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Abstract Beneficial and deleterious mutations cause the fitness of lineages to vary across a

phylogeny and thereby shape its branching structure. While standard phylogenetic models do not

allow mutations to feedback and shape trees, birth-death models can account for this feedback by

letting the fitness of lineages depend on their type. To date, these multi-type birth-death models

have only been applied to cases where a lineage’s fitness is determined by a single character state.

We extend these models to track sequence evolution at multiple sites. This approach remains

computationally tractable by tracking the genotype and fitness of lineages probabilistically in an

approximate manner. Although approximate, we show that we can accurately estimate the fitness

of lineages and site-specific mutational fitness effects from phylogenies. We apply this approach to

estimate the population-level fitness effects of mutations in Ebola and influenza virus, and compare

our estimates with in vitro fitness measurements for these mutations.

DOI: https://doi.org/10.7554/eLife.45562.001

Introduction
The fitness effects of new mutations is a key determinant of a population’s evolutionary potential to

adapt over time. Studies exploring the distribution of fitness effects (DFE) in a wide range of organ-

isms have revealed that, while many mutations are neutral, a smaller but significant fraction have

substantial effects on fitness (Sanjuán et al., 2004; Eyre-Walker and Keightley, 2007; Visher et al.,

2016). These findings have spurred interest in molecular evolutionary models that consider how

non-neutral mutations shape sequence evolution and patterns of genetic diversity. Such models

range in complexity from simple models assuming that selection operates uniformly across all sites

(Muse and Gaut, 1994; Goldman and Yang, 1994; Yang and Nielsen, 2008) to parameter rich

models with site-specific fitness effects (Halpern and Bruno, 1998; Lartillot and Philippe, 2004;

Rodrigue et al., 2010; Hilton and Bloom, 2018). While all of these models assume sequences

evolve along an underlying phylogenetic tree representing their shared common ancestry, all also

assume that the mutation process driving sequence evolution is independent of the other evolution-

ary processes giving rise to the tree. This independence assumption implies that mutations do not

feedback and affect the fitness of lineages in the tree, such that lineages carrying highly beneficial

mutations are just as likely to survive and produce sampled descendants as lineages riddled with del-

eterious mutations (Figure 1A).

While questionable in terms of biological realism, independence between the tree generating

process and the mutation process allows for tractable statistical models. Assuming independence,
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the joint likelihood of a phylogenetic tree T and the sequence data S at the tips of the tree having

evolved as observed can be factored into two distinct components:

LðS;T j�;�Þ ¼ LðSjT ;�ÞpðT j�Þ: (1)

The likelihood of the sequence data LðSjT ;�Þ conditional on the tree and the mutational parame-

ters � can be computed efficiently for most continuous-time Markov models of sequence evolution

(Felsenstein, 1981). The probability density pðT j�Þ of the tree T given the parameters generating

the tree � can likewise be computed under widely used coalescent (Griffiths and Tavaré, 1994;

Pybus et al., 2000) or birth-death models (Rannala and Yang, 1996; Stadler, 2009). In Bayesian

phylogenetics, pðT j�Þ is normally thought of as the prior distribution over trees rather than a likeli-

hood, because the tree itself is inferred from the sequence data.
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Figure 1. Schematic overview of birth-death models. (A) Standard phylogenetic models assume that there is an underlying process by which individuals

replicate and give rise to a phylogeny. Mutations occur along the lineages of the tree, generating the sequence data observed at the tips. The

mutation process is assumed to be independent of tree generating process, such that mutations do not impact the branching structure of the tree. (B)

The MFBD allows us to relax this assumption, such that mutations at multiple sites feedback and shape both the tree and sequence data. (C) Under the

original multi-type birth-death model we track Dn;iðtÞ, the probability density that a lineage n at time t in state i produces the subtree descending from

n and the observed tip states. We also track Ei, the probability that a lineage produces no sampled descendants and is therefore unobserved. (D) In the

MFBD model we instead track Dn;k;iðtÞ, the probability that a lineage n in state i at site k produces the subtree and the observed tip states at site k.

Because the fitness of a lineage fn will depend on its genotype at all sites, we use the marginal site probabilities ! to compute the probability that a

lineage has a certain genotype, such as ACT (Approximation 1). We can then marginalize over the fitness of each genotype weighted by its

approximate genotype probability to compute the fitness fn of a lineage (Approximation 2). Finally, we need to know the probability En that a lineage

left no other sampled descendants, which we approximate using the probability Eu that a lineage with same expected fitness u leaves no sampled

descendants (Approximation 3). The schematic in A was reproduced from the original figure by Louis du Plessis (https://github.com/Taming-the-

BEAST/TechnicalLectureSources/tree/master/BeastIntro2018) with permission under a Creative Commons license.

DOI: https://doi.org/10.7554/eLife.45562.002
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The assumption of independence between the mutation and tree generating processes may be

unproblematic in certain scenarios, such as if mutations are truly neutral or do not contribute to sub-

stantial fitness differences among lineages. A common argument invoked in defense of ignoring

non-neutral mutations is that macroevolutionary tree generating processes like speciation and

extinction play out on longer timescales than the substitution process fixing or removing mutations

within a population (Bustamante, 2005). In this case, fitness variation drives the substitution process

within a population but does not ultimately drive the formation of a phylogeny at the species level.

But such separation-of-timescales arguments do not hold when segregating mutations contribute to

substantial fitness variation between lineages in a phylogeny, such as for rapidly evolving microbes

where several different mutant strains can co-circulate. In these cases, the tree generating and muta-

tion processes occur on the same timescale, and the fitness effects of mutations can feedback and

shape the branching structure of a phylogeny (Kaplan et al., 1988; Nicolaisen and Desai, 2012;

Neher and Hallatschek, 2013). Ignoring non-neutral evolution in this case may introduce biases into

phylogenetic inference. But perhaps more importantly, fitness differences among lineages can be

correlated with ancestral genotypes, providing information about the molecular basis of adaptive

evolution we would otherwise ignore.

We therefore explore an approach that couples molecular sequence evolution to the tree-gener-

ating process using multi-type birth-death (MTBD) models. Under this approach, mutations can

directly impact the fitness of a lineage in the phylogeny by altering its birth or death rate

(Figure 1B). For a single evolving site or other character state, the joint likelihood of the phylogeny

together with the observed tip states can be computed exactly under the MTBD model

(Maddison et al., 2007; Stadler and Bonhoeffer, 2013; Kühnert et al., 2016). However, this

approach is impractical for more than a few non-neutrally evolving sites due to the need to track all

possible genotypes as separate types in the state space of the model. We therefore explore an

approximate birth-death model that considers how mutations at multiple sites contribute to a line-

age’s overall fitness, without the need to track all possible genotypes in sequence space. This

approach allows us to infer the fitness effects of individual mutations and the fitness of any particular

lineage at any time (based on its inferred ancestral genotype) from the branching structure of a phy-

logeny. Because our approach is particularly relevant to rapidly adapting microbial pathogens, we

apply it to Ebola and influenza virus sequence data in order to quantify the fitness effects of naturally

occurring amino acid substitutions.

