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The aryl hydrocarbon receptor (AHR) is a ligand-activated transcriptional factor widely
expressed in immune cells. Its ligands range from xenobiotics and natural substances
to metabolites, which renders it capable of sensing and responding to a variety of
environmental cues. Although AHR signaling has long been recognized to be implicated
in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis (RA), colitis,
and systemic lupus erythematosus (SLE), its effect on the pathogenesis of type 1
diabetes (T1D) remains less understood. In this review, we intend to summarize
its potential implication in T1D pathogenesis and to sort out the related regulatory
mechanisms in different types of immune cells. Emerging evidence supports that β cell
destruction caused by autoimmune responses can be rectified by AHR signaling. Upon
activation by its ligands, AHR not only modulates the development and functionality of
immune cells, but also suppresses the expression of inflammatory cytokines, through
which AHR attenuates autoimmune responses during the course of T1D development.
Since AHR-initiated biological effects vary between different types of ligands, additional
studies would be necessary to characterize or de novo synthesize effective and safe
ligands aimed to replenish our arsenal in fighting autoimmune responses and β mass
loss in a T1D setting.
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disorder stemming from the destruction of the pancreatic
β cells by autoreactive immune cells, which leads to the absolute deficiency of circulating insulin.
The pathogenesis underlying T1D is multifactorial, and involves a genetic predisposition coupled
with environmental triggers (1, 2). According to the latest International Diabetes Federation (IDF)
Diabetes Atlas, the number of young patients under 20-years-old living with T1D worldwide is
more than 1.1 million, which is twice the number calculated in the previous atlas (3). Since the
increased rate is much higher than the estimated genetic contribution, epigenetic factors, especially
environmental triggers, are increasingly gaining more attention (4). For example, certain viral
infections and/or improper medications could exacerbate T1D progression by damaging β cells
(5, 6), while microorganisms may differentially affect T1D incidence and severity by modulating
the intestinal environment and producing metabolic byproducts (7, 8).

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcriptional factor capable of
sensing and responding to a variety of environmental cues (9, 10), which could serve as a bridge
to link environmental triggers to the pathogenesis of T1D. Indeed, compounds deriving from
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either exogenous milieu or emerging as endogenous metabolic
byproducts could ligate to AHR, thereby eliciting cellular
adaptive responses via different signal pathways (11). Particularly,
AHR was initially recognized to be activated by the toxic
xenobiotics associated with the detoxifying processes (12).
However, subsequent studies further revealed that many
additional harmless chemical substances could also effectively
induce AHR activation to regulate immune responses (13).
Moreover, accumulated evidence supports that AHR regulates
not only innate immune cells, but also adaptive immune cells,
by affecting intrinsic cell signaling events, cytokine secretion
profiles, and inter-cellular communication processes.

Although AHR could be a pivotal environmental sensor
to regulate immune responses, its role in T1D pathogenesis,
however, is less appreciated. We thus in this review intend to
summarize its potential involvement in T1D pathogenesis and to
sort out the related regulatory mechanisms in different types of
immune cells. We also highlight the feasibility of targeting AHR-
related pathways to develop therapeutic strategies against T1D in
clinical settings.

AHR STRUCTURAL PROPERTIES AND
ITS EXPRESSION PATTERNS IN IMMUNE
CELLS

Aryl hydrocarbon receptor belongs to a family of basic helix-
loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factors. The
bHLH motif locates in the N-terminal of the AHR protein,
containing a basic-region (b) and a helix-loop-helix region
(HLH), which are involved in DNA-binding and protein-
protein interaction, respectively. The PAS domain is a stretch
of 200–350 amino acids, which allows AHR to have a
high affinity to dimerize with its working partner, the aryl
hydrocarbon receptor nuclear translocator (ARNT) (9, 14).
Moreover, the C-terminal of the AHR protein contains a
glutamine-rich (Q-rich) domain, which participates in co-
activator recruitment and transactivation (15). As a ligand-
dependent transcriptional factor, AHR has been recognized
as being capable of modulating target gene expression. Once
activated by its cognate ligands, AHR dissociates from its
chaperones and translocates into the nucleus, where it forms
a heterodimer with ARNT (AHR-ARNT) to transcribe the
expression of target genes (16, 17).

