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Non-additive microbial community responses to
environmental complexity
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Environmental composition is a major, though poorly understood, determinant of microbiome

dynamics. Here we ask whether general principles govern how microbial community growth

yield and diversity scale with an increasing number of environmental molecules. By assem-

bling hundreds of synthetic consortia in vitro, we find that growth yield can remain constant

or increase in a non-additive manner with environmental complexity. Conversely, taxonomic

diversity is often much lower than expected. To better understand these deviations, we

formulate metrics for epistatic interactions between environments and use them to compare

our results to communities simulated with experimentally-parametrized consumer resource

models. We find that key metabolic and ecological factors, including species similarity,

degree of specialization, and metabolic interactions, modulate the observed non-additivity

and govern the response of communities to combinations of resource pools. Our results

demonstrate that environmental complexity alone is not sufficient for maintaining community

diversity, and provide practical guidance for designing and controlling microbial ecosystems.
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M icrobial communities form the basis for an enormous
range of biological processes, from cycling of nutrients
in the ocean to regulation of human health1–5. Despite

our growing knowledge of community compositions in various
biomes6–8 and of the role of individual nutrients in modulating
community properties9,10, relatively little is known about how
the nutrient complexity of an environment (i.e., the number
of different available nutrients) affects community ecology.
Understanding this relationship is crucial to disentangling
the effects of the environment on natural microbial ecosystems,
which are exposed to a multitude of different nutrients9,10, as
well as the effects of diet on microbiome structure and functio-
n. In the gut microbiome, for example, recent work has high-
lighted how community composition depends strongly on the
diversity of available nutrients11–13. However, reports in natural
ecosystems14–16 and in synthetic microcosms17–19 conflict on
how this environmental complexity modulates growth yields and
taxonomic diversity, raising questions as to how these relation-
ships vary within and across communities, and hindering nascent
efforts to engineer microbiomes with defined functions20–22.

An additional unknown in the effect of environmental com-
plexity on community assembly is the extent to which different
nutrient compositions drive ecosystems towards predictable
states, as opposed to stochastically driven outcomes. While pre-
vious work has shown a combination of determinism and sto-
chasticity in community assembly23,24, studies have also shown
how particular environments can be associated with long-lasting
stable communities25. It is therefore important to understand to
what degree these patterns will impact synthetic consortia cul-
tured on increasingly complex combinations of defined nutrients.

A number of quantitative frameworks have previously been
used to address similar questions, and have provided possible
clues as to how a microbial community could depend on the
complexity of its environment. In classical ecology, for
example, theories based on competitive exclusion and niche
partitioning suggest that there would be greater opportunities for
biodiversity in environments with a greater breadth of nutrient
types26,27. Although this is an intuitive hypothesis, factors such
as organism-specific resource use capabilities28,29, ecological
niche overlap30,31, and interspecies interactions24,32,33 can lead
to significant deviations from this expectation. From a very
different perspective, the question of how different perturbations
in biological systems would be expected to jointly affect a given
phenotype is captured by the classical genetic concept of
epistasis34,35. Epistasis between two genetic mutations, for
example, quantifies how much the phenotypic effect of one
mutation is affected by the presence of the other. This concept
constitutes a broader systems biology framework for quantifying
the nonlinear behavior of biological systems36–39, and can be used
to estimate the non-additivity of microbial community
phenotypes40–42 (note that we will use the terms ‘non-additive’
and ‘nonlinear’ interchangeably throughout this paper). Specifi-
cally, one may extend this notion to define epistasis between
environments, by comparing community properties observed on
combinations of nutrient sets against those on individual
nutrient sets.

Here, we determine how increasingly complex environmental
compositions affect the growth yield and taxonomic structure of
synthetic microbial communities. In addition to mapping the
phenotypes of these communities along the axis of environmental
complexity (the number of different carbon sources present in the
medium), the design of our experiments allows us to quantify
how communities are shaped by the combination of sets of car-
bon sources relative to their properties under each constituent set.
By testing the effects of increasing numbers of up to 32 different
carbon sources on over 280 synthetic microcosms, we examine

how yield and diversity differ from expectations based on those in
simpler environments. We further contextualize our results
through the use of mathematical models, which reveal how these
environment-phenotype relationships can be explained by a set of
ecological rules for combining environments, with implications
for the ecology of natural and engineered microbiomes.

Results
Assembly of communities in combinatorial environments. We
first designed microcosms with varying degrees of initial taxo-
nomic and nutrient complexity (Fig. 1a-d). Based on experiments
that assessed the resource utilization capabilities of various bac-
terial species (see Methods, Supplementary Fig. 1, Supplementary
Fig. 2, Supplementary Table 1, Supplementary Table 2), we
selected 13 organisms and 32 carbon sources intended to max-
imize taxonomic variability across environments. These organ-
isms, which are not representative of any particular biome, were
also chosen as they can be readily cultured individually and
introduced into combinatorial environments in a controlled way.
We generated increasingly complex combinations of our 32 car-
bon sources in a hierarchical manner, so that we could quanti-
tatively compare the effects of higher-order combinations with
those of simpler ones (Fig. 1d). Additionally, each environment
contained the same amount of carbon irrespective of environ-
mental complexity (Fig. 1b), enabling us to specifically assess the
impact of increased resource heterogeneity. Our organisms were
inoculated into these environments at equal amounts (see
Methods, Supplementary Table 3, Supplementary Table 4), and
the resultant cultures were grown and passaged into fresh media
at rates informed by pilot experiments in order to maximize the
chance of each having consumed the provided carbon sources
and reached a stable composition (Supplementary Fig. 3, Sup-
plementary Fig. 4b). In total, variants of this procedure were
applied to generate 282 unique community-environment pairings
(Supplementary Table 5).