Materials and methods

The MTBD at a single evolving site
At a single evolving site, the multi-type birth-death (MTBD) model of Stadler and Bonhoeffer

(2013) can be used to compute the joint likelihood LðS; T j�; �Þ of the sequence or character state

data S and phylogenetic tree T in a way that couples the mutation process with changes in fitness

along a lineage. Let DnðtÞ represent the probability density (i.e. the likelihood) that the subtree

descending from lineage n evolved between time t and the present exactly as observed (Figure 1C).

Further, let Dn;iðtÞ represent this probability density conditional on lineage n being in state i out of M

possible states at time t. Here the state of a lineage refers to a particular allele or character state

(e.g. nucleotide or amino acid) at a single site. We reserve the term genotype to refer to a particular

configuration of states across multiple sites in a sequence.

The density Dn;iðtÞ can be computed going backwards in time from the present (t ¼ 0) to time t

along a lineage by numerically solving a system of ordinary differential equations:

d

dt
Dn;iðtÞ ¼�ðli þ

X

M

j¼1

gi;jþ diÞDn;iðtÞ ðaÞnoevent

þ2liEiðtÞDn;iðtÞ ðbÞ birth of lineage with no sample descendants

þ
X

M

j¼1

gi;jDn;jðtÞ (c) mutation from i to j

(2)

Here, li is the birth rate and di is the death rate of lineages in state i, and thus reflect a lineage’s

fitness. Mutations between states i and j occur at a rate gi;j, independently of birth events. Each

Rasmussen and Stadler. eLife 2019;8:e45562. DOI: https://doi.org/10.7554/eLife.45562 3 of 24

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.45562


term in (Equation 2) describes how Dn;i changes through time by accounting for all of the different

events that could have occurred along the lineage. The first term (a) considers the change in proba-

bility density given that no birth, death or mutation event occurred. The second term (b) considers

the probability of a birth event that went unobserved because one of the child lineages produced

no sampled descendants (this event has probability EiðtÞ, see below). The third term (c) reflects the

probability that the lineage mutated from state i to j.

EiðtÞ represents the probability that a lineage in state i is not sampled and has no sampled

descendants. This probability can be computed at any time t by solving a second set of ODEs:

d

dt
EiðtÞ ¼ ð1� siÞdi ðaÞ death without sampling

�ðli þ
X

M

j¼1

gi;jþ diÞEiðtÞ ðbÞ no event

þliEiðtÞ
2 ðcÞ birth; neither child has sampleled descendants

þ
PM

j¼1
gi;jEjðtÞ: ðdÞmutation from i to j

(3)

The first term (a) reflects the probability that a lineage dies and is not sampled, where si is the

probability that a lineage in state i is sampled upon dying. Terms b-d have similar interpretations as

in (Equation 2).

At a tip lineage n, we initialize Dn;iðtÞ ¼ disi if the lineage was sampled upon death at time t. Alter-

natively, if n was sampled at the present time t ¼ 0 before dying, then Dn;iðtÞ ¼ �i, where �i is the

probability that an individual in state i was sampled at present. At a branching event, the probability

density Da;i of the parent lineage a in state i giving rise to two descendent lineages n and m is

updated as:

Da;i ¼ 2liDm;iðtÞDn;iðtÞ: (4)

The factor of two enters because either lineage m or n could have given birth and we must con-

sider both possible events.

At the root, we can compute the probability density of the entire tree by summing over all possi-

ble root states:

Dn ¼
X

M

i¼1

qi
Dn;iðtrootÞ

1�EiðtrootÞ
; (5)

where qi is the prior probability that the root is in state i at time troot. Including the term

1�EiðtrootÞ in the denominator conditions the birth-death process on giving rise to at least one sam-

pled individual. Dn represents the probability that the entire tree and the tip states S evolved as

exactly as observed. It is therefore equivalent to the joint likelihood LðS;T j�;�Þ we seek where

�¼ fgg and �¼ fl;d; sg.

In theory, this approach could be extended to evolution at any number of sites as long as we

track Dn;iðtÞ for all possible genotypes i. Unfortunately, this approach has limited utility because the

number of possible genotypes in sequence space scales exponentially with the number of sites L

(i.e. 4
L possible genotypes for nucleotide sequences), making the MTBD model impractical for

modeling evolution at more than a few sites.

The marginal fitness birth-death model
While the fitness of a lineage will generally depend on its genotype across multiple sites, tracking

evolution in the space of all possible genotypes is, as just discussed, computationally infeasible. We

therefore seek an approach that considers how mutations at multiple sites determine the fitness of a

lineage without the need to track Dn;i for all possible genotypes. In the approach described below

and outlined in Figure 1D, we therefore track molecular evolution at each site, computing the prob-

ability that each site occupies each state, and then approximate the probability of a lineage being in

any particular genotype based on these site probabilities. To compute the expected fitness of a line-

age, we can then sum, or marginalize, over the fitness of each genotype weighted by its
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approximate probability. We therefore refer to this approach as the marginal fitness birth-death

(MFBD) model.

First, in order to couple a lineage’s fitness with the birth-death process, we will assume that the

birth rate ln of any lineage n scales according to the fitness fg of its genotype:

ln ¼ fgl0; (6)

where l0 is the base birth rate assigned to a particular reference genotype (e.g. the wildtype). A

lineage’s death rate can also be coupled to its fitness, but for simplicity we will assume a lineage’s

fitness is reflected only in its birth rate ln.

Let G be the set of all possible genotypes in sequence space and gk be the state of genotype g at

site k. To make it clear when we are considering evolution in genotype space rather than at a partic-

ular site, we will write the probability density Dn;i as Dn;g when i refers to a particular genotype. Fur-

thermore, let Dn;k;i be the probability density of the subtree descending from lineage n given that

site k is in state i. By definition,

Dn;k;i ¼
X

fg2G:gk¼ig

Dn;g; (7)

where the sum is over all genotypes in G with site k in state i.