In vertebrates, AHR is widely expressed in multiple cell
types and is involved in the regulation of fundamental
cellular processes, such as cell proliferation, differentiation,
and stress responses. Immune cells are particularly enriched
with AHR expression. For instance, AHR is highly expressed
in Th17 cells and functions as a typical marker for its
non-pathogenic population (nTh17) (18). Similarly, AHR
expression is essential to support the survival of certain
innate immune cells, such as TCRγδ T cells and innate
lymphoid cells (ILCs) (19). Furthermore, AHR has been
noted to be expressed in regulatory T cells (Tregs), dendritic
cells (DCs), macrophages, and ILCs in intestinal mucosa and
lamina propria (LP). These lines of evidence indicate that

AHR is abundant in immune cells and acts as an important
immune regulator.

THE EXOGENOUS AND ENDOGENOUS
LIGANDS FOR AHR ACTIVATION

Aryl hydrocarbon receptor was originally recognized as a
receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a
xenobiotic toxicant commonly found in industrial leakage, fossil
fuel burning, medical waste, and traffic pollution (20, 21). TCDD
possesses a high affinity to AHR, and therefore is able to alter
the expression pattern of genes in embryonic stem cells (22).
In this case, AHR serves as a characteristic receptor to sense
small environmental molecules that harbor an aryl hydrocarbon
structure (23). However, other than those exogenous xenobiotics,
many endogenous and natural compounds are also identified to
be potent ligands for AHR (13).

The typical endogenous candidate is a class of metabolic
intermediates generated from tryptophan. Among them,
kynurenine (Kyn), a tryptophan metabolite catalyzed by the
indole 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase
(TDO), has been the most studied (24). IDO1 is a rate-limiting
enzyme for kynurenine production and is readily induced by
inflammatory cytokines such as IFN-γ. Excessive IDO1 activity
would exhaust endogenous tryptophan, thereby leading to
the attenuated activation and proliferation of antigen-specific
T lymphocytes, which serves as a negative feedback mechanism
to prevent sustained immune responses (25, 26). Moreover, the
amplified Kyn-AHR signaling induces tolerogenic dendritic cells
(TolDCs) and regulatory T cells (Tregs), which further repress
the ongoing inflammatory responses (27, 28). Therefore, altered
IDO1-Kyn axis has been noted in a variety of disorders, such as
tumors, neuronal abnormalities, and autoimmune diseases (24).

Diet-derived compounds constitute another category of AHR
ligands. They come from fruits and plant-related products,
and especially from cruciferous vegetables that are rich with
glucosinolates. Following dietary uptake, glucosinolates can be
degraded into indole-3-carbinol (I3C), which then undergoes
condensation in the acidic stomach environment and drives
the generation of 3,3′-diindolylmethane (DIM), indole [3,4-b]
carbazole (ICZ), and [2-(indol-3-ylmethy)-indol-3-yl] indol-3-
ylmethane (LTr1) (29). By activating AHR, I3C, together with
its derivatives, facilitates a gut microenvironment for alerting the
hosts to distinguish the nutrients constantly infested from those
potentially harmful pathogens (30).

Some natural microbial metabolites can also bind to and
activate AHR. For example, resident Escherichia coli utilizes
tryptophan in the intestinal lumen to generate AHR ligands
such as indole-3-propionic (IPA) and indole-3-aldehyde (IAld),
which then promotes intestinal epithelial cells to secrete cytokines
and initiate an anti-inflammatory response (31–33). In this
case, AHR functions as a gut sensor to adjust the homeostasis
of the gut microenvironment for protecting the host from
intestinal inflammation.

Collectively, AHR is widely expressed in immune cells
and exhibits ligand-dependent properties. The source of AHR
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TABLE 1 | The effect of AHR ligands on different cell types.