Community growth yield scaling with environmental com-
plexity. We initially asked whether and how the growth yield
(defined as the difference between the maximum biomass at the
end of growth and the initial biomass) of a community varies
with increasing environmental complexity. To generate an
expectation of this effect, we first employed a consumer resource
modeling (CRM) framework. Consumer resource models, which
predict community growth yields and composition based on
species-specific resource utilization preferences (Fig. 1e), have
previously been shown to recapitulate community dynamics in a
variety of systems43 and can be used to generate expectations at
scales inaccessible to experiments. Moreover, they explicitly
consider the dynamics and diversity of resources, making them
especially well-suited to address questions relating to the ecolo-
gical effects of environmental complexity. By using CRMs on a
statistical ensemble of simulated communities (see Methods), we
predicted that, on average, community yield would not change
significantly with environmental complexity (Supplementary
Fig. 5a). We then compared our simulation results to our in vitro
13-species community (referred to as com13, Supplementary
Table 5), which, despite comprising a diverse set of organisms on
heterogeneous carbon source combinations, closely matched this
expectation (Fig. 2a). These models and experiments therefore
suggested an additive relationship between community growth
yield and environmental complexity. In other words, the overall
yield for a complex community appeared to depend on average
only on the total amount of carbon, and not on the number and
identities of resources.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22426-3

2 NATURE COMMUNICATIONS |         (2021) 12:2365 | https://doi.org/10.1038/s41467-021-22426-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a b c

ed

Time

R
es

ou
rc

e 
ab

un
da

nc
es

O
rg

an
is

m
 

ab
un

da
nc

es

Complexity

Fig. 1 Experimental schematic for testing microbial community responses to environmental complexity. a Communities were assembled by combining a
defined number of organisms (Supplementary Fig. 1a, Supplementary Table 1) at equal ratios. b These mixed cultures were then inoculated into deep-well
plates containing a minimal medium plus equimolar combinations of up to 32 carbon sources (Supplementary Fig. 1b, Supplementary Table 2,
Supplementary Table 3, Supplementary Table 4). The communities were either grown in batch or diluted into fresh media over the course of several days
(Supplementary Table 5). c Growth yields were then assessed using a spectrophotometer and composition was determined using either agar plating or 16S
sequencing. d Experiments were designed such that community phenotypes in more complex environments could be directly compared to simpler
environments containing the same carbon sources. Measurements of simpler environments were used to generate expectations of phenotypes in more
complex compositions. e Schematic of consumer resource modeling framework. Resources (pink and yellow) are utilized by organisms to generate
biomass and secreted byproducts (see Methods). In this example, the bottom green organism is able to utilize both resources more efficiently than the top
blue one as denoted in the shades of the resource-organism arrows. The blue organism converts the pink resource into a brown metabolite, which can be
utilized by the green organism for growth.

Fig. 2 Changes in community growth yield in response to environmental complexity. a–c Growth yields for com13 (a), com3 (b), and com4 (c) measured
at the experimental endpoint (6 passages at 48-h frequencies, Supplementary Table 5). Here, the central mark indicates the median, the top and bottom
box edges indicate the 25th and 75th percentiles, respectively, the whiskers extend to the most extreme points not considered outliers, and the red ‘+’

symbols indicate outliers plotted individually. Sample sizes are outlined in Supplementary Table 3. d Distribution of yield epistasis EY for all three
communities and simulated communities predicted using a consumer resource model (CRM). EY distributions for each community were compared against
those of statistical ensembles of CRM-simulated communities containing the same number of initial organisms (i.e., 13, 3, or 4, Supplementary Fig. 5a, e, i).
Here, histograms for the simulated communities completely overlap, so they are represented as a single peak. Upper bars denote mean and standard
deviation. Significance levels are calculated between each community distribution and that of the CRM using a paired one-sided t-test, and are indicated by
(***) p < 0.001 (p= 0.84 for com13, 3.6 × 10−4 for com3, and 2.1 × 10−4 for com4). Source data are provided as a Source Data file.
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This effect can be further analyzed in a statistical way by using
the concept of epistasis. In addition to confirming the aforemen-
tioned additivity, applying this concept to our communities
allowed us to single out individual cases that significantly deviated
from this general effect. To do this, we established a yield epistasis
metric EY, which quantifies how much the yield Y on a specific
composite environment differs from the expectation based on its
constituent environments (Fig. 1d). As such, our metric EY is
defined as the difference between the observed and expected yield
on the combination of two environments A and B, i.e.,

EY ¼ Y ABð Þ � Y Að Þ þ Y Bð Þð Þ=2: ð1Þ

An EY value of zero would thus reflect the assumption that,
since all environments contain the same total amount of carbon,
the yield in a complex environment should be the same as the
combination of yields on its corresponding simpler environ-
ments. Indeed, the distributions of yield epistasis scores EY for
our 13-species community (com13) and for the CRM simulations
were centered at zero (Fig. 2d), confirming that our experiment
and the corresponding model match our expectation of yield
additivity. Using this metric, we then identified a number of
notable deviations from EY= 0 (Supplementary Fig. 6). For
example, the community cultured on the combination of D-
glcNAc and D-galacturonate displayed an EY value of 0.13 (2σ),
indicating improved growth on this more complex composition
than on the individual carbon sources. Conversely, the combina-
tion of D-glucose and D-sorbitol resulted in an EY score of
−0.19 (3σ), suggesting that the community might be displaying
reduced efficiencies in using one carbon source in the presence of
another, representing a type of ‘resource interference’ previously
observed17,44.

While our 13-species community matched the expectation that
yields are additive on average, similar experiments on smaller (3-
and 4-species) consortia, as well as on individual organisms,
suggested that simpler microbial ensembles may not display this
property. The yields observed in these experiments instead
increased with environmental complexity (Fig. 2b, c, Supplemen-
tary Fig. 7a, Supplementary Fig. 8), an effect that was also
reflected in a significant positive skewing of the distribution of EY
for many of these microcosms (Fig. 2d, Supplementary Fig. 8).
This effect may stem from the resource utilization capabilities of
the organisms involved. In a larger community, a broader
representation of resource utilization capabilities may raise the
chances that at least one organism will be able to consume the
provided carbon at all levels of environmental complexity. In
contrast, for smaller communities with more limited resource
utilization capabilities, the chances of observing minimal or no
growth would increase in simpler environments.

We directly tested this hypothesis by modifying our consumer
resource model to account for the presence of organisms with
more limited resource utilization capabilities (see Methods). In
doing so, we noticed that yields did significantly increase in
communities with reduced resource utilization potential (Supple-
mentary Fig. 5). These simulations therefore suggest a metabolic
mechanism underlying the trends observed in our smaller
experimental consortia. Indeed, out of the 63 environments we
tested, there were 33 and 15 in which our 3- and 4-species
communities did not grow, respectively, compared to only 4 for
our 13-species community (Supplementary Fig. 7a). Our 4-
species community differed from our 3-species community only
in the addition of one organism, Pseudomonas aeruginosa, whose
broader and more efficient resource utilization capabilities
(Supplementary Fig. 9) likely contributed to higher average
growth in less complex conditions (Fig. 2b, c). Moreover, our
communities displayed increasing average yields with initial

species richness (Supplementary Fig. 7b), in line with previous
ecological observations45–47.

