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Abstract 

Cancer-testis (CT) genes played important roles in the progression of malignant tumors and were 
recognized as promising therapeutic targets. However, the roles of genetic variants in CT genes in lung 
cancer susceptibility have not been well depicted. This study aimed to evaluate the associations between 
genetic variants in CT genes and lung cancer risk in Chinese population. A total of 22,556 qualified SNPs 
from 268 lung cancer associated CT genes were initially evaluated based on our previous lung cancer 
GWAS (Genome-wide association studies) with 2,331 cases and 3,077 controls. As a result, 17 candidate 
SNPs were further genotyped in 1,056 cases and 1,053 controls using Sequenom platform. Two variants 
(rs6941653, OPRM1, T > C, screening: OR = 1.24, 95%CI: 1.12-1.38, P = 2.40×10-5; validation: OR = 1.18, 
95%CI: 1.01-1.37, P = 0.039 and rs402969, NLRP8, C > T, screening: OR = 1.15, 95%CI: 1.04-1.26, P = 
0.006; validation: OR = 1.16, 95%CI: 1.02-1.33, P = 0.028) were identified as novel lung cancer 
susceptibility variants. Stratification analysis indicated that the effect of rs6941653 was stronger in lung 
squamous cell carcinoma (OR = 1.36) than that in lung adenocarcinoma (OR = 1.15, I2 = 77%, P = 0.04). 
Finally, functional annotations, differential gene expression analysis, pathway and gene ontology analyses 
were performed to suggest the potential functions of our identified variants and genes. In conclusion, this 
study identified two novel lung cancer risk variants in Chinese population and provided deeper insight 
into the roles of CT genes in lung tumorigenesis. 

Key words: cancer-testis genes, lung cancer susceptibility, single nucleotide polymorphisms, Chinese population, 
Sequenom platform  

Introduction 
Lung cancer has been the most frequently 

diagnosed caner type and the leading cause of 
cancer-related deaths for decades in China [1]. The 
tumorigenesis of lung cancer was a multiple-stage 
process, and both environmental and genetic factors 

were involved. It was estimated that the heritability of 
lung cancer was about 15.2% in Chinese population 
[2]. However, up till now, GWAS (Genome-Wide 
Association Study)-reported lung cancer associated 
single nucleotide polymorphisms (SNPs) could only 
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account for limited lung cancer heritability (less than 
1%) [2, 3]. Therefore, more effective strategies were 
wanted to identify novel lung cancer risk loci based 
on GWAS data. 

Epigenetic alterations have been recognized as 
an important feature of tumorigenesis [4, 5]. Notably, 
cancer-testis (CT) genes, which were restrictedly 
expressed in germ cells and malignant tumor cells, 
were usually activated through epigenetic 
mechanisms [6]. The activation of CT genes in cancer 
samples made them oncogene candidates and their 
remained high immunogenicity made them perfect 
immunotherapeutic targets for cancer treatment [7, 8]. 
In addition, associations between genetic variants in 
CT genes and the susceptibility of cancers have been 
described in previous studies. For example, genetic 
variants in HORMAD2 and GPATCH2 were reported 
associated with lung cancer risk [9, 10], and variants 
in CTNNA2, CCDC33 and SPAG17 showed significant 
association with the susceptibility of breast cancer [11, 
12]. All these studies suggested that genetic variants 
in CT genes could also contribute to the development 
of cancers. 

Therefore, systematic analysis of the associations 
between genetic variants in CT genes and lung cancer 
risk could help identify more novel lung cancer 
susceptibility loci. In our previous study, we 
performed a systematic identification of CT genes in 
19 cancer types based on multiple public-available 
databases [13]. As a result, 876 novel CT genes in 19 
cancer types were recognized. In lung cancer, we 

identified 268 CT genes (including 61 known CT 
genes) that were activated in at least 2% of cancer 
samples [13]. This finding provided us an unprece-
dented opportunity to explore the associations 
between genetic variants in CT genes and the 
susceptibility of lung cancer. 

In this study, a two-stage case control study was 
performed. The NJMU GWAS, which has been 
established in our previous study, was used to screen 
candidate lung cancer risk variants [9]. These 
promising variants were further validated in an 
independent Chinese population with a total of 1,056 
lung cancer cases and 1,053 controls based on the 
Sequenom MassARRAY iPLEX platform. This study 
would identify novel lung cancer susceptibility loci in 
Chinese population and help reveal the roles of 
genetic variants in CT genes in the development of 
lung cancer. 