Sources Ligands Targeted cells Function

Exogenous substances TCDD Treg Treg generation

ES cell Inhibition of ES cell differentiation

10-CI-BBQ CD4+ Nrp1+ Foxp3− RORγt+ cell Attenuation of cell formation

FICZ Th17, Treg Th17 generation; Foxp3 expression

Dietary Glucosinolate ILCs Expansion of RORγt+ ILCs

I3C ILCs, IELs Formation of lymphoid follicles, IL-22 production

DIM ILCs, IELs Maintenance of IELs;

ICZ Th22, iNKTs Epithelial cell proliferation

LTr-1 γδT cells Surveillance of microbial load;

Endogenous metabolites Kyn Treg, DC Treg differentiation; Tolerogenic DC generation

ITE DC Induction of tolerogenic DC

KA Cancer cell, Macrophage IL-6 production

Microbiome IPA Intestinal epithelial cell Activation of IL-10 signaling

IAld Astrocyte Regulation of IFN-I signaling in astrocytes

TCDD: 2,3,7,8-tetracholrodibenzo-p-dioxin; 10-CI-BBQ: 10-chloro-7H-benzimidazo [2,1-a] benzo [de] iso-quinolin-7-one; FICZ:6-formylindolo[3,2-b]carbazole; I3C:
indole-3-carbinol; DIM: 3,3′-di-indoly-methane; ICZ: indole [3,4-b] carbazole; LTr-1: [2-(indol-3-ylmethy)-indol-3-yl] indol-3-ylmethane; Kyn: kynurenine; ITE: 2-(1′H-indole,
3′carbonyl) thiazole-4-carboxylic acid methyl ester; KA: Kynurenic acid; IPA: indole-3-propionic IAId: indole-3-aldehyde; ES: embryonic stem; ILCs: innate lymphoid cells;
IELs: intraepithelial lymphocytes; DC: dendritic cells.

ligands is diverse, including not only the xenobiotics but
also natural substances and metabolites (Table 1). These
discoveries further support that AHR acts as a bridge to
closely connect environmental insults with homeostatic immune
responses in daily life.

AHR REGULATES INNATE IMMUNE
RESPONSE DURING T1D
DEVELOPMENT

The initiation of an autoimmune response during the course of
T1D development is complicated. It is believed that once the
immune system loses tolerance to self β cells, the pathogenic
process begins. This event, however, happens much earlier than
the visualized clinical symptoms, and importantly, autoimmune
responses and β cell dysfunction are tangled together to push T1D
into an irreversible dead end.

Dendritic cells play an essential role in initiating autoimmune
responses against pancreatic β cells. In fact, they are one
of the earliest islet infiltrating leukocytes and are critical for
the activation of lymphocytes in the early insulitis stage (34).
However, AHR was noted as being able to affect their function
for antigen presentation and induction of T cell activation.
For example, AHR activated by the diet-derived non-toxic
endogenous AHR ligand, 2-(1′H-indole, 3′carbonyl) thiazole-
4-carboxylic acid methyl ester (ITE), is associated with the
induction of tolerogenic DCs, which exhibits a phenotype
of decreased CD86 expression, increased CD103 expression,
and diminished secretion of inflammatory cytokines, coupled
with the capability to induce the generation of Foxp3+ Tregs
(28). Therefore, those non-toxic endogenous AHR ligands

could have the potential to prevent and treat autoimmune
disorders (Figure 1).

Similar to DCs, macrophages also play a predominant role in
T1D initiation and progression by means of antigen presentation
or production of inflammatory cytokines to destroy β cells (35).
Generally, upon activation, AHR reduces IL-6 expression in
macrophages to suppress immoderate inflammatory responses
(36). Macrophages also manifest their endocytic function to
timely remove the apoptotic cell debris. In T1D susceptible
subjects, the accumulation of apoptotic β cells could serve
as a significant source of autoantigens and damage-associated
molecular patterns (DAMPs) (37). Indeed, macrophages isolated
from NOD mice in a human T1D model could not efficiently
remove apoptotic β cells during the course of β mass turnover,
which caused apoptotic β cells to undergo a secondary necrosis
associated with autoimmune initiation (38). Therefore, blockade
of AHR signaling abrogates apoptotic cell induced IL-10
expression in macrophages coupled with a shift of tolerance
toward a pro-inflammatory state (39) (Figure 1).