Our simulations also revealed the role of organism relatedness
in contributing to patterns of yield epistasis. As our in silico
communities contained organisms with varying resource utiliza-
tion capabilities, they also exhibited corresponding degrees of
niche overlap (Supplementary Fig. 10). When we considered this
ecological metric, we found that communities made up of more
metabolically similar organisms exhibited more dampened
increases in yield (Supplementary Fig. 5). In addition, para-
meterizing our models using the resource utilization capabilities
measured for our communities (Supplementary Fig. 9) revealed
their estimated degrees of niche overlap, while also recapitulating
the relative magnitude of yield increases observed experimentally
(Supplementary Fig. 5d, h, l). Taken together, our results suggest
that an additive community growth yield response to environ-
mental complexity depends on the number of organisms present,
as well as the extent to which their individual metabolic
capabilities overlap. These results, along with additional tests of
community growth rates, thus point to an interplay between
community-wide ecological effects and species-specific metabolic
nonlinearities (Supplementary Note 1).

Determinism and competition characterize community
assembly. Our analysis has so far focused on a single collective
trait of microbial communities—the growth yield—but has not
provided insight into how environmental complexity affects the
balance between different organisms and their ensuing commu-
nity structure. We thus used 16S amplicon sequencing to measure
the endpoint taxonomic distributions of our 13-species commu-
nity under increasingly complex environmental compositions (see
Methods, com13, com13a, Supplementary Table 5). This analysis
revealed considerable variation across different environments
(Fig. 3a, Supplementary Fig. 11) and high degrees of consistency
across replicates and experiments irrespective of environmental
complexity (Supplementary Fig. 12, Supplementary Fig. 13),
suggesting that the assembly patterns of these communities are
largely deterministic based on environmental composition.

To more deeply analyze the contributions of defined carbon
source sets to specific community structures, we applied a
clustering analysis that yielded an environment-phenotype
mapping spanning our entire dataset (Supplementary Fig. 14).
This mapping demonstrated how distinct—and often unrelated—
environments can nonintuitively result in similar taxonomic
compositions, which reflect previously-identified family-level
functional relationships in natural microbiomes (Supplementary
Note 2, Supplementary Fig. 15)24. For example, we discovered a
dichotomy between Pseudomonas and Acinetobacter organisms,
which were the genera that dominated the communities in most
(Acinetobacter in 18.0% and Pseudomonas in 76.7%) of our
carbon source conditions. Our results showed that, while multiple
organisms could generally persist in environments with single-
carbon sources or with multiple different types of carbon sources
(70.4% of environments resulted in the persistence of more than
one organism), Pseudomonas organisms tended to dominate the
communities in environments with more than one type of
carbohydrate or organic acid. These outcomes thus underscore
the importance of nutrient identity (and not just nutrient
diversity) in determining the final structure of communities.

In addition to these patterns, we noticed how the overall species
abundance distributions of our communities resembled those of
natural microbiota in that they both generally contained a small
number of high-abundance taxa and a long tail of low-abundance
organisms48–50 (Supplementary Fig. 16). Unlike natural ecosys-
tems, however, knowing the composition of our initial inoculum
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Fig. 3 Endpoint taxonomic properties of 13-species community in up to 32 carbon sources (com13). a Mean species relative abundances across three
biological replicates. Environments with more than two carbon sources are abbreviated (e.g., condition 4–1 contains the carbon sources in the first two 2-
carbon source conditions, etc.). For complete environmental compositions see Supplementary Table 3. Gray circles indicate community growth below
OD600 0.05. Initial compositions and compositions across all replicates are found in Supplementary Fig. 13a. b Species-specific differences in growth
between single-carbon source monoculture (Supplementary Fig. 9a) and single-carbon source community contexts. c, d Comparison of observed
community species richness S (c) and Shannon entropy H (d) with phenotypes predicted by consumer resource models. The resource utilization
capabilities of simulated organisms are either the same on average (CRM-A), or variable allowing for generalists and specialists (CRM-B). Data are
represented as mean ± SEM. No significant increases in S or H were identified when comparing the single-carbon source cases to the 32-carbon source
cases (one-tailed paired t-test p= 0.107 for S and 0.180 for H). e Representation of the fraction θ of resources usable by each organism i. Left: in CRM-A,
each organism has the same low probability of consuming a given resource, resulting in low levels of niche overlap ρ= 0.37 ± 0.07. Right: in CRM-B, this
probability varies for each organism, determined by the fraction of carbon sources that were consumed by each organism in our monoculture experiments
(Supplementary Fig. 9a). The composition of CRM-B communities resulted in higher degrees of niche overlap (ρ= 0.50 ± 0.09). Organisms are displayed
by decreasing θ. f, g Distributions of species richness epistasis (ES, f) and Shannon entropy epistasis (EH, g) scores for experiment and CRM. Upper bars
denote mean and standard deviation. Significance values are calculated against the distributions for CRM-A using a one-sided t-test and are indicated by
(*) p < 0.05 and (***) p < 0.001 (p= 0.034 for ES and 1.26 × 10−4 for EH). h Schematic and prevalence of different epistasis types. Illustrations are
representative examples. Type I: The environment AB results in the presence of an organism not observed in either environment A or B; Type II: AB results
in the union of organisms from A and B; Type III: AB contains only the organisms from the lowest-diversity environment; Type IV: AB results in a more
complex pattern of diversity loss. Source data are provided as a Source Data file.
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allowed us to better understand the mechanisms that could be
leading to these distributions. Specifically, we noticed that very few
organisms out of the original 13 persisted in any single
environment (Fig. 3a, Supplementary Fig. 11). This loss in
diversity can be partially explained by competition, which was
clearly visible in the single-carbon source environments. Here,
many organisms did not persist in a community context despite
being able to utilize a given carbon source in monoculture
(Fig. 3b). This discrepancy was particularly striking in the D-
glucose condition, in which, despite all but one organism being
able to metabolize this carbon source (Supplementary Fig. 9), only
P. aeruginosa remained. In addition, organisms that displayed a
wide range of metabolic capabilities in monoculture, such as C.
glutamicum, were not observed at all in the single-carbon source
environments, suggesting that the structure of our communities
was largely driven by competition. In support of this reasoning, we
also found generally poor correlations between the growth yields
reached by the organisms in monoculture and in com13
(Supplementary Fig. 17), indicating that monoculture resource
utilization patterns are not necessarily predictive of how an
organism will behave in a community. Despite the prevalence of
interspecies competition, there were instances in which organisms
unable to grow in monoculture on a given carbon source did
survive in the same carbon sources in a community context
(Fig. 3b). For example, the community grown on maltose
contained P. aeruginosa despite its inability to utilize this carbon
source (Supplementary Fig. 9a). A possible explanation is that E.
coli, which was present in high abundance, secreted organic acids
that sustained P. aeruginosa following the catabolism of maltose—
a well-documented series of metabolic transformations51,52.