We can derive a difference equation for Dn;k;i from Dn;g in a straightforward manner:

Dn;k;iðtþDtÞ ¼
X

fg2G:gk¼ig

Dn;gðtþDtÞ

¼
X

fg2G:gk¼ig

½ð1�ðfgl0þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0 þ dÞÞDn;gðtÞDt

¼þ2fgl0En;gðtÞDn;gðtÞDt

¼þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0Dn;g0ðtÞDt�:

(8)

Taking the limit as Dt! 0, we get a new system of differential equations for Dn;k;iðtÞ:

d

dt
Dn;k;iðtÞ ¼

X

fg2G:gk¼ig

½ � ðfgl0 þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0 þ dÞDn;gðtÞ

þ2fgl0En;gðtÞDn;gðtÞ

þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0Dn;g0ðtÞ�

Unfortunately, (Equation 9) would still require us to track Dn;gðtÞ for all possible genotypes, pre-

cisely what we wish not to do. We show below that, if we can approximate fg and En;g for any given

lineage, we can write (Equation 9) in terms of only Dn;k;i (see (Equation 19)) and therefore do not

need to track each genotype.

Approximating the fitness of a lineage
We begin by approximating the fitness fn of a lineage n. Even if we do not know the exact genotype

of a lineage at a particular time, we can compute the lineage’s expected fitness by summing over

the fitness of each genotype fg weighted by the probability !n;g that lineage n is in genotype g:

EðfnÞ ¼
X

g2G

fg!n;g: (10)

The same logic can be extended to compute the expected marginal fitness Eðfn;k;iÞ of a lineage n

that at site k is in state i:

Eðfn;k;iÞ ¼
X

fg2G:gk¼ig

fg!n;g: (11)

Rasmussen and Stadler. eLife 2019;8:e45562. DOI: https://doi.org/10.7554/eLife.45562 5 of 24

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.45562


Computing Eðfn;k;iÞ using (Equation 11) requires knowledge of the genotype probabilities !n;g,

which would again require us to track evolution in genotype space. We therefore introduce our

major assumption: that we can approximate genotype probabilities using only the marginal site

probabilities !n;k;i that site k is in state i. We describe how we compute !n;k;i below. For now, we

make the approximation that

!̂n;g ¼

QL
k¼1

!n;k;gk
P

g2G

QL
k¼1

!n;k;gk

: (12)

This approximation assumes that all sites evolve independently of one another, which is not gen-

erally true because mutations at different sites are linked together in genotypes with shared ances-

tral histories, creating correlations among sites that we ignore.

Using the approximate genotype probabilities !̂n;g, we can in turn approximate the expected

marginal fitness of a lineage:

f̂n;k;i ¼
X

fg2G:gk¼ig

fg!̂n;g: (13)

If the fitness effects of each site act multiplicatively to determine the overall fitness of a lineage,

we can compute f̂n;k;i as:

f̂n;k;i ¼ ski

Y

L

l¼1;l 6¼k

X

M

j¼1

slj!n;l;j; (14)

where ski is the fitness effect of site k being in state i. This formulation of f̂n;k;i is useful if the num-

ber of sites L is large and the number of genotypes we need to sum over in (Equation 13) is there-

fore also extremely large.

Approximating the probability of no sampled descendants
The En;gðtÞ term in (Equation 9) represents the probability that a lineage n alive at time t in the past

is not sampled and leaves behind no sampled descendants. En;gðtÞ therefore necessarily depends on

the fitness of unobserved lineages descending from n and how fitness along these lineages evolves

through changes in their genotype. Because it is often easier track evolution in one dimensional fit-

ness space rather than high-dimensional sequence space (Kepler and Perelson, 1993;

Tsimring et al., 1996), we simplify this problem by tracking a proxy for En;gðtÞ though fitness space.

Let Eu be the probability that a lineage with expected fitness u leaves no sampled descendants.

While fitness can take on a continuous range of values, we track these probabilities only for a dis-

crete set of points V in fitness space. We can track Eu for u 2 V by modifying (Equation 3) to obtain:

d

dt
EuðtÞ ¼ ð1� suÞdu�ðlu þ

X

v2V

gu;v þ duÞEuðtÞþluEuðtÞ
2 þ
X

v2V

gu;vEvðtÞ: (15)

We can then substitute En;gðtÞ in (Equation 9) with Eu for the fitness value u closest to fg or f̂n;k;i in

fitness space.

Tracking evolution in fitness space requires us to specify rates gu;v for how lineages transition

between fitness classes u and v. Let Gu be the set of genotypes with expected fitness closest to u out

of all fitness values in V. We approximate gu;v as:

gu;v ¼
1

jGuj

X

i2Gu

X

j2Gv

�ij; (16)

where �ij is the mutation rate between genotypes i and j. In other words, we compute the aver-

age rate of transitions out of fitness class u into v by summing over all possible transitions between

genotypes contained within each fitness class. Note that if each genotype falls in a unique fitness

class such that jGuj ¼ 1 for all u2 V, then Eu is computed exactly. In the Results, we compare using

the approximate transition rates above to compute Eu versus an even simpler approximation where

we assume no transitions between fitness classes along unobserved lineages, which has been
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assumed in earlier multi-type birth-death models (Rabosky et al., 2014; Barido-Sottani et al.,

2018).

Computing the marginal site densities Dn;k;i

Recall that (Equation 9) provided an exact way to track the marginal site densities Dn;k;i based on

the genotype densities Dn;g. To efficiently evaluate Dn;k;i without the need to track Dn;g for all geno-

types, we apply the three approximations made above. First, we approximate the genotype proba-

bilities !̂n;g based on the marginal site probabilities. Second, we marginalize over the fitness of each

genotype (weighted by its genotype probability) to compute f̂n;k;i and then substitute f̂n;k;i for fg for

all genotypes where gk ¼ i below. Third, we approximate En;g by Eu for a single fitness value u closest

to f̂n;k;i. Making these approximations in (Equation 9) leads to:

d

dt
Dn;k;iðtÞ ¼

X

fg2G:gk¼ig

½ � ðf̂n;k;il0 þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0 þ dÞDn;gðtÞ

þ2f̂n;k;il0EuðtÞDn;gðtÞ

þ
X

M

j¼1

X

fg02G:g0
k
¼jg

gg;g0Dn;g0ðtÞ�

(17)

Assuming that the mutation rate from i to j at site k does not depend on the genetic background,

we can substitute
PM

j¼1

P

fg02G:g0
k
¼jg gg;g0 with

PM
j¼1

gi;j, where gi;j is the per site mutation rate. We can

likewise substitute
PM

j¼1

P

fg02G:g0
k
¼jg gg;g0Dn;g0ðtÞ with

PM
j¼1

gi;j

P

fg02G:g0
k
¼jgDn;g0ðtÞ. Making these substitu-

tions and rearranging the sums in (Equation 17), we have:

d

dt
Dn;k;iðtÞ ¼ �ðf̂n;k;il0 þ

X

M

j¼1

gi;jþ dÞ
X

fg2G:gk¼ig

Dn;gðtÞ

þ2f̂n;k;il0EuðtÞ
X

fg2G:gk¼ig

Dn;gðtÞ

þ
X

M

j¼1

gi;j

X

fg02G:g0
k
¼jg

Dn;g0

(18)

Recalling that Dn;k;i ¼
P

fg2G:gk¼igDn;g (and by extension Dn;k;j ¼
P

fg2G:gk¼jgDn;g), we have:

d

dt
Dn;k;iðtÞ ¼ � f̂n;k;il0 þ

X

M

j¼1

gi;j þ d

 !

