.1, p¼
0.04, rpartial ¼�0.41.

In summary, this significant correlation between the
classification accuracy and the valance ratings of the
images implies that intermediate visual features may
convey information about the affective content/threat
level of animals in addition to object category. This
possibility will be explored in greater detail in a future
study.

Discussion

The current experiment was designed to address
whether bottom-up processing of intermediate visual
features in the absence of top-down cognitive strategies
is sufficient for animate and inanimate object catego-
rization. We found that (a) despite the two object
categories being matched on average on the amount of
perceived and image-based curvilinear and rectilinear
information, participants still classified the synthesized
stimuli significantly above chance, and (b) confidence
ratings during classification did not predict classifica-
tion accuracy. Therefore, participants were not con-

sciously aware of their classification performance,
making it unlikely that they used top-down cognitive
strategies to perform this task. (c) The curvilinear but
not the rectilinear information present in the images
predicted classification performance; and (d) the
animate stimuli that were classified more accurately
and more consistently as animate were synthesized
from the dangerous animal images (i.e., those with
lower valence IAPS ratings), whereas those animate
stimuli with lower classification accuracy were synthe-
sized from images of less dangerous animals (those with
higher valence IAPS ratings). Because we did not find
any evidence of top-down cognitive strategies, it
appears that the above-chance classification of the
synthesized animate and inanimate stimuli depended
primarily on bottom-up visual processing of their
curvilinear features. Presumably this processing was
mediated by intermediate visual areas in the ventral
visual pathway (e.g., by V4) as no coherent shape
information was present in the visual input.

It should be noted that, in accord with our findings,
Long et al. (2017) also concluded, based on a set of
EEG data, that their participants relied on early visual/
bottom-up processing rather than top-down cognitive
strategies to complete the visual tasks. One concern,
however, with this conclusion is that the EEG data
described in Long et al. (2017) were collected during a
visual search task and not during the classification task.

Figure 4. Rank-ordered classification accuracy for the synthesized animate images in descending order. A sample of the original

images, corresponding to the rank-ordered image IDs of the synthesized images, are presented on top of the bars. The horizontal

dashed line represents chance performance (50% accuracy). The error bars denote 61 SEM.
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In this EEG search task, participants had to visually
search for an animate or inanimate target texform
among a varying number of distracters of the same
animacy (animate or inanimate texform distracters) or
mixed-animacy distracters. As illustrated in Figure 1,
global shape information was not completely elimi-
nated in the texform stimuli of Long et al. (2017) due to
the properties of the algorithm they used. Importantly,
the inanimate texform stimuli of Long et al. (2017) were
rated by participants as more ‘‘boxy’’ and the animate
texform stimuli as more ‘‘curvy.’’ As such, it remains
possible that the visual search task can be expressed in
the form of searching for rectangular-/curvilinear-
shaped targets among rectangular/curvilinear dis-
tracters or searching for rectangular-/curvilinear-
shaped targets among mixed displays consisting of
rectangular and curvilinear distracters. Under these
conditions, unlike the classification task, top-down
cognitive strategies are not required, and the visual
search task could be performed based on bottom-up
visual processing of the difference in global shape
between the animate and inanimate texform targets and
distracters.

Our findings are consistent with previous studies
suggesting that processing of intermediate visual
features influences high-level object categorization (e.g.,
Bar & Neta, 2006; Cheung & Gauthier, 2014; Perrinet
& Bednar, 2015; Cauchoix et al., 2016; Long & Konkle,
2017; Schmidt, Hegele, & Fleming, 2017). For example,
Perrinet and Bednar (2015), using data from the rapid
masked, animal versus nonanimal categorization task
of Serre et al. (2007), found that the images most
consistently miscategorized as containing an animal
consisted of second-order image statistics very similar
to those images that contained animals and very
different image statistics from those images that did
not.

One possible hypothesis to explain why intermediate
visual features might contain early cues to animacy is
that of survival. Almost all animals, both predators and
prey, exhibit some sort of natural camouflage, which
allows them to blend in with their surroundings. From
an evolutionary perspective, being able to rapidly
determine with little visual information if something
hidden in the environment is alive and/or dangerous
would benefit the survival of both predators (better
prey detection) and prey (better predator detection).
Our findings are consistent with this idea. Participants
consistently classified the synthesized stimuli corre-
sponding to the more dangerous animals as more
animate. In the future, it will be interesting to examine
whether the synthesized stimuli corresponding to the
dangerous animals within the animate category activate
the amygdala or other affect-processing systems of the
brain more strongly compared to the synthesized
stimuli of the less-threatening animals.

Conclusion

In conclusion, we found that bottom-up processing
of the curvilinear features, per se, in the absence of top-
down cognitive strategies, conveys sufficient informa-
tion for animate/inanimate object categorization. In
contrast to the findings of Long et al. (2017), the
rectilinear information present in the visual input did
not predict classification accuracy, suggesting that
participants based their categorization predominantly
on the curvilinear rather than the rectilinear visual
information for both the animate and inanimate object
categories. Last, the intermediate visual features of the
animate object category appear to convey information
associated with the valance of the stimuli. This latter,
unexpected finding will be explored in more detail in
future studies.

Keywords: object categorization, curvilinear features,
rectilinear features, valance, arousal
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