Materials and Methods 
Study subjects 

Two independent datasets were used in this 
study. The NJMU GWAS contained 2,331 lung cancer 
cases and 3,077 controls, and was used as screening 
dataset. The detailed information about the study 
subjects in NJMU GWAS was described previously 
[9]. Genotype imputation for NJMU GWAS was 
performed using IMPUTE2 and Shapeit v2 with the 
1000 Genomes Project (the Phase III integrated variant 
set release, across 2504 samples) as the reference [14]. 

The validation dataset consisted of 
1,056 lung cancer cases and 1,053 
controls. All the cases were histo-
pathologically confirmed patients and 
were recruited from the First Affiliated 
Hospital of Nanjing Medical 
University and Jiangsu Cancer 
Hospital. Controls were obtained from 
a screening program for non-infectious 
diseases conducted in Jiangsu Province 
and matched to the cases for age and 
gender. All the participants have 
signed the informed consent 
acknowledgement and this study was 
approved by the ethical review board 
of Nanjing Medical University. 

Screening for candidate risk 
variants in CT genes 

As shown in Figure 1, genetic 
variants in 268 lung cancer associated 
CT genes (Supplementary Table 1, 
including the 10 kb upstream and 
downstream of these genes) were 

 

 
Figure 1. Flowchart of this study. 
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extracted based on NJMU GWAS. Initially, 71,008 
SNPs were reserved. Further, SNPs satisfied any of 
the following criteria were excluded: (1) imputation 
quality score INFO < 0.8; (2) minor allele frequency 
(MAF) < 0.05; (3) hardy-weinberg equilibrium (HWE) 
< 0.05. This resulted in 22,556 qualified SNPs reserved 
for association analysis. Among them, 96 SNPs 
showed significant association (P < 0.01) with lung 
cancer risk in NJMU GWAS. Furthermore, SNPs that 
were located in previously reported regions or 
showed a high correlation (r2 > 0.3) with each other 
(SNPs with the least P value were reserved) were 
excluded. Finally, 20 independent SNPs were retained 
as lung cancer risk variant candidates. 

Variants validation using Sequenom platform 
In this study, genotyping in the validation stage 

was performed using the Sequenom MassARRAY 
iPLEX platform (Sequenom Inc. San Diego, CA, USA) 
according to the protocol [15, 16]. Primers for 17 out of 
20 candidate SNPs were successfully constructed. In 
particular, rs144031443 and rs150492976 were 
replaced by rs75932085 (r2 = 0.66, Chinese Han 
population) and rs4726004 (r2 = 1), respectively. The 
genotyping experiment was performed by technicians 
who were blinded to the status of case or control. 
Cases and controls were mixed in each 384-well plate 
with two water samples as blank controls. In addition, 
5% of samples were randomly selected for repeat 
genotyping, which yielded a concordance rate of 
100%. Primer sequences used in this study were 
shown in Supplementary Table 2.  

Functional annotations, pathway and Gene 
Ontology (GO) analyses 

To gain insight into the potential functions of our 
identified SNPs and their related variants (r2 ≥ 0.6), 
several public-available databases, including Haplo 
Reg v4.1 (https://pubs.broadinstitute.org/mammals 
/haploreg/), ENCODE, rSNPBase (http://rsnp.psych 
.ac.cn/index.do) [17, 18], SNP2TFBS (https://ccg.epfl. 
ch/snp2tfbs/) [19], PINES (http://genetics.bwh.harv 
ard.edu/pines/index.html) and RegulomeDB (http: 
//regulome.stanford.edu/) [20], were used for 
functional annotations. Pathway enrichment and GO 
analyses were performed based on DAVID Bioin-
formatics Resources 6.8 (https://david.ncifcrf.gov/ 
home.jsp) [21]. 