Innate lymphoid cells, originating from common lymphoid
progenitors (CLPs), are recently discovered innate complements
of T lymphocytes. Based on the difference in transcriptional
factor, biological function, and cytokine profiling, ILCs are
generally divided into ILC1, ILC2, ILC3, natural killer cells
(NK), and LTi (40). ILCs diffusely exist in intestinal mucosa and
LP, where they produce cytokines, such as IL-17A and IL-22,
to maintain the barrier function and protect from pathogenic
infection (41). Recent studies highlight the interrelationship
between gut barrier integrity and autoimmune T1D. There is
evidence that the pancreatic endocrine cells could cross-talk
with gut microbiota through secretion of antimicrobial peptides
(AMPs) induced by microbiota metabolites in NOD mice,
which exerts an immunoregulatory function to halt the ongoing
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FIGURE 1 | AHR signaling regulates autoimmune responses during the course of T1D development. Upon ligand-initiated activation, AHR dissociates from its
chaperones and translocates into the nucleus, where it forms a heterodimer to transcribe genes essential for the development and functionality of different types of
immune cells. Therefore, AHR signaling could exhibit a protective effect on the initiation and progression of T1D by acting on the antigen presenting cells (e.g., DCs
and Macrophages), gut innate immune cells (ILCs, IELs, and γδT cells) and adaptive immune cells (regulatory T cells, Tr1 cells, Th1 cells, and Th17 cells).

pancreatic inflammation (42). Indeed, impaired intestinal barrier
would exacerbate the T1D process. For instance, colonic infection
of young NOD mice by a bacterial pathogen disrupts the
intestinal epithelial barrier and promotes invasive insulitis (43).
Notably, AHR is found to be highly expressed in intestinal ILCs
and necessary for the gut microenvironment remodeling. The
population of ILCs specializes in the production of large amounts
of IL22 and has often been called ILC22. Specifically, AHR
could drive the development of ILC22 cells and the formation
of postnatally developed cryptopatches and isolated lymphoid
follicles (but not embryonically formed Peyer’s patches) via
the induction of Notch, by which it promotes IL-22 secretion
and surveillance of extracellular pathogens to support mucosal
epithelial cell survival, proliferation, and anti-microbial function
(41, 44). AHR could also maintain the viability of intraepithelial
lymphocytes (IELs) as evidenced by the excessive microbial loads
and vulnerability of epithelial cells following AHR deficiency,
thereby leading to the over-activation of the local immune system
(45). Therefore, the AHR-ILCs axis is essential to maintain gut
integrity, which may impact T1D development via a crosstalk
between the gut and pancreas (Figure 1).

AHR SUPPRESSES EFFECTOR T CELL
FUNCTION DURING T1D DEVELOPMENT

T cells are the main effectors responsible for β cell destruction,
especially in the advanced stage. However, the T1D-prone NOD
mice show reduced activity of AHR (low affinity AHRd genotype)
as compared to that of B6 mice (high affinity AHRb genotype).
TCDD, which increases Foxp3+ T cell proportion via activating
AHR, could prevent diabetes development in NOD mice (46).
Similarly, the exogenous AHR affinitive ligand, 10-chloro-7H-
benzimidazo [2,1-a]benzo[de]isoquinolin-7-one (10-CI-BBQ),