Dn;k;iðtÞ

þ2f̂n;k;il0EuðtÞDn;k;iðtÞ

þ
X

M

j¼1

gi;jDn;k;jðtÞ:

(19)

The significance of (Equation 19) is twofold. First, we can track sequence evolution at each site

individually without tracking all genotypes. Second, given f̂n;k;i, we can track the overall fitness of a

lineage by marginalizing over the fitness effects of all possible mutations at other sites. We can

therefore track sequence evolution at each site while simultaneously taking into account the coupled

fitness effects of mutations at all other sites on a lineage’s fitness.

Computing f̂n;k;i still requires us to approximate the genotype probabilities using (Equation 12),

which in turn requires the marginal site probabilities !n;k;i. In our notation, !n;k;i represents the condi-

tional probability pðijT n;SnÞ that lineage n is in particular state i, where T n represents the subtree

descending from n with tip sequences Sn represents the inverse conditional probability density

pðT n;SnjiÞ. We can therefore apply Bayes theorem to compute !n;k;i given Dn;k;i:

!n;k;i ¼ pðijT n;SnÞ ¼
pðT n;SnjiÞqðiÞ

PM
i pðT n;SnjiÞqðiÞ

¼
Dn;k;iqðiÞ

PM
i Dn;k;iqðiÞ

: (20)
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The qðiÞ terms represent the prior probability that the lineage is in state i. Here we make a simpli-

fication in assuming that the tree ancestral and sister to lineage n has no information regarding !n;k;i,

and thus assume a uniform prior on qðiÞ ¼ 1=M. The qðiÞ terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (Equation 19) for

all sites simultaneously as one coupled system of differential equations. This requires updating Dn;k;i

at each time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n;k;i as fg if gk ¼ i or else f̂n;k;i ¼ 0, D̂n;k;i ¼ ds

or �, and !n;k;i ¼ 1 if gk ¼ i, else !n;k;i ¼ 0. Then at each time step backwards through time from time

t to time t þ Dt, for each site and state we:

1. Update Dn;k;i by numerically integrating (Equation 19) over time step Dt.
2. Update the marginal site probabilities !n;k;i using (Equation 20)

3. Update the expected marginal fitness values f̂n;k;i using (Equation 13) or (Equation 14).

Computing the full joint likelihood
We can now compute the joint likelihood of the tree and sequence data if we track Dn;k;i at each site

back to the root. At the root, Dn;k;iðtrootÞ represents pðT ;Skj�; �; iÞ, the probability density of the

entire tree T and the observed sequence data Sk as site k, conditional on site k being in state i at

the root. To be precise, Dn;k;i only approximates pðT ;Skj�; �; iÞ because we computed Dn;k;i using the

expected marginal fitness of a lineage f̂n;k;i based on approximate genotype probabilities. We there-

fore introduce an additional auxiliary variable F representing the entire set of expected fitness val-

ues f̂n;k;i computed over all lineages, sites and states. Using this notation,

Dn;k;iðtrootÞ ¼ pðT ;Skj�; �;F ; iÞ. By summing over all possible root states at site k (and conditioning on

survival), we can then compute:

pðT ;Skj�;�;FÞ¼
X

M

i¼1

qðiÞ
pðT ;Skj�;�;F ; iÞ

1�EuðtrootÞ
¼
X

M

i¼1

qðiÞ
Dn;k;iðtrootÞ

1�En;k;iðtrootÞ
: (21)

Likewise, we can compute the conditional probability density pðSkjT ;�;�;FÞ of the sequence data

at site k given the tree:

pðSkjT ;�;�;FÞ¼
pðT ;Skj�;�;FÞ

pðT j�;�;FÞ
: (22)

We already know pðT ;Skj�;�;FÞ from above but now need the tree density pðT j�;�;FÞ. This can

easily be computed using a birth-death process where the birth rate of each lineage at any time t is

always rescaled by its expected fitness f̂nðtÞ contained within F .

We can now compute the joint density pðT ;S1:Lj�; �Þ for all sites. Because each site is conditionally

independent of all other sites given F , we can factor pðT ;S1:Lj�; �;FÞ into a product of densities for

Sk at each site and the density of the entire tree T :

pðT ;S1:Lj�;�;FÞ¼ pðT j�;�;FÞ
Y

L

k¼1

pðSkjT ;�;�;FÞ: (23)

We can thus approximate the joint likelihood of the sequence data and the phylogeny

pðT ;S1:Lj�;�Þ as pðT ;S1:Lj�;�;FÞ. This allows us to consider how selection shapes sequence evolution

at each site while simultaneously considering how the fitness effects of mutations at multiple sites

act together to shape the phylogeny. As (Equation 23) makes clear though, the goodness of our

approximation depends on how well the fitness values in F are approximated, which in turn depends

on how well we can approximate genotypes based on the marginal site probabilities. We explore

the goodness of these approximations in the Results section.

Implementation
We first implemented the marginal fitness birth-death (MFBD) model in Matlab version R2017b. The

Matlab implementation was used to test how well the MFBD model can approximate likelihoods and

genotype probabilities relative to the exact multi-type birth death model tracking all possible
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genotypes for a simple model with only four genotypes. For statistical inference, the MFBD was

implemented as an add-on package for BEAST 2 (Bouckaert et al., 2014) named Lumière, which

extends the existing BDMM package for multi-type birth-death models (Kühnert et al., 2016).

BEAST two is a general software platform that allows a wide range of evolutionary models including

birth-death models to be fit to phylogenetic trees while jointly inferring the phylogeny using Bayes-

ian MCMC sampling. The BEAST 2 implementation of Lumière therefore allows the joint posterior

distribution of all parameters in the MFBD model and the phylogeny to be estimated from sequence

data. Source code for Lumière and the Matlab implementation are freely available at https://github.

com/davidrasm/Lumiere.