Negative epistasis dominates taxonomic diversity scaling. The
availability of hierarchical carbon source combinations (Fig. 1d)
gave us the opportunity to extend our analysis of diversity to
multi-carbon source conditions and ask whether, beyond anec-
dotal cases, general principles govern the scaling of diversity at
increasing environmental complexity. We thus first used our 16S
data to calculate the species richness S and Shannon entropy H
values of our communities at each degree of environmental
complexity—from 1 to 32 carbon sources. Our initial expectation
that more carbon sources would create more niches and therefore
lead to higher diversity in proportion to number of new mole-
cules was challenged by the data, as neither diversity metric
displayed a statistically significant increase as a function of
environmental complexity (Fig. 3c, d). In fact, some single-carbon
source conditions resulted in greater diversity than other more
complex environments, suggesting that the number of resources
is not a key determining factor of taxonomic diversity for these
communities. Moreover, species co-occurrence patterns that we
observed in single-carbon source environments were not pre-
served in more complex settings (Supplementary Fig. 18).

In order to more systematically assess the effects of combina-
tions of environments on diversity, we defined epistasis metrics ES
and EH for species richness and Shannon entropy, respectively.
Like our epistasis scores for yield, these metrics quantify changes
in taxonomic diversity based on expectations of these quantities
on simpler environments:

ES ¼ S ABð Þ �max S Að Þ; S Bð Þð Þ; ð2Þ

EH ¼ H ABð Þ �max H Að Þ;H Bð Þð Þ: ð3Þ
These scores use, as null expectations, lower bounds for S and

H based on the intuition that a community on a more complex
environment AB should be at least as taxonomically diverse as
that on A or B. For example, if three species survived on

environment A, and two on environment B, ES= 0 would
represent the case in which the combination of environments A
and B supported exactly three species. Alternatively, ES > 0
(positive epistasis) would indicate that the joint environment
AB supported more than three organisms, while ES < 0 (negative
epistasis) would indicate that AB supported fewer than three
organisms. By computing these epistasis values for community
compositions simulated using our consumer resource model, we
found that the predicted distributions of ES and EH were both
centered at zero (Fig. 3f, g; Supplementary Fig. 19c), confirming
that our definition of epistasis constitutes a reasonable baseline to
which we could compare our experimental results. In contrast to
this basic expectation, but consistent with the low levels of
diversity observed experimentally, the distributions of both scores
for our in vitro 13-species communities were significantly skewed
to the left (ES=−0.65 ± 1.47, EH=−0.50 ± 0.58; Fig. 3f, g;
Supplementary Fig. 19d). In other words, our experiments
revealed the pervasive presence of negative epistasis in how
diversity behaves upon combining two sets of resources.

To better understand the causes underlying this phenomenon,
we examined how the taxonomic compositions exhibited in
individual environments translated to those in combinations of
environments. We found that the taxonomic outcomes of
combining two carbon source sets could be classified into four
basic types (Fig. 3h, Supplementary Data 1). In about 20% of the
cases displayed, the combined environment resulted in the
appearance of one or more organisms that had not grown on
the individual environments (Type I), suggesting the presence of
beneficial interspecies interactions. However, the most common
pattern emerging from our data was the dominance of the least
diverse constituent environment (Type III, accounting for 40% of
the cases). All instances of this dominance, which resembles
complete buffering epistasis39, were associated with strongly
negative values of ES, accounting in large part for the overall
negative bias of the distribution.

The prevalence of this Type III pattern highlighted that even
complex combinations of carbon sources often lead to the
dominance of a single organism (Supplementary Data 1). We
thus sought to determine whether this observation could be
explained by explicitly considering the resource use capabilities of
our organisms, as well as the degrees to which they intersect. To
do this, we applied our consumer resource model to simulate two
sets of 13-species communities: one based on the naïve
assumption that all organisms consume the same limited number
of resources on average (CRM-A), and another in which the
proportion of resources usable by each organism was based on
the number of carbon sources usable by each of our com13
organisms (Supplementary Fig. 9a), thereby reflecting the
presence of metabolic generalists and specialists (CRM-B, see
Methods, Fig. 3e). Communities in CRM-A also featured low
degrees of niche overlap, while organisms in CRM-B had resource
preferences that intersected to a greater degree (Supplementary
Fig. 19c, d). We found that, while species richness and Shannon
entropy were predicted to increase with environmental complex-
ity in the CRM-A communities (S reaching a maximum of ~6
coexisting species), they remained relatively flat in CRM-B
communities (Fig. 3c, d) (S reaching a maximum of ~3 coexisting
species, a value and trajectory more reflective of our experimental
observations). Predicted epistasis scores were also negatively
skewed in CRM-B (Fig. 3f, g), suggesting that reduced taxonomic
diversity in complex environments could be the outcome of
competition in communities with uneven metabolic capabilities.
A further generalization of our model to communities of different
sizes revealed how increasing degrees of niche overlap are also
negatively associated with taxonomic diversity (Supplementary
Fig. 19), providing greater clarity on the low levels of diversity
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observed in our 13-species communities as well as in smaller
consortia assayed using agar plates (Supplementary Fig. 20a, b;
Supplementary Note 3). Conversely, our model suggested that the
presence of metabolic cross-feeding has the potential to slightly
dampen losses in taxonomic diversity (Supplementary Fig. 19).