exhibits protection against T1D in NOD mice by inhibiting the
formation of disease-associated CD4+ Nrp1+ Foxp3− RORγt+
cells. Notably, such an effect relies on AHR activation but is
independent of Foxp3+ regulatory T cells (47). Th1-related
cytokines, such as IFN-γ and TNF-α, are thought to be the
major effective molecules leading to β cell death (48), while T
cells deficient in AHR produce more IFN-α, IFN-γ, and IL-12
(49). Although the exact role of Th17 in T1D development is
under debate, emerging evidence suggests that the IL-23-induced
pathogenic Th17 cells contribute more to T1D pathogenesis than
the conventional Th17 cells, and AHR serves as a characteristic
marker of the latter (50, 51). In human T cells, it was also
found that AHR activation in the presence of TGF-β induces
functional Treg cells to suppress pathogenic responder T cells,
which is consistent with the results from mouse studies (52).
Altogether, AHR could suppress effector T cell function through
directly acting on effector T cell subsets or indirectly inducing
Treg cells (Figure 1).

THE MECHANISMS UNDERLYING AHR
REGULATION OF IMMUNE CELLS

As a transcriptional factor, AHR is efficient to modulate the
expression of lineage specific transcriptional factors in immune
cells. For example, AHR favors Treg induction and development
by directly binding to the Foxp3 promoter upon TCDD-induced
activation (53). AHR is also highly expressed in Th17 cells and is
essential for its differentiation and effector function. Specifically,
RORγt, a downstream target of AHR, functions as a critical
transcriptional factor for IL-17 producing cells (54). AHR can
also form a complex with RORγt to enhance the transcription
of IL-22, which is of great importance for the function of many
innate immune cells including ILC3s, γδT cells, and LTi-like
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FIGURE 2 | The mechanisms underlying AHR signaling regulation of immune cells. AHR signaling regulates the development and functionality of immune cells either
by directly binding to the downstream target genes, or by forming a complex with other transcriptional factors to control the expression of critical genes necessary
for autoimmune responses during the course of T1D development.

cells (55). These types of RORγt+ cells are abundantly located
in the mucosal linings of the body (e.g., intestine and lung) to
maintain the defensive barrier function via secreting IL-22. In
the absence of AHR, RORγt+ ILCs are susceptible to apoptosis
and they produce a lesser amount of IL-22 (55, 56). Other than
RORγt, the synergistic effect is also observed in type 1 regulatory
T cells (Tr1 cells), which are Foxp3 negative and produce high
levels of interleukin 10 (IL-10), and are decreased in adult-onset
T1D patients (57–59). C-Maf is a transcription factor encoded by
the Maf (musculoaponeurotic fibrosarcoma) gene. In addition to
serving as an oncogene, c-Maf has noted to be involved in cell
differentiation processes. Specifically, c-Maf transactivates the
expression of IL-10 and IL-21, which are crucial for Tr1 induction
(60). IL-27, an essential cytokine for Tr1 development, possesses
the ability to activate AHR, which then couples with c-Maf to
promote IL-10 expression, thereby ameliorating autoimmune
responses in an EAE setting (61).

The signal transducer and activator of transcription (STAT)
family consists of seven members (STAT1-4, STAT5a, STAT5b,
and STAT6) that are indispensable for the functionality of
immune cells. Mutations with gain of function in human STAT1
and STAT3 are related to T1D susceptibility by perturbing the
equilibrium between Th1, Th17, and regulatory T cells (62).
AHR has also been found to repress STAT1 phosphorylation
by forming an AHR-STAT1 complex, thereby reducing the
transcription of IFN-γ (49). Specifically, 6-formylindolo[3,2-
b]carbazole (FICZ) facilitates naïve T cell differentiation toward
Th17 cell lineage, during which activated AHR interacts with
STAT1 to restrain its activity, leading to the stabilization of
Th17 identity while repressing Th1 program (63). Similarly, LPS
stimulation enhances AHR expression in macrophages, which in
turn forms a complex with either nuclear factor-kappa B (NF-κB)

or STAT1 to inhibit IL-6 transcription, by which AHR signaling
alleviates inflammatory responses (36). Upon LPS-stimulated
activation, AHR also promotes IL-10 transcription by activating
the Src-STAT3 pathway to attenuate the secretion of other
inflammatory cytokines in macrophages (64).