Simulations
To test the statistical performance of our approach, mock phylogenies and sequence data were sim-

ulated under a birth-death-mutation-sampling process using a variant of the Gillespie stochastic sim-

ulation algorithm (Gillespie, 2007) that recorded the ancestry of all individuals in the population. A

binary sequence was associated with each lineage and allowed to mutate with a constant per-site

mutation rate g. Mutations could alter the fitness of a lineage by either increasing or decreasing its

birth rate according to site-specific fitness effects. At death events, lineages were sampled with

probability s, in which case they were included in the mock phylogeny. Code for these simulations is

available at https://github.com/davidrasm/Lumiere/tree/master/sim (Rasmussen, 2019; copy

archived at https://github.com/elifesciences-publications/Lumiere).

Ebola analysis
We used the Lumière implementation of the MFBD model to estimate the fitness effects of amino

acid mutations previously identified to increase the infectivity of Ebola virus in human cell lines

(Diehl et al., 2016; Urbanowicz et al., 2016). We reanalyzed a set of 1610 whole genome EBOV

sequences sampled from Guinea, Sierra Leone and Liberia in 2014 to 2016. The sequence alignment

along with the time-calibrated molecular phylogeny we used for our analysis were downloaded from

https://github.com/ebov/space-time/tree/master/Data.

(Urbanowicz et al., 2016) measured the fitness effects of 17 viral genotypes carrying 18 different

amino acid mutations in either single, double or triple mutant backgrounds relative to the Makona

genotype first sampled at the beginning of the epidemic. Because our methods cannot estimate fit-

ness effects of mutations at very low frequencies, we only analyzed 9 of these mutations that were

present in at least 10 of the 1610 viral samples. Preliminary analysis revealed that these mutations

fall within eight unique genetic backgrounds because of the way mutations are nested within other

single or double mutant lineages in the phylogeny. Because the data of Urbanowicz et al. (2016)

strongly suggest that epistatic interactions between mutations affect viral fitness, we estimated the

genotypic fitness fg of these eight major genotypes rather than site-specific fitness effects s. We

therefore used the MFBD to track sequence evolution at each site, but used (Equation 13) to mar-

ginalize over these genotypes when approximating the fitness of a lineage.

We estimated the fitness of each genotype relative to the Makona genotype, assuming a uniform

½0; 2� prior distribution on these fitness values. For the other parameters in the model, we assumed a

fixed death or removal rate d of 0.1667 per day based on earlier estimates (Gire et al., 2014;

Stadler et al., 2014). Sampling was modeled as occurring upon removal, with the sampling propor-

tion s set to zero before March 2014, when the first sample was collected. After March 2014, we

assumed a fixed sampling proportion of 0.056, reflecting the fact that the dataset included samples

from 1610 individuals out of the 28,652 probable cases reported by the WHO (WHO, 2016). Lastly,

we assumed a constant amino acid mutation rate over all sites with an exponential prior on both the

forward and backward mutation rate with a mean rate of 2 � 10�3 per site per year. We also ran a

second analysis where we included the geographic locations of lineages (Guinea, Sierra Leone and

Liberia) as an additional evolving character state in our model. In this analysis, we estimated the

effect of geographic location on transmission rates in Sierra Leone and Liberia relative to the base

transmission rate in Guinea. Both analyses can be reproduced in Lumière with the XML input files

available at https://github.com/davidrasm/Lumiere/tree/master/ebola.
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Influenza H3N2 analysis
We used the Lumière implementation of the MFBD model to estimate the fitness effects of amino

acid mutations in the hemagglutinin (HA) protein of human influenza virus subtype H3N2. In order to

ensure our fitness estimates were directly comparable to the mutational fitness effects previously

estimated by Lee et al. (2018), we focused our analysis on viral samples in the same antigenic clus-

ter as the A/Perth/16/2009 strain studied by Lee et al. for two reasons. First, Lee et al. (2018)

showed that the fitness effects of amino acid mutations in HA vary depending on the genetic back-

ground, with greater fitness differences between more divergent strains. We therefore only consid-

ered strains with low genetic divergence from A/Perth/16/2009. Second, the deep mutational

scanning experiments were performed in cell culture, and therefore do not reflect the antigenic com-

ponent of viral fitness in the human population. Only considering a single antigenic cluster therefore

minimizes the effect of antigenic mutations.

To further minimize additional background variation in fitness due to geography, we only consid-

ered samples collected in the United States from January 2009 to the end of 2012. Overall, we

downloaded 2150 sequences from the Influenza Research Database (https://www.fludb.org/) that

met these criteria. Nucleotide sequences of the HA segment were aligned in Muscle (Edgar, 2004)

and a maximum likelihood phylogenetic tree was estimated in RAxML (Stamatakis, 2014) using a

GTR + Gamma substitution model. To get a time-calibrated phylogeny, branch lengths in the ML

tree were converted into units of real calendar time with Least Squares Dating v0.3 (To et al., 2016)

using a previously estimated molecular clock rate for the HA segment of H3N2 of 5.72 x 10�3 substi-

tutions per site per year (Rambaut et al., 2008).

In our first analysis, we estimated mutational fitness effects from the H3N2 phylogeny under the

MFBD model assuming that fitness effects are multiplicative across sites, as in (Equation 14).

Because of the large number of naturally occurring mutations in the HA sequences, we limited our

analyses to the 17 most abundant amino acid mutations that were present in more than 10% of the

sampled sequences. To compare our estimates of population-level fitness effects to fitness effects

measured in vitro, we converted the relative amino acid preferences at each site from the deep

mutational scanning experiments to mutational fitness effects:

�k ¼ log2
pk;i

pk;l
; (24)

where pk;i is the relative preference for amino acid i at site k. To compute these fitness effects,

we used the averaged relative amino acid preferences reported in Dataset S3 of Lee et al. (2018).

In our second analysis, we used the relative preference data from the deep mutational scanning

experiments to predict the population-level fitness of viral lineages. For this analysis, we considered

all naturally occurring mutations in the HA protein that were present in at least 10 samples. In all,

the fitness effects of 67 mutations distributed across 56 sites were included. To map relative amino

acid preferences across multiple sites to population-level fitness, we assume that the mutational fit-

ness effects computed from the relative amino acid preferences are additive on a log2 scale, such

that the fitness fn of a lineage is:

fn ¼ ð1þa
X

L

k

log2
pk;i

pk;l
Þk: (25)

Here, a is a linear scaling term that allows us to calibrate population-level fitness in terms of the

sum of the site-specific fitness effects. We also include the scaling exponent k to account for curva-

ture in the fitness landscape, as might be expected to arise if mutations interact globally through

synergistic (k>1) or antagonistic (k<1) epistatic effects across sites (Elena et al., 2010). A complete

list of the HA mutations considered, their fitness effects predicted by DMS and the XML input file

needed to reproduce our analysis are available at https://github.com/davidrasm/Lumiere/tree/mas-

ter/influenzaH3N2.
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Results

The four genotype model
We first consider a simple model of molecular evolution in order to compare the marginal fitness

birth-death (MFBD) model against the exact multi-type birth-death (MTBD) model tracking all geno-

types. Specifically, we consider a binary evolving sequence of length L ¼ 2 where all mutations are

deleterious and carry a selective fitness cost s. Fitness effects of individual mutations act multiplica-

tively, such that the double mutant has fitness ð1� sÞ2. With this simple model, it is therefore possi-

ble to track the evolutionary dynamics of all four genotypes (G ¼ f00; 01; 10; 11g) under both models.