Discussion
Deciphering how multispecies microbial communities grow on
mixtures of resources remains highly challenging. Here, we
showed how a hierarchical experimental design paired with
extensive consumer resource modeling can be applied to address
this question, revealing the role of resource specialization and
niche overlap in determining the scaling of community properties
with environmental complexity. Although our simplified experi-
mental system is still far from the complexity of natural
microbiomes48,53, it captures properties that go beyond those
observable in small artificial consortia. In particular, we identified
a simple additive principle that explains how average growth
yields can remain invariant with increasing environmental com-
plexity—a consequence of all available resources being efficiently
utilized given enough organisms with varied metabolic cap-
abilities. Although one could expect this behavior to arise in
communities well adapted to a specific environment, it is sur-
prising that it also emerged in our synthetic consortia composed
of organisms from different biomes grown on artificial combi-
nations of carbon sources. Despite this additive relationship in
some communities, our experiments and modeling showed how
decreasing the degrees of community niche overlap could lead to
non-additively increasing growth yields, reminiscent of observa-
tions of overyielding in various ecological studies54–56. However,
while overyielding generally pertains to species mixtures dis-
playing higher yields relative to monoculture, we describe a
pattern by which these increases in yield are brought about by
increasingly complex environments. To contextualize these
observations, we drew from descriptions of nonlinearities in
genetics and devised an ‘epistatic’ metric that allowed us to
quantify our observed non-additive scaling of growth yield.

The versatility of the concept of epistasis allowed us to define
similar metrics to quantitatively describe changes in taxonomic
diversity. In contrast to our growth yield epistasis distributions
that were either centered at zero or positively skewed, our dis-
tributions of diversity epistasis were centered on negative values.
While the magnitude of negative epistasis was also highly
dependent on organism resource specialization and niche overlap,
our results raise the question of whether different distributions
could be observed given an alternative formulation of our epi-
static metrics. Indeed, the question of which mathematical defi-
nition best establishes a baseline for biological nonlinearities is a
longstanding one in genetics57,58, raising the prospect of new
definitions as the basis for expanded quantitative evaluations of
ecological nonlinearities. Irrespective of our formal definitions,
however, our results showed how increased environmental
complexity does not guarantee greater taxonomic diversity
beyond that already possible on individual carbon sources24. This
result underscores the dependence of biodiversity on an interplay
of features, such an appropriate balance of generalists and spe-
cialists and the existence of evolved interdependencies59–61.
Furthermore, it raises the prospect for systematic exploration of
additional mechanisms that can impact the relationship between
environmental complexity and community ecology. Of particular
interest are experimental concerns such as the timescale and
regime of medium dilutions62, or metabolic ones such as the
impacts of different molecular currencies (e.g., nitrogen or
phosphorus63–65) and the ability of organisms to either sequen-
tially or simultaneously utilize multiple resources66,67. Such

extensions would further clarify how communities respond to
combinations of resources, facilitating the design of synthetic
microbial ecosystems and improving multiscale models of com-
munities adapted to complex environments, such as host-
associated microbiomes and communities involved in biogeo-
chemical cycles68–72.

Methods
Selection and initial metabolic profiling of organisms. In order to maximize the
chance of obtaining communities with diverse taxonomic profiles from different
environmental compositions, the organisms selected were drawn from a number of
bacterial taxa known to employ varying metabolic strategies. In addition, given the
growing relevance of synthetic microbial communities to industrial and bio-
technological applications73–76, we chose to employ bacterial species that have
previously been used as model organisms and have well-characterized metabolic
capabilities. This criterion, paired with the availability of flux-balance models
associated with a majority of these organisms, allows us to explore the metabolic
mechanisms observed in our various experimental conditions with higher con-
fidence. These selection principles resulted in a set of 15 candidate bacterial
organisms (Acinetobacter baylyi, Bacillus licheniformis, Bacillus subtilis, Cor-
ynebacterium glutamicum, Escherichia coli, Lactococcus lactis, Methylobacterium
extorquens, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas
putida, Salmonella enterica, Streptomyces coelicolor, Shewanella oneidensis, Strep-
tococcus thermophilus, and Vibrio natriegens) spanning three bacterial phyla
(Actinobacteria, Firmicutes, and Proteobacteria, Supplementary Table 1, Supple-
mentary Fig. 1a).

A microtiter plate-based phenotypic assay was used to assess the metabolic
capabilities of each of the 15 candidate organisms. Each organism, stored in
glycerol at −80 °C, was initially grown in 3 mL of Miller’s LB broth
(Sigma–Aldrich, St. Louis, MO) for 18 h with shaking at 300 rpm at each
organism’s recommended culturing temperature (Supplementary Table 1). To
maximize oxygenation of the cultures and prevent biofilm formation, culture tubes
were angled at 45° during this initial growth phase. Candidate organism
Streptococcus thermophilus was found to have produced too little biomass in this
time period and was grown for an additional 8 h. Each culture was then separately
washed three times by centrifuging at 6000 × g for 2 min, removing the
supernatant, suspending the pellet in 1 mL of M9 minimal medium with no carbon
source, and vortexing or triturating to homogenize. The cultures were then diluted
to OD600 0.5 ± 0.1 as read by a microplate reader (BioTek Instruments, Winooski,
VT) and distributed into each well of three PM1 Phenotype MicroArray Plates
(Biolog Inc., Hayward, CA) per organism at final OD600 of 0.05 ± 0.01. The carbon
sources in the PM1 plates (Supplementary Table 2, Supplementary Fig. 1b) were
resuspended in 150 µl of M9 minimal media prepared from autoclaved M9 salts
(BD, Franklin Lakes, NJ) and filter-sterilized MgSO4 and CaCl2 prior to
inoculation. The cultures in each PM1 plate were incubated at each organism’s
recommended culturing temperature with shaking at 300 rpm for 48 h. After this
growing period, the OD600 of each culture was measured by a microplate reader to
quantify growth. To account for evaporation in the outer wells of the plates, which
could yield in inflated OD readings, three ‘evaporation control’ plates with no
carbon source were inoculated with bacteria at a final OD600 of 0.05 and incubated
at 30 °C for 48 h. The averaged OD600 readings of these plates were subtracted from
the readings of the bacterial growth plates to correct for evaporation. A one-tailed
t-test was performed using these corrected OD600 values to determine significance
of growth above the value of the negative controls (p < 0.05). These final growth
yields for the 15 candidate organisms are reported in Supplementary Fig. 2a, and
aggregated analyses of the growth profiles of the organisms are reported in
Supplementary Fig. 2b-d.

After this initial metabolic profiling, Streptococcus thermophilus was not
included in any of the subsequent experiments as it displayed too low of a growth
rate in the initial overnight growth phase and grew very minimally (no more than
OD600 0.2) in fewer than 20% of the carbon sources in the PM1 plate. After
inclusion in an initial mixed-culture experiment (com14, Supplementary Table 5),
Salmonella enterica was also removed from future experiments due to its high
levels of growth on all but one of the PM1 plate carbon sources. Its exclusion,
meant to prevent its complete dominance in the subsequent mixed-culture
experiments, resulted in a final set of 13 bacterial organisms.