Statistical analysis 
The chi-square test was used for the comparison 

of categorical variables between cases and controls, 
while the Student’s t test was adopted for continuous 
variables. Associations between genetic variants and 
lung cancer risk were evaluated (Odd Ratios, OR and 

95% confidence intervals, 95%CI) using logistical 
regression analysis. Age, sex, smoking status and 
principal components were adjusted. The differential 
gene expression analysis was conducted using RNA 
sequence data (107 paired lung cancer and adjacent 
normal tissues) from the Cancer Genome Atlas 
(TCGA) database, and was further validated in 60 
pairs of lung tumor and normal tissues from 
GSE19804. The expression quantitative trait loci 
(eQTL) analysis was performed based on the GTEx v7 
database (383 lung tissues). OPRM1 and NLRP8 
co-expressed genes were screened based on lung 
cancer RNA-seq (TCGA) using Pearson correlation 
analysis. All the analyses were performed using R 
(3.5.2) or Plink 1.9. 

Results 
Characteristics of study subjects 

The characteristics of study subjects were shown 
in Table 1. In brief, a total of 3,387 lung cancer cases 
and 4,130 controls were included in this study. Lung 
adenocarcinoma (LUAD) was the most common 
histological type and accounted for more than 50% of 
all the lung cancer cases. Lung squamous cell 
carcinoma (SCC) accounted for 35.3% and 21.8% in 
NJMU GWAS and validation samples, respectively. 
The distribution of age, sex and smoking status was 
comparable between lung cancer cases and controls in 
validation samples (P > 0.05). 

 

Table 1. Characteristics of subjects in screening and validation 
stages. 

Characteristics NJMU GWAS   Validation   
Cases Controls P a   Cases Controls P a 

Sample size 2331 3077   1056 1053  
Gender   <0.001    0.782 
Male 1711(73.4%) 2086(67.8%)   700(66.3%) 704(66.9%)  
Female 620(26.6%) 991(32.2%)   356(33.7%) 349(33.1%)  
Smoking   <0.001    0.432 
Yes 1506(64.6%) 1309(42.5%)   464(43.9%) 444(42.2%)  
No 825(35.4%) 1768(57.5%)   592(56.1%) 609(57.8%)  
Age (years)   0.124    0.317 
Mean 60.05±10.27 60.47±9.66   61.40±9.59 60.98±9.95  
< 60 1111(47.7%) 1429(46.4%)   422(40.0%) 384(36.5%)  
≥ 60 1220(52.3%) 1648(53.6%)   634(60.0%) 669(63.5%)  
Histology        
Squamous cell 
carcinoma 

822(35.3%) /   230(21.8%) /  

Adenocarcinoma 1304(55.9%) /   622(58.9%) /  
Other 205(8.8%) /     204(19.3%) /   
a The chi-square test was used for gender, smoking and histology. Student’s t test 
was adopted for age.  

 

Two novel lung cancer susceptibility variants 
As mentioned above, 17 of 20 lung cancer 

candidate SNPs were successfully genotyped in 
validation stage. Associations between 17 candidate 
variants and lung cancer risk were shown in Table 2. 
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Notably, only rs6941653 and rs402969 were significant 
in both screening (rs6941653, OPRM1, T > C, OR = 
1.24, 95%CI: 1.12-1.38, P = 2.40×10-5; rs402969, NLRP8, 
C > T, OR = 1.15, 95%CI: 1.04-1.26, P = 0.006) and 
validation datasets (rs6941653, OPRM1, T > C, OR = 
1.18, 95%CI: 1.01-1.37, P = 0.039; rs402969, NLRP8, C > 
T, OR = 1.16, 95%CI: 1.02-1.33, P = 0.028). Therefore, 
rs6941653 and rs402969 were considered as novel lung 
cancer risk variants in Chinese population. 

Stratification analysis and interaction analysis 
To explore the effects of our identified two SNPs 

in different subgroup populations, stratification 
analysis was further performed. Study subjects were 
divided into four subgroups according to age (young 
< 60 years old vs old ≥ 60 years old), sex (males vs 
females), smoking status (smokers vs nonsmokers) 
and histological subtypes (SCC vs LUAD). Notably, 
we observed a significantly stronger effect of 
rs6941653 in SCC (NJMU GWAS: OR = 1.39; 
Validation: OR = 1.29; Combined: OR = 1.36) than that 
in LUAD (NJMU GWAS: OR = 1.15; Validation: OR = 
1.16; Combined: OR = 1.15, I2 = 77%, P = 0.04, Figure 
2A-2B, Figure 3A). In contrast to rs6941653, SNP 
rs402969 showed a similar effect on lung cancer risk in 
various subgroup populations (Figure 2C-D, Figure 
3B). In addition, interactions between our identified 
lung cancer risk variants (rs6941653 and rs402969) and 
smoking were evaluated. However, no significant 
interaction was found (Supplementary Table 3, P for 
interaction > 0.05). Similarly, there was no significant 
interaction between variant rs6941653 and rs402969 
(Supplementary Table 4, P for interaction > 0.05). 