Figure 2A shows a phylogeny simulated under the four genotype model, colored according to

the genotype of each lineage. We computed the joint likelihood that this tree and observed tip gen-

otypes evolved under a range of different fitness values s for both the exact MTBD and approximate

MFBD models (Figure 2B). The likelihood profiles under both models peak around the true value of

s and closely match at lower values of s, but begin to diverge at higher values. The probability of a

single hypothetical lineage being in each genotype approximated under the MFBD model is also

shown against the exact genotype probabilities computed under the MTBD in (Figure 2C).

Because the MFBD approximates the probability of a lineage being in each genotype based on

the marginal sites probabilities, we also compared how well the MFBD model approximates the

genotype probability densities Dn;g relative to the exact multi-type birth-death model. Recall that

Dn;g provides the probability that the subtree descending from a lineage n has evolved exactly as

observed, and therefore forms the foundation of all likelihood calculations under our model. Aver-

aged over all genotypes, the error introduced by approximating Dn;g under the MFBD model is

greatest at intermediate mutation rates (Figure 3A). When there is no selection (s ¼ 0), the MFBD

introduces no error, but the error increases as the strength of selection increases (Figure 3B). We

can also consider a variant of the four genotype model where each of the single mutant genotypes

is neutral with s ¼ 0 but an epistatic interaction between the two sites causes the double mutant to

be deleterious with some fitness cost �. Again, the error introduced by the MFBD grows as the

strength of the epistatic fitness effect increases (Figure 3C).

Taken together, these results suggest that the MFBD model introduces error in Dn;g by ignoring

correlations among sites due to the fact that selection acts at the level of genotypes, especially

when epistasis is strong. The additional correlations between sites induced by selection then causes

the genotype probabilities to deviate from those expected based on the marginal site probabilities.
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Figure 2. Performance of the MFBD approximation under the four genotype model. (A) Simulated phylogeny showing the genotype of each lineage

through time. (B) Joint likelihood of the phylogeny and tip genotypes under different values of s using the the approximate MFBD (solid line) or the

exact MTBD model (dotted line). The vertical blue line marks the true parameter value. (C) The normalized probability of a single hypothetical lineage

being in each genotype back through time based on the MFBD approximation (solid line) versus the exact MTBD model (dotted line) with s ¼ 0:5.

Note that the probabilities for genotypes 10 and 01 are identical. All parameters besides s were fixed at l ¼ 0:25, d ¼ 0:05, s ¼ 0:05. The mutation rate

g was symmetric between forward and backwards mutations and fixed at 0.05.
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Conversely, at very high mutation rates, correlations between sites quickly break down so that sites

evolve effectively independently of one another, such that the error introduced by the MFBD also

decreases as the mutation rate becomes very high.

Overall, the magnitude of the error introduced by approximating the genotype probabilities is

small, especially when we can compare the MFBD model against a more naive approximation that

tracks sequence evolution at each site completely independent of all other sites by setting the

expected marginal fitness f̂n;k;i ¼ s instead of using (Equation 14). This approximation completely

ignores how the fitness of a lineage depends on mutations at other sites, and the error in Dn;g is gen-

erally considerably greater than under the MFBD model (Figure 3A–C; dashed lines). Moreover,

even when the error introduced by the MFBD model is relatively large, the model still tracks the

dynamics of Dn;g backwards through time along a lineage well (Figure 3D–F; for parameter values

marked by the black asterisks in A-C).

The MFBD model also approximates En, the probability that a lineage has no sampled descend-

ants, using a discretized fitness space and is therefore another source of potential error. Mirroring

the results for Dn;g, the error introduced by this approximation peaks at intermediate mutation rates

while it increases monotonically with the strength of selection and epistatic fitness effects

(Figure 4A–C). Interestingly, tracking how lineages transition between fitness classes in fitness space

does not improve the approximation relative to simply ignoring changes in fitness along unobserved

lineages (Figure 4A–C; dashed lines). The overall magnitude of error introduced by approximating

En is also small, although using a discretized fitness space does lead to some jaggedness in the
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Figure 3. The error introduced by approximating genotype probabilities under the MFBD model. (A–C) The error introduced by approximating the

genotype probability densities Dn;g based on the marginal sites probabilities under the MFBD model for different mutation rates (A), strengths of

selection (B), and epistatic fitness effects (C). The solid line represents the MFBD approximation with fitness effects coupled across sites whereas the

dashed line represents a more naive approximation that ignores the fitness effects of other sites entirely. The mean error represents the time-integrated

average over all genotypes. (D–F) Normalized Dn;g probabilities for a single hypothetical lineage being in each genotype back through time based on

the MFBD approximation (solid line) versus the exact MTBD model (dotted line). Each plot shows the dynamics of Dn;g for the parameter values marked

by asterisks in the plots immediately above. Other parameters are fixed at l ¼ 0:25, d ¼ 0:05, s ¼ 0:05.
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dynamics of En (Figure 4D–F). However, only when selection is very strong (s>0:8) does tracking En

in fitness space result in significant errors, and then only in the more distant past (Figure 4E). In this

case, a lineage’s fitness in the distant past may be a poor predictor of its probability of leaving sam-

pled descendants at a time point in the distant future because the fitness of the lineage and its

descendants may greatly change over time in a way that is difficult to predict without considering

the exact mutational pathways through which a lineage can move in sequence space.

Estimating site-specific fitness effects
Next, we simulated phylogenies under a model where the fitness effect of the mutant allele at each

site is drawn independently from a distribution of fitness effects (DFE) in order to test how well we

can estimate site-specific fitness effects. Because there can be considerable uncertainty surrounding

these fitness effects, we now estimate the posterior distribution of fitness effects using Bayesian

MCMC. The accuracy and precision of the estimated fitness effects varies considerably across sites,

as shown for a representative phylogeny with five evolving sites in Figure 5.