For experiments involving a subset of the 13 organisms, the organisms were
chosen to ensure they could be differentiated via agar plating. In the 3-species
community experiment involving E. coli, M. extorquens, and S. oneidensis in
combinations of 5 carbon sources (com3a), the organisms were selected based on
their easily differentiable colony morphologies (Supplementary Fig. 21). In the
second 3- and 4-species community experiments (B. subtilis, M. extorquens, P.
aeruginosa, and S. oneidensis (com3 and com4)), selection was informed by
differentiable colony morphology and additional metabolic criteria based on
generalist-specialist relationships. Absolute growth yield on the Biolog PM1 plates
was also considered, with the goal of including both high- and low- yielding
organisms. Therefore, P. aeruginosa (high-yield generalist), B. subtilis (low-yield
specialist), M. extorquens (low-yield generalist), and S. oneidensis (high-yield
specialist) were selected.
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Selection and combination of carbon sources. The carbon sources used in all
experiments were selected from the 95 carbon sources contained in the Biolog PM1
Phenotype MicroArray Plate. This plate contains a variety of molecule types such
as mono- and disaccharides, sugar alcohols, organic acids, amino acids, and more
complex polymers (Supplementary Table 2, Supplementary Fig. 1b). Using the
metabolic profiling experiments for each individual organism as a basis (Supple-
mentary Fig. 2a), different criteria were established to choose the carbon sources
used in each experiment depending on the desired complexity of the environment.
An overarching criterion was that each experiment contain at least one sugar, one
organic acid, and one amino acid to increase the possibility of synergistic inter-
actions between carbon sources and resource-use orthogonality between the
organisms.

For the communities grown in 5 carbon sources (i.e., com3a and com13a in
D-Glucose, pyruvate, D-glcNAc, L-proline, and L-threonine), the following criteria
were applied: D-glucose was selected as it resulted in the highest yield of each of the
individual organisms, pyruvate was an organic acid with relatively high yields,
D-glcNAc was a more complex sugar that resulted in varying individual growth
yields, and L-proline and L-threonine were amino acids that resulted in generally
high and low individual species yields, respectively. Communities were grown in
all combinations of these five carbon sources (5 conditions of 1 carbon source, 10
of 2, 10 of 3, 5 of 4, and 1 of 5) for a total of 31 unique environmental compositions
(Supplementary Table 4).

The carbon sources for the 32-carbon source experiments were selected based
on the following criteria, in decreasing order of importance: carbon sources in
which generalists individually displayed low levels of growth but favored at least
one specialist (3 carbon sources), carbon sources that resulted in high-variance in
growth yields across organisms (5 carbon sources), and carbon sources that
resulted in low-variance in growth yields across organisms (7 carbon sources).
These criteria were meant to increase the probability of observing more
taxonomically diverse communities. The remaining 21 carbon sources were
selected based on the total organism-specific yields they conferred (Supplementary
Fig. 2a), with higher-yielding carbon sources being prioritized. Communities were
grown in selected combinations of these 32 carbon sources (32 conditions of 1
carbon source, 16 of 2, 8 of 4, 4 of 8, 2 of 16, and 1 of 32) for a total of 63 unique
environmental compositions (Supplementary Table 3). The selected combinations
were chosen based on the Biolog growth yields of the 13 organisms under each
carbon source, with the lowest-yielding carbon source (D-sorbitol) being paired
with the highest (D-glucose) followed by the second-lowest and second-
highest, etc.

Growth media conditions were assembled by resuspending each carbon source
in distilled water to stock concentrations of 1.25 mol C/L and filter sterilizing using
0.2 µm membrane filter units (Nalgene, Rochester, NY). Carbon source stock
solutions were stored at 4 °C for no longer than 30 days. A liquid-handling system
(Eppendorf, Hamburg, Germany) was used to distribute the individual carbon
source stocks in the appropriate combinations in 96-well plates. These prepared
carbon source stocks were then sterilized using filter plates (Pall Corporation, Port
Washington, NY) via centrifugation at 1500 × g for 2 min. These were then
combined with M9 minimal medium (containing M9 salts, MgSO4, CaCl2, and no
carbon) and filter-sterilized water to final working concentrations of 50 mMC in
96 deep-well plates (USA Scientific, Ocala, FL) for a total volume of 300 µl. This
working concentration was selected such that all organisms would not grow
beyond the linear range of OD600 for biomass measurements.

Culturing of microbial monocultures and communities. After selecting the set of
32 carbon sources above, each of the 13 bacterial organisms was cultured inde-
pendently in each individual carbon source prepared from stock solutions. Each
organism was first inoculated from a glycerol stock stored at −80 °C into 3 mL of
LB broth and incubated at 30 °C with shaking at 300 rpm for 18 h. The culture
tubes were angled at 45° to prevent biofilm formation and to enable oxygenation of
the cultures. The overnight cultures were then washed three times by centrifuging
at 6000 × g for 2 min, resuspending in M9 medium without carbon, and vortexing
and triturating if necessary to homogenize. The individual cultures were then
inoculated in biological triplicate into the prepared media plates at final con-
centrations in 300 µl of OD600 0.05 ± 0.01 as measured by a microplate reader
(BioTek-Synergy HTX). Additionally, a control plate was assembled containing one
well inoculated with each individual organism with no carbon source to assess the
decay/evaporation of the initial inocula, and one uninoculated well with 50 mMC
of D-glucose to control for contamination. These monocultures were grown at 30 °
C with shaking at 200 rpm for 48 h, after which their growth yields were quantified
by transferring 150 µl to clear 96-well plates (Corning, Corning, NY) and reading
absorbance values (OD600). Biomass quantities are reported as the difference
between the raw OD600 readings of each sample and the corresponding OD600

value of the negative control wells. Outlying OD600 readings were removed by
calculating Z-scores M for each individual measurement xi using the median
absolute deviation (MAD):

Mi ¼
0:6745 xi � ex� �

median xi � ex�� ��� � ð4Þ

where ex is the median across three biological replicates and 0.6745 represents the
upper quartile of the normal standard distribution, to which the MAD converges. If

the Z-score of an individual measurement exceeded 3.5, it was considered an
outlier and removed. This process resulted in the elimination of 71 data points (out
of 1248) across all organism monocultures. As with our Biolog phenotypic assay, a
one-tailed t-test was performed using these corrected OD600 values to determine
significance of growth above the value of the negative controls (p < 0.05). These
final growth phenotypes for the 13 organisms in stock solutions are reported in
Supplementary Fig. 9 along with a comparison to their growth in the Biolog
phenotypic assays.