Functional annotations and eQTL analysis 
In order to suggest the potential functions of our 

identified two novel variants and their related SNPs, 
functional annotations were performed. As shown in 
Table 3, rs6941653 was not located in regulatory 
element regions, such as promoter, enhancer, 
transcription factor (TF) binding sites or DNase peak. 
Strikingly, rs9397692 (r2 = 0.70 with rs6941653) was an 
eQTL and could influence the binding of transcription 
factor NFATC2. What’s more, rs9397692 had a 
Regulome DB score of 4, suggesting that it was 
located in TF binding site and DNase peak. All these 
results indicated that rs9397692 might be the 
functional variant, which could affect the binding of 
specific transcription factor NFATC2. In the second 
risk loci, rs805165 (r2 = 0.90 with rs402969) was 
predicted to be an eQTL and could modify the affinity 
to TF BRCA1. Consistently, the Regulome DB score of 
rs805165 was 5 (TF binding or DNase peak). Taken 
together, rs805165 might be the functional variant in 
the second loci. Furthermore, eQTL analysis in lung 
tissues was conducted based on GTEx v7 database. 
Unfortunately, the expression of OPRM1 and NLRP8 
in lung tissues was not sufficient for eQTL calculation. 
Therefore, associations between our identified 
variants and the expression of their host genes 
(OPRM1 and NLRP8) were not evaluated. Notably, 
rs805165 was found to be significantly associated with 
the expression of AC010525.7 and AC024580.1 
(Supplementary Figure 1). However, the functions of 
AC010525.7 and AC024580.1 have not been reported 
in previous studies. 

 

Table 2. Associations between 17 candidate SNPs and lung cancer risk in screening and validation datasets. 

SNP BP CytoBand Gene Allele a NJMU GWAS   Validation   Combined 
OR (95%CI) b P b   OR (95%CI) c P c   OR (95%CI) P  

rs6941653 chr6:154531020 6q25.2 OPRM1 C/T 1.24(1.12,1.38) 2.40E-05  1.18(1.01-1.37) 0.039  1.22(1.12-1.33) 7.84E-06 
rs6851719 chr4:94120480 4q22.2 GRID2 C/A 1.18(1.08,1.29) 3.82E-04  1.05(0.92-1.20) 0.462  1.14(1.06-1.23) 6.15E-04 
rs8139987 chr22:25131425 22q11.23 PIWIL3 T/G 1.28(1.12,1.47) 4.01E-04  0.92(0.76-1.12) 0.402  1.09(0.79-1.51) 0.588 
rs79727953 chr7:102449418 7q22.1 FBXL13 A/C 1.24(1.10,1.39) 4.76E-04  1.22(0.98-1.45) 0.073  1.23(1.12-1.36) 1.53E-05 
rs77027865 chr1:152863288 1q21.3 SMCP G/A 1.34(1.12,1.59) 1.13E-03  1.14(0.88-1.46) 0.321  1.27(1.10-1.46) 8.12E-04 
rs3123484 chr1:182884429 1q25.3 SHCBP1L T/C 0.75(0.63,0.89) 1.34E-03  1.43(1.12-1.82) 0.002  1.03(0.55-1.94) 0.928 
rs145033304 chr19:56514378 19q13.43 NLRP5 T/C 0.86(0.78,0.94) 1.37E-03  0.84(0.66-1.07) 0.169  0.86(0.79-0.93) 3.10E-04 
rs12645087 chr4:178779663 4q34.3 RP11-389E17.1 T/C 0.80(0.69,0.92) 1.70E-03  1.02(0.85-1.23) 0.827  0.90(0.71-1.14) 0.364 
rs9478496 chr6:154333183 6q25.2 OPRM1 C/T 1.30(1.10,1.54) 2.56E-03  0.96(0.75-1.22) 0.737  1.13(0.84-1.52) 0.415 
rs144031443 chr4:94171881 4q22.2 GRID2 A/G 0.76(0.63,0.91) 2.70E-03  0.86(0.62-1.20) 0.376  0.78(0.67-0.92) 2.30E-03 
rs17135666 chr16:1942405 16p13.3 MEIOB T/C 0.79(0.68,0.92) 2.96E-03  1.05(0.84-1.31) 0.669  0.90(0.68-1.19) 0.458 
rs7546603 chr1:182529584 1q25.3 RGSL1 C/T 1.20(1.06,1.35) 4.50E-03  1.03(0.86-1.23) 0.747  1.15(1.04-1.26) 6.76E-03 
rs79461429 chr4:93761350 4q22.2 GRID2 G/A 1.18(1.05,1.32) 5.94E-03  1.14(0.97-1.37) 0.118  1.17(1.06-1.29) 1.38E-03 
rs402969 chr19:56450708 19q13.43 NLRP8 T/C 1.15(1.04-1.26) 6.00E-03  1.16(1.02-1.33) 0.028  1.15(1.07-1.24) 2.38E-04 
rs150492976 chr7:150875087 7q36.1 GBX1 T/C 0.86(0.78,0.96) 7.05E-03  0.99(0.85-1.15) 0.855  0.90(0.83-0.99) 0.025 
rs175150 chr22:17311027 22q11.1 XKR3 A/C 1.14(1.04,1.26) 7.96E-03  1.00(0.87-1.14) 0.960  1.09(1.00-1.18) 0.041 
rs60813831 chr19:43930119 19q13.31 TEX101 C/G 0.89(0.82,0.97) 8.12E-03   0.93(0.83-1.05) 0.246   0.90(0.84-0.97) 4.48E-03 