In order to better understand this variability, we simulated 100 phylogenies with randomly drawn

fitness effects at either 2, 5 or 10 evolving sites. Overall, the estimated posterior median fitness

effects are well correlated with their true values, although the strength of this correlation decreases

as the number of sites increases (Figure 6A–C). Coverage of the 95% credible intervals on the other

hand increased from 71.0 to 72.8% to 77.4%.

While there is no systematic directional bias, fitness effects are underestimated for sites at which

the mutant allele is at low frequency among sampled individuals and overestimated for sites where
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Figure 4. The error introduced by approximating the probability of no sampled descendants. (A–C) The error introduced by approximating En in a

discretized fitness space under the MFBD model for different mutation rates (A), strengths of selection (B), and epistatic fitness effects (C). The solid line

represents the approximation where lineages are allowed to transition between fitness classes whereas the dashed line represents the assumption that

fitness does not change along unobserved lineages. To obtain a single En value comparable across both models, we summed En over all genotypes

weighted by the exact probability of the lineage being in each genotype and then took the time-integrated average to compute the mean error. (D–F)

The dynamics of En for a single hypothetical lineage back through time based on the MFBD approximation (solid line) versus the exact MTBD model

(dotted line). Each plot shows the dynamics of En for the parameter values marked by asterisks in the plots immediately above.
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Figure 5. Estimating site-specific fitness effects. (A) A phylogeny simulated under a model with five evolving sites each with a random fitness effect. The

lineages are colored according to the number of mutations they carry (blue = 0; yellow = 5). The distribution of fitness effects was assumed to be

LogNormal with a mean of 0.85 and a standard deviation of 0.32. (B) Site-specific fitness effects estimated using the marginal fitness BD model. Red

lines indicate the posterior median and 95% credible intervals. Blue lines mark the true fitness effect at each site.
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the mutant allele is at high frequencies. This however appears to be an intrinsic feature of estimating

fitness effects from the branching structure of a phylogeny, as the same phenomena is observed

under the exact MTBD model with two sites and four genotypes (Figure 6D), and the estimates

made under the approximate MFBD model are highly correlated with estimates made under the

exact MTBD model (Figure 6E).

Across all sites and simulations, accuracy decreased when the mutant allele at a given site was at

low or high frequencies, and there was considerably more uncertainty for sites where the mutant

allele was at very low frequencies (Figure 6F). Thus, while the MFBD model generally performs well

at estimating site-specific fitness effects, the accuracy and precision of these estimates varies greatly

depending on the frequency of a given mutation in a phylogeny.

Ebola virus adaptation to humans
The Ebola virus glycoprotein (GP) binds to cells during viral cell entry and is therefore thought to be

a key determinant of viral fitness in different hosts. Previously, (Urbanowicz et al., 2016) analyzed a

large set of naturally occurring amino acid mutations in the GP isolated from patients during the

2013–16 epidemic in Western Africa. The effect of these GP mutations on fitness were then experi-

mentally determined using infectivity assays in cell culture. Several mutant genotypes dramatically
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Figure 6. Inference of site-specific fitness effects from simulated phylogenies. (A–C) Correlation between the true and estimated posterior median

fitness effects for phylogenies simulated with 2, 5 or 10 evolving sites. Results are aggregated over 100 simulated phylogenies, with each point

representing an estimate for a single site and phylogeny. The points are colored according to the frequency of the mutant allele among sampled

individuals in the phylogeny. (D) Fitness effects estimated under the exact MTBD model tracking all four possible genotypes for the same two site

simulations as in A. (E) Correlation between the site-specific fitness effects estimated under the approximate MFBD and exact MTBD for the two site

simulations. (F) Error and uncertainty in estimated site-specific fitness effects across all 2, 5, and 10 site simulations. Error was calculated as the posterior

median estimate minus the true fitness effect. Uncertainty was calculated as the standard deviation of the posterior values sampled via MCMC. In all

simulations, sites where the Effective Sample Size of the MCMC samples was below 100 (less than 5% of all sites across simulations) were discarded.

The death rate was fixed at d ¼ 0:05 but the birth, mutation and sampling rates were randomly drawn for each simulation from a prior distribution: l

Uniform(0.1,0.2); g Exponential(0.01); s Uniform(0,1). Only the birth rate was jointly inferred with the site-specific fitness effects.
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increased viral infectivity relative to the Makona genotype isolated during the earliest stages of the

epidemic. However, the effect of these mutations on viral transmission and fitness at the host popu-

lation level have not yet been determined. We therefore applied the MFBD model to a large dataset

of 1610 Ebola virus (EBOV) genomes sampled during the 2013–16 epidemic to infer the population-

level fitness effects of these GP mutations.

We analyzed 9 out of the 18 amino acid mutations analyzed by Urbanowicz et al. (2016) that

were present in at least 10 of the 1610 viral samples. These nine mutations fall in eight different

genetic backgrounds or genotypes (Figure 7). Because Urbanowicz et al. (2016) found evidence

for epistatic interactions between several of these mutations, we estimated the fitness of these eight
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Figure 7. Relative fitness of Ebola virus genotypes circulating during the 2013–16 epidemic in Western Africa. Ancestral fitness values were

reconstructed by first finding the probability of a lineage being in each possible genotype based on the marginal site probabilities computed using

(Equation 20). Ancestral fitness values were then computed by averaging the posterior median fitness of each genotype, weighted by the probability

that the lineage was in each genotype. Fitness values are given relative to the Makona genotype isolated at the start of the epidemic. Clades are

labeled according to their most probable genotype.
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genotypes rather than site-specific mutational fitness effects. Table 1 shows the relative fitness of

these genotypes estimated at the population-level versus their fitness in cell culture.

Mapping the genotypes and fitness of lineages inferred under the MFBD model onto the phylog-

eny allows us to reconstruct the series of events by which EBOV adapted to humans (Figure 7).

Shortly after the epidemic started in 2013, the A82V mutation occurred and gave rise to lineage B,

which then spread to Sierra Leone, Liberia and Mali. (Urbanowicz et al., 2016) found that the A82V

mutation increases infectivity by 2–3 fold in cell culture. At the population-level, this mutation

appears to have a less dramatic effect, increasing transmissibility by only 5% relative to the Makona

genotype. The P330S mutation appears to have temporarily decreased the fitness of the main surviv-

ing clade in lineage A, although mutations N107D and G480D later rescue the fitness of this lineage,

consistent with the findings of Urbanowicz et al. (2016). Meanwhile, the R410S mutation occurred

within lineage B but did not have an immediate effect on fitness. However, R410S appears to epis-

tatically interact with mutation K439E, which occurs twice along the same lineage carrying the R410S

mutation and in this genetic background increases infectivity 2–3 fold in cell culture. We estimate

that the A82V+R410S+K439E genotype had the highest population-level fitness, but only increased

fitness by 14% relative to the Makona genotype. Three other mutations, R29K, T230A and I371V,

also occurred in the A82V genetic background, but were not estimated to have further increased the

fitness of the A82V genotype.