For community experiments in combinatorial media, all communities were
assembled using a bottom-up approach with each organism initially grown
separately and diluted to the same starting concentrations before being combined.
All individual organisms were prepared as described in the above paragraph, then
combined at equal proportions and inoculated in biological triplicate into the
prepared combinatorial media plates at final concentrations of OD600 0.05 ± 0.01 in
300 µl. Each community growth experiment additionally contained three control
wells: one uninoculated well with 50 mMC of D-glucose to control for
contamination, and two inoculated wells with no carbon source to assess the decay
of the initial inocula. The communities were grown at 30 °C with shaking at 300
rpm for periods of 24 or 48 h before each passage. At each passaging step, the
cultures were triturated 10 times to ensure the communities were homogenized and
10 µl were transferred to 290 µl of fresh media for the subsequent growth period.
Yields of the cultures were quantified as described above, and processed using the
aforementioned outlier removal procedure. This process resulted in the elimination
of 8 data points (out of 192) for com3, 15 for com4, 10 for com13, and 17 (out of
768) across the four monocultures. A summary of the organisms, carbon sources,
and culturing conditions for each community experiment is found in
Supplementary Table 5.

Communities to be sequenced were centrifuged at 1500 × g for 10 min and the
supernatant was removed. Cell pellets were stored at −20 °C until DNA collection
was performed using a 96-well genomic DNA purification kit (Invitrogen). To
harvest the DNA, each cell pellet was resuspended in 180 µl lysis buffer containing
25 mM Tris-HCl, 2.5 mM EDTA, 1% Triton X-100, and 20 mg/ml Lysozyme
(Sigma–Aldrich). The samples were mixed by vortexing and incubated at 37 °C for
30 min, after which 20 mg/ml of RNase A (Invitrogen, Carlsbad, CA) and 20 mg/ml
of Proteinase K (Invitrogen) with PureLink Pro 96 Genomic Lysis/Binding Buffer
(Invitrogen) were added. The samples were mixed by vortexing and centrifuged
after each reagent was added. The samples were incubated at 55 °C for 30 min, after
which 200 µl of 100% ethanol (Sigma–Aldrich) were added. DNA from the
resulting lysates was purified using a vacuum manifold according to the
purification kit protocol (Invitrogen). Purified DNA was normalized to 15 ng/µl
using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA).
Library preparation was performed based on a paired-end approach developed by
Preheim et al.77, which targets the V4 region of the 16S rRNA gene with the
primers U515F (5’-GTGCCAGCMGCCGCGGTAA) and E786R (5’-GGACTACH
VGGGTWTCTAAT). Libraries were sequenced using an Illumina MiSeq platform
at either the MIT BioMicroCenter, Cambridge, MA (com13a) or at QuintaraBio,
Boston, MA (com13). QIIME278 was used to demultiplex raw files and produce
FASTQ files for forward and reverse reads for each sample. DADA279 was used to
infer sequence variants from each sample and a naïve Bayes classifier was used to
assign taxonomic identities using a custom reference database with a 95%
confidence cutoff. Reads not able to be assigned to a genus in our database were
marked as ‘Unassigned’ and comprised 0.19% and 0.01% of all reads across all
samples for com13 and com13a, respectively.

Communities to be assayed by agar plating were diluted by a factor of 104 and
spread on LB agar plates using autoclaved glass beads. Plates were prepared by
autoclaving and distributing 18 mL of LB agar (Sigma–Aldrich) into petri dishes
using a peristaltic pump (TriTech, Los Angeles, CA). Inoculated plates were
incubated at 30 °C and imaged after 72 h using a flatbed scanner for colony
counting. Colony counts for com3 and com4 were adjusted based on a standard
dilution of the community members at equal concentrations measured by OD.

Significance between growth yields under differing environments was
determined using a one-sided two-sample t-test with significance cutoffs of 0.05,
0.01, and 0.001. Species richness (S) is defined as the number of different organisms
detected in a particular environment. Shannon entropy (H) is defined as follows:

H ¼ �∑
i
pi log2 pi ð5Þ

where pi is the relative abundance of organism i in a sample.
For hierarchical clustering analysis of communities, Spearman correlation

coefficients were computed either for pairs of environments or pairs of organisms
based on normalized vectors of species abundances. Hierarchical clustering was
performed on the correlation coefficients using the ‘clustergram’ function in
MATLAB, which calculated distances between clusters using the UPGMA method
based on Euclidean distance.

Computation of epistasis scores. To quantify the non-additivity in how taxo-
nomic diversity and balance could change in incrementally more complex envir-
onments, we first established definitions of expected values of species richness S
and Shannon entropy H based on their values in lower-complexity conditions. Let
a combined set of carbon sources AB be defined as the union of carbon source sets
A and B. For carbon source sets A, B, and AB, the vectors of relative species
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abundances in each set are defined as VA, VB, and VAB, respectively. The
species richness values S for each set are therefore simply the number of positive
species abundance values in each vector. Based on the organisms that survived
in sets A and B, we establish the naïve assumption that at least as many organisms
as survived in either environment will also survive in set AB. We therefore
define Sexpected, AB as max (SA, SB). This value is then compared to the experi-
mentally observed species richness value SAB using our epistasis score for species
richness ES, AB:

ES;AB ¼ SAB � Sexpected;AB: ð6Þ
We use a similar expectation to calculate Shannon entropy epistasis EH. Here, we

first calculate the observed H for carbon source set AB as HAB ¼ �∑VAB log2 VAB ,
and the expected H for carbon source set AB based on A and B as Hexpected, AB=max
(HA, HB). The epistasis score for Shannon entropy EH, AB is therefore:

EH;AB ¼ HAB � Hexpected;AB: ð7Þ

Consumer resource modeling. We employed a dynamical modeling framework to
simulate the yields of arbitrary communities in increasingly complex environ-
ments, as well as the relative abundances of com4. The model builds upon Robert
MacArthur’s consumer resource model80–82 and a subsequent modification by
Marsland et al.43, which simulates the abundances of organisms over time as a
function of resource availability, metabolic preferences, and exchange of secreted
metabolites.