a: Minor/Major allele; b: Age, gender, smoking pack-years and PCA were adjusted; c: Age, gender and smoking status were adjusted. SNPs that showed consistent 
association results and had an association P value < 0.05 in both NJMU GWAS and validation datasets were marked in bold.  
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Figure 2. Forest plot of rs6941653 and rs402969 in each subgroup. (A) Forest plot of rs6941653 in NJMU GWAS; (B) Forest plot of rs6941653 in validation dataset; 
(C) Forest plot of rs402969 in NJMU GWAS; (D) Forest plot of rs402969 in validation samples. 

 
Differential gene expression, pathway and GO 
analyses 

As shown in Figure 4, OPRM1 was not 
expressed in normal lung tissues (GTEx database), but 
showed abundant expression in testis and brain 
tissues (Figure 4A). The consistent finding was 
observed in lung cancer adjacent normal tissues based 
TCGA database. However, the expression of OPRM1 
was significantly elevated in lung tumor tissues 
compared to that in normal tissues (P = 7.83 × 10-4, 
Figure 4C). Similarly, NLRP8 expression was 
aberrantly upregulated in tumor tissues (Figure 4D, P 
= 0.015). These findings were further validated in 60 
paired lung tumor tissues and adjacent normal tissues 
from GSE19804 (Supplementary Figure 2). Pathway 
enrichment analysis showed that OPRM1 
co-expressed genes (Fold enrichment: 14.0, P = 2.10 × 
10-214) and NLRP8 co-expressed genes (Fold 
enrichment: 6.7, P = 3.10 × 10-110, Supplementary 

Table 5) were enriched in the olfactory transduction 
pathway. The GO analysis indicated that OPRM1 
co-expressed genes might participate in various 
biological processes, such as immune response, 
signaling pathway and cell differentiation. The 
co-expressed genes with NLRP8 could take part in the 
sensory perception, keratinocyte differentiation and 
G-protein coupled receptor signaling pathway. 