Taken together, AHR signaling significantly regulates the
development and functionality of immune cells either by directly
binding to the downstream target genes, or by forming a complex
with other transcriptional factors to control the expression of
critical genes necessary for autoimmune responses during the
course of T1D development (Figure 2).

CONCLUSIVE REMARKS AND
PERSPECTIVES

Although AHR signaling has long been recognized to be
implicated in the pathogenesis of autoimmune disorders, such
as rheumatoid arthritis (RA), colitis, and systemic lupus
erythematosus (SLE) (39, 65, 66), its effect on T1D pathogenesis
remains less understood. Given the fact that AHR is widely
expressed in innate immune cells (e.g., DCs, macrophages, ILCs,
IELs, and iNKTs), effector T cells (e.g., Th1 and Th17 cells), and
anti-inflammatory cells (e.g., tolerogenic DCs, Tr1, and Tregs),
we thus in the present review discussed its potential role in
T1D pathogenesis. In general, T1D development involves β cell
destruction resulting from excessive activation of autoreactive
immune cells along with repressed activity of regulatory cells.
Emerging evidence supports that β cell destruction caused by
this disrupted immune homeostasis can be finely rectified by
AHR signaling. Upon activation by its ligands, AHR not only
modulates the development and functionality of immune cells,
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but also suppresses the expression of inflammatory cytokines,
through which AHR attenuates autoimmune responses during
the course of T1D development. In line with the observation,
IDO1, an important enzyme for endogenous AHR ligand
production, is also implicated in T1D pathogenesis. For example,
a chimeric protein constituted by proinsulin and cholera toxin B
subunit (CTB-INS) is able to promote IDO1 expression, which
then enhances tryptophan degradation to modulate tolerogenic
properties in DCs, thereby halting T1D progression in NOD
mice (67).

It is worthy of note that we did not discuss the possible
implication of AHR signaling in β cell viability and functionality.
However, there is feasible evidence that Arnt (also called HIF-
1β) forms a heterodimer with AHR to affect β cell homeostasis.
Specifically, β cells deficient in Arnt manifest impaired glucose
stimulated Ca2+ signaling and insulin secretion (GSIS), which
has been confirmed by studies in human islets using an Arnt
siRNA (68). Similarly, Arnt-/- islet grafts exhibit increased
β cell apoptosis along with a reduced β mass following
transplantation (69). Furthermore, HIF-1α, another partner of
Arnt, is up-regulated in infiltrated islets, which then transcribes
the expression of anti-apoptotic genes in β cells to prevent
T1D progression in NOD mice (70–72). However, it is quite
possible that AHR would compete with HIF-1α to form a
heterodimer with Arnt, and therefore, the exact regulatory
mechanism underlying AHR signaling in β cells demands
further studies.

In general, AHR acts as a molecular sensor by employing
various exogenous and endogenous ligands to respond to the
external and/or internal signals. These unique properties render
it a druggable target to rectify altered immune homeostasis in
the setting of autoimmune disorders. Indeed, mice supplemented
with I3C, an AHR ligand, are protected from DSS-induced
colitis (45). Since phytochemicals such as polyphenols and
glucosinolates are enriched in grains, and cruciferous vegetables
are abundant with I3C, a diet formulated with those components

could be a good approach to prevent pathogen invasion
and enhance immune homeostasis (55). Similarly, the indole
derivatives could be applied to improve insulin sensitivity and
alleviate chronic inflammation through AHR signaling (73).

In summary, accumulated evidence supports that AHR
signaling negatively regulates the initiation and progression
of autoimmune responses in T1D setting. AHR possesses a
variety of exogenous and endogenous ligands, and the resulting
biological effect varies depending on the ligand employed.
These unique properties rendered it a viable therapeutic target.
However, additional studies are needed to characterize or de
novo synthesize effective and safe ligands aimed to replenish
our arsenal in fighting autoimmune responses and β mass loss
in a T1D setting.
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