We define the individual species abundances as Ni for i= 1,…,S, and the
resource abundances as Rα for α= 1,…,M. The key variable in calculating the
abundances Ni is a stoichiometric resource utilization matrix Ciα, which defines the
uptake rate per unit concentration of resource α by organism i (Fig. 1e). To
calculate the growth of each organism on each resource, we multiply this matrix by
a Monod consumption term Rα/(ki,a+ Rα) that simulates concentration-dependent
resource depletion. Each consumed resource type α with abundance Rα is therefore
consumed by organism i at a rate CiαRα/(ki,a+ Rα). These resources α are then
transformed into other resources β by the organisms via a species-specific
normalized stoichiometric matrix Dαβi. A fraction l of the resultant metabolic flux
is returned to the environment to be made available to other organisms, while the
rest is used for growth. In addition to these resource consumption terms, the
species abundances are also defined by (i) a species-specific conversion factor from
energy uptake to growth rate gi, (ii) a scaling term representing the energy content
of each resource wα, and (iii) a quantity representing the minimal energy uptake
required for maintenance of each species mi. These terms are further defined in
Supplementary Table 7. Taken together, the species abundances Ni over time are
defined by:

dNi

dt
¼ giNi ∑

α
wα 1� lαð ÞCiα

Rα

ki;a þ Rα

�mi

" #
: ð8Þ

The initial resource abundances Rα,0 and the initial organism abundances Ni,0

are first defined; then each resource is consumed in a manner dependent on the
matrix Ciα, and converted to other resources based on the stoichiometric matrix
Dαβi:

dRα

dt
¼ ∑

i
CiαNi

Rα

ki;a þ Rα

þ∑
i;β
Dαβi

wβ

wα

lβCiβNi

Rβ

ki;β þ Rβ

: ð9Þ

We selected the parameters for our equations based on experimental
observations and quantities obtained from the literature (Supplementary Table 7).
Our model contains no terms for resource replenishment or culture dilution, as all
species were diluted every 48 h at a proportion defined by our experiments (10 µl of
culture passaged into a total of 300 µl of fresh uninoculated media). Kinetic growth
curves for com14 (Supplementary Table 5, Supplementary Fig. 22a) were used to
estimate the orders of magnitude for the remaining parameters, based on the
community reaching an average of approximately 2.4 × 108 CFU/mL (OD600 0.3)
within 20 h in 50 mMC of D-glucose. The conversion factor from energy uptake to
growth rate gi, as well as the energy content of each resource wα, were set to 1 and
1 × 108, respectively, in order to approximate this magnitude of growth. The
Monod resource consumption half-velocity constant was set to 1 × 104 g/mL for all
resources in order to approximate the experimentally observed growth timeframe.
Lastly, the minimum energy requirements for all organisms mi were informed by
the community yields at steady state and the leakage fraction lα was set to 0.8 based
on community simulations in Marsland et al.43. These quantities are summarized
in Supplementary Table 7.

We used our model to simulate the growth of communities containing S= 13,
S= 3, and S= 4 arbitrary organisms. Here, values in C could only be nonzero if a
randomly defined probability Piα

util of an organism i being able to utilize a particular
resource α was below a given threshold value θi. This threshold, representative of the
fraction of resources usable by each organism, ranges from 0 to 1 and can be
decreased to make an organism more of a resource specialist. Each community was
simulated 50 times in each environment, so that the resource preference matrices
C and the resource utilization probabilities Piα

util could be randomly repopulated. This
process allowed us to more effectively sample the large space of possible resource
utilization matrices and obtain a clearer indication of how mean community yields
changed in response to increasing environmental complexity. The environments

were generated from a set of M= 32 arbitrary resources, which were combined in
a scheme similar to that of com3, com4, and com13: 32 conditions with one
resource, 16 conditions with two resources, and so on, up until one condition with all
32 resources.

We initially simulated our communities with a θi of 1 for all organisms i, as an
initial null model for assessing how growth yields could vary with increasing
environmental complexity (Supplementary Fig. 5a, e, i). These communities, which
had high degrees of niche overlap (Supplementary Fig. 10) and distributions of
yield epistasis EY centered at zero, were used as a baseline to quantify the yield
epistasis distributions of our in vitro communities (Fig. 2d). We next carried out
simulations with decreasing values of θi (and correspondingly decreasing degrees of
niche overlap), which recapitulated the increases in yield we observed
experimentally for com3 and com4 (Supplementary Fig. 5f-g, j-k). We then carried
out simulations in which we defined each value θi as the proportion of nutrients
able to be consumed by each organism in our monoculture assays, θmc

(Supplementary Fig. 9a, Supplementary Fig. 5d, h, l). Two of these simulation
results (that of a 13-species community with θi= 0.5 for all i, and of a 13-species
community with θ= θmc) were used as CRM-A and CRM-B, respectively, in our
main analysis of taxonomic diversity with generalists and specialists.

To test the effects of metabolic exchange, our CRM simulations also contained
between 1 and 10 unique secreted metabolites, which could also be consumed by
organisms according to randomly defined preferences in C. For a more realistic
representation of metabolic conversion, these byproducts were matched with
primary resources in conversion matrix D, which was randomly populated
according to a transition probability of 0.25, meaning that a given metabolic
byproduct had a 25% chance of being converted from a given primary resource.
This matrix was normalized across each primary resource to ensure conservation of
mass. Our results for yield, species richness, and Shannon entropy are presented as
the average across all quantities of metabolic byproducts. The initial species and
resource abundances were set to 6 × 106 CFU/mL and 1.5 g/mL, respectively, to
approximate the initial OD600 of 0.05 and the initial resource concentration of
50 mMC of glucose used in our experiments. All communities were simulated over
the course of 288 h with dilutions every 48 h (based on com3, com4, and com13
culturing timescale) with a timestep of 0.01 h.

Our calculation for the degree of niche overlap ρ of our simulated communities
was based on a previous formulation of the metric designed for consumer resource
models83. This metric, bounded between 0 and 1, is 0 if the organisms do not
compete for resources and is 1 if the organisms’ resource utilization profiles
completely overlap. It is defined using the mean µ and variance σ2 of the
community resource utilization matrix C as:

ρ ¼ μ2C
μ2C þ σ2C

: ð10Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper, its Supplementary Information files, and a permanent GitHub
repository at github.com/segrelab/EnvironmentalComplexity84. Categorized community
taxonomic outcomes on combinations of carbon sources are provided in Supplementary
Data File 1. Source data are provided with this paper.

Code availability
Code for analyzing data and for running consumer resource simulations is available at
github.com/segrelab/EnvironmentalComplexity.
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