Discussion 
Although lung cancer GWASs have identified 

dozens of lung cancer susceptibility loci, more lung 
cancer associated variants remained to be identified 
[3]. Cancer-testis genes were recognized as promising 
therapeutic targets for cancers due to their high 
immunogenicity in tumor tissues [22, 23]. However, 
the roles of genetic variants in CT genes in the 
development of lung cancer have not been revealed in 
previous studies. 
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Table 3. Functional annotations for our identified SNPs and their related variants (r2 ≥ 0.6). 

r2  SNP Motifs PINES a Regulome DB b Regulation c eQTL d SNP2TFBS e 
0.75  rs10485060 HNF4, Pax-4, RXRA 0.433 6 no yes HNF4G, HNF4A, SOX10 
0.80  rs2272381 Foxp1, Hoxd8, Pou3f2 0.297 6 yes yes / 
0.95  rs2293537 7 altered motifs 0.473 No Data yes no Crx 
0.65  rs35184807 AP-1 3'-UTR 5 yes no / 
0.77  rs60145555 AP-4, ELF1 0.178 5 no no / 
0.95  rs61307239 EBF, ZEB1 0.372 6 no no / 
0.70  rs62434770 5 altered motifs 0.281 No Data no no Pdx1, Prrx2 
0.68  rs62436491 Foxd3, Foxj1 0.868 5 no no / 
0.92  rs6900677 Myf 0.379 6 no no / 
0.81  rs6921548 6 altered motifs 0.048 5 yes no / 
1.00  rs6941653 Maf, PTF1-beta 0.485 No Data no no / 
0.70  rs72574410 4 altered motifs 0.232 6 no no SPIB 
0.75  rs74439078 5 altered motifs 0.414 6 no no / 
0.73  rs9371779 BDP1, E2F 0.337 6 no no / 
0.95  rs9383694 9 altered motifs 0.438 5 yes no / 
0.94  rs9383695 BATF, Irf, SP1 0.367 No Data yes no / 
0.78  rs9384190 5 altered motifs 0.408 6 no yes RUNX1, RUNX2 
0.75  rs9397179 Pou2f2 0.369 6 no no / 
0.70  rs9397692 NF-AT, NF-AT1 0.086 4 no yes NFATC2 
0.94  rs9397696 6 altered motifs 0.601 No Data no no Klf4, Klf1 
0.74  rs9478516 10 altered motifs 0.498 6 no no NFATC2 
0.74  rs9478517 DMRT5, Foxa 0.498 6 no no Sox5 
0.91  rs9479791 AP-1 0.424 No Data no yes / 
0.87  rs451276 11 altered motifs 0.621 No Data no no Klf4, Klf1 
1.00  rs402969 Hbp1, TCF12, ZBRK1 0.512 5 no no / 
0.90  rs395589 10 altered motifs 0.512 6 no no / 
0.92  rs381249 SIX5 0.512 6 no no / 
0.90  rs448020 Evi-1, PEBP, RXRA 0.512 5 no no / 
0.86  rs370095 4 altered motifs 0.668 No Data no no / 
0.90  rs371382 5 altered motifs 0.396 No Data no no Pax2 
0.90  rs805166 5 altered motifs 0.408 No Data no no ZNF263 
0.90  rs809275 Ets, TBX5, YY1 0.408 3a yes no / 
0.90  rs805165 BHLHE40, BRCA1, Maf 0.475 5 no yes BRCA1 
0.69  rs809800 GR, STAT 0.475 6 no no / 
0.90  rs805164 6 altered motifs 0.475 No Data no no SP1 
0.68  rs413691 / 0.483 6 yes no MEF2C, MEF2A 
0.90  rs429498 6 altered motifs 0.483 No Data no no SP2 
0.82  rs409402 5 altered motifs 0.68 5 yes no / 
0.81  rs393535 NRSF, Zfx 0.68 No Data yes no Zfx 
0.90  rs810903 STAT 0.672 No Data no yes / 
0.85  rs306508 4 altered motifs 0.406 No Data no yes / 
0.85  rs306507 / missense No Data no yes / 
0.85  rs306506 8 altered motifs missense No Data no no BRCA1 
0.85  rs7343161 Irf, SIX5, STAT 0.623 5 no yes / 
0.85  rs306502 Cdx 0.685 No Data no no / 
0.85  rs306501 5 altered motifs 0.763 6 no yes / 

a: PINES (http://genetics.bwh.harvard.edu/pines/index.html) provided a powerful in silico method to prioritize functional variants. SNPs with lower P values were more 
likely to be functional variants. b: Scores for regulatory elements based on RegulomeDB website (http://regulome.stanford.edu/); “3a”: TF binding + any motif + DNase 
peak; “4”: TF binding + DNase peak; “5”: TF binding or DNase peak; “6”: other. c: Proximal regulation or Distal regulation based on rSNPBase database 
(http://rsnp.psych.ac.cn/index.do); d: eQTL with experimental evidence based on rSNPBase database. e: The potential transcription factors were predicted based on 
SNP2TFBS (https://ccg.epfl.ch/snp2tfbs/). 

 
In the current study, a two-stage case-control 

study was performed to systematically evaluate the 
associations between genetic variants in CT genes and 
the risk of lung cancer in the Chinese population. A 
total of 22,556 qualified SNPs from 268 lung cancer 
associated CT genes were initially analyzed and 17 
candidate SNPs were genotyped using the Sequenom 
platform. Finally, two variants (rs6941653 in OPRM1 
and rs402969 in NLRP8) were identified as novel 
susceptibility loci of lung cancer in Chinese 
population. 

SNP rs6941653 was located in the intron of 
OPRM1 (opioid receptor mu 1, 6q25.2), which 

encoded one of the opioid receptors [24]. Previous 
studies revealed that genetic variants in OPRM1 could 
modulate the dependence to multiple drugs or 
chemical agents, including nicotine, cocaine, alcohol 
[25-27]. Due to these properties, OPRM1 has been 
reported associated with the progression of 
Alzheimer's disease, Parkinson's disease, Schizo-
phrenia and so on [28-30]. In lung cancer, Lennon FE 
et al found that OPRM1 (also known as MOR) 
expression was elevated in several human non-small 
cell lung cancer cell lines. What’s more, 
overexpression of OPRM1 significantly promoted the 
proliferation of lung cancer in vitro and in vivo [31, 32]. 
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Consistently, OPRM1 was recognized as a novel CT 
gene in lung cancer because of its aberrant expression 
in lung tumor tissues according to our previous study 
[13]. In the current study, rs6941653 in OPRM1 was 
further identified associated with lung cancer risk in 
Chinese population. Strikingly, stratification analysis 
indicated that rs6941653 showed a stronger effect in 
the SCC population. With regard to the potential 
mechanisms, we speculated that nicotine dependence 
induced by OPRM1 might partially account for this. 
Functional annotations for rs6941653 and their LD 
variants suggested that rs9397692, which was in the 
DNase peak and could affect the binding of TF 
NFATC2, might be the functional variant in these loci. 

The rs402969 was located in the upstream of 
NLRP8, which belonged to the member of the 
nucleotide-binding oligomerization domain/ leucine 
rich repeat/ pyrin domain containing (NLRP) 

subfamily [33]. This gene family was involved in 
innate immunity, inflammasome formation and 
mammalian reproduction [34-36]. However, the 
functions and roles of NLRP8 in cancers have not been 
described in the previous study. In this study, NLRP8 
expression was found significantly upregulated in 
lung cancer tissues. What’s more, rs805165 (LD with 
rs402969) was predicted in the binding sites of TF 
BRCA1 or DNase peak, suggesting a potential role as 
a regulator of gene expression. As expected, rs805165 
showed a significant association with the expression 
of AC010525.7 and AC024580.1. Nevertheless, the 
functions of them have not been elucidated. 
Unfortunately, the expression of NLRP8 in lung 
tissues was not sufficient for eQTL evaluation. 
Function studies were needed to reveal the role of 
NLRP8 in lung cancer and identify the potential 
functional variants in these loci. 

 

 
Figure 3. Forest plot of rs6941653 and rs402969 in combined datasets. (A) Forest plot of rs6941653 in combined data; (B) Forest plot of rs402969 in combined 
dataset. 
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Figure 4. Expression of OPRM1 and NLRP8 in normal lung tissues and lung tumor tissues. OPRM1 (A) and NLRP8 (B) expression in a variety of normal tissues based 
on GTEx database. Lung tissue was marked in red box; The expression of OPRM1 (C) and NLRP8 (D) in 107 pairs of lung cancer tissues and adjacent normal tissues based on 
TCGA database. 

 
In conclusion, we performed a systematic 

evaluation of the associations between genetic 
variants in CT genes and the risk of lung cancer. Two 
novel lung cancer susceptibility loci were successfully 
identified in Chinese population. This study could 
improve our understanding of the roles of CT genes in 
the tumorigenesis of lung cancer. However, functional 
studies were wanted to verify the functional variants 
and reveal the potential mechanisms. 
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