Because the A82V mutation occurred along a lineage that spread from Guinea to Sierra Leone

and several of the genotypes we considered were also geographically restricted, we performed a

second analysis to check whether our estimates of genotype fitness were confounded by geographic

differences in transmission rates. In this model, we accounted for geographic effects by including

location (Guinea, Sierra Leone or Liberia) as an additional evolving character state or ‘site’ in the

model. We found no evidence that transmission rates differed by location; relative transmission rates

were 1.01 (95% CI: 0.97–1.05) in Sierra Leone and 0.99 (95% CI: 0.94–1.04) in Liberia compared with

Guinea. All mutant genotypes had higher estimated fitness relative to the Makona genotype under

the model with geographic effects due to a lower estimated fitness of the Makona genotype. How-

ever, the rank order of genotypic fitness values is consistent across models (Table 1). Overall, the

population level fitness of all eight genotypes agree with their fitness in cell culture in terms of the

sign or direction of their effects, but these genotypes had much greater fitness relative to the

Makona genotype in cell culture than at the population level.

Influenza H3N2 fitness variation
We also applied the MFBD model to estimate the fitness effects of mutations in the hemagglutinin

(HA) protein of human influenza virus subtype H3N2. Lee et al. (2018) recently estimated the rela-

tive preference for each amino acid residue at all sites in the HA protein in cell culture using a

reverse genetics approach known as deep mutational scanning (DMS). The fitness effect of mutating

one amino acid to another is expected to correlate strongly with the relative preference for each

amino acid in these experiments. We therefore sought to compare the population-level fitness

Table 1. Estimated posterior median fitness and 95% CI for the Ebola GP mutants relative to the Makona genotype

Genotype Sample freq Base model Model + geo effects Effect in cell culture

Makona 0.036 1.00 1.00 Reference genotype

A82V 0.720 1.05 (1.04–1.07) 1.26 (1.19–1.35) Increases infectivity 2X

P330S 0.002 0.98 (0.82–1.14) 1.11 (0.96–1.24) Decreases infectivity

P330S+N107D+G480D 0.037 1.04 (0.98–1.12) 1.27 (1.16–1.39) Increases infectivity > 2X

A82V+R410S 0.044 1.09 (1.00–1.18) 1.31 (1.17–1.45) No or small effect

A82V+R410S+K439E 0.035 1.14 (1.01–1.26) 1.36 (1.20–1.54) Increases infectivity 2-3X

A82V+R29K 0.019 1.06 (0.93–1.19) 1.27 (1.10–1.45) Increases infectivity 2-3X

A82V+T230A 0.026 1.03 (0.93–1.11) 1.23 (1.10–1.37) Increases infectivity 2-3X

A82V+I371V 0.067 1.03 (0.98–1.09) 1.24 (1.14–1.35) Increases infectivity 2-3X

DOI: https://doi.org/10.7554/eLife.45562.008

Rasmussen and Stadler. eLife 2019;8:e45562. DOI: https://doi.org/10.7554/eLife.45562 17 of 24

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.45562.008
https://doi.org/10.7554/eLife.45562


effects of naturally occurring mutations estimated under the MFBD model with their fitness mea-

sured in vitro by DMS.

To minimize the effect of antigenic mutations, which would not be reflected in the DMS experi-

ments, we limited our analysis to viral lineages in the same antigenic cluster as the A/Perth/16/2009

strain studied by Lee et al. (2018). We first estimated the fitness effects of the 17 most abundant

mutations that reached a frequency of 10% or greater among viruses sampled in the United States

between 2009 and 2012. We found no apparent relationship between the estimated population-

level fitness effects of these mutations and their in vitro effects, although there is agreement that

most of these mutations are nearly neutral (Figure 8A). Although the 95% credible intervals on our

estimates are narrow, these results need to be interpreted with extreme caution because our MCMC

algorithm never converged on a stable posterior distribution for several mutations (Effective Sample

Size < 10) due to strong correlations between mutations in their estimated fitness effects. This is

likely due to the fact that many of these mutations occur only once in the phylogeny and share the

same ancestry and therefore genetic background as other mutations in the phylogeny (Figure 8B).

While our population-level estimates did not correlate with the in vitro data, the fitness effects

predicted by DMS correlate strongly with the maximum frequency that naturally occurring mutations

reach in the human population (Lee et al., 2018). We therefore sought to test whether using the

DMS experimental data to inform the MFBD model about the fitness effects of mutations, rather

than estimating them independently from the phylogeny, would result in a better fit of the model to

the H3N2 phylogeny and sequence data. Doing so requires a fitness model that aggregates muta-

tional fitness effects across sites and then maps this combined fitness to the population-level fitness

of a lineage. In our model, we sum the mutational fitness effects predicted by the relative amino

acid preferences across all sites to get a composite predictor of fitness: �DMS ¼
PL

k log2
pk;i

pk;l
. We then

use (Equation 25) to map �DMS to overall population-level fitness.

Fitting our model to the H3N2 phylogeny allows us to calibrate how the mutational fitness effects

based on relative preferences scale to population-level fitness. Overall, large changes in �DMS, result-

ing from mutations to more or less preferred amino acid residues, have a relatively small impact on
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Figure 8. Influenza H3N2 mutational fitness effects. (A) The fitness effects of mutations estimated in vitro using deep mutational scanning versus their

estimated population-level effects. In vitro fitness effects were quantified as the relative preference for the mutant versus the consensus amino acid

residue in the deep mutational scanning experiments, given on a log2 scale. Population-level fitness effects were estimated using the MFBD model

assuming multiplicative effects across sites. Error bars show the 95% credible intervals on the estimated population-level fitness effects. (B) Coancestry

matrix showing the fraction of ancestry shared between each pair of mutations in the H3N2 phylogeny. The coancestry value represents the fraction of

branches in the phylogeny that share both mutations based on a maximum parsimony reconstruction. The diagonal gives the fraction of all branches in

the phylogeny with each individual mutation.
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population-level fitness. Population-level fitness grows slowly and roughly linearly with mutations to

more preferred amino acids (Figure 9; inset). Nevertheless, when mutational fitness effects are

aggregated across all sites, there are substantial fitness differences between lineages (Figure 9). Rel-

ative to a hypothetical lineage bearing the consensus sequence, fitness ranges from 0.84 to 1.04

across lineages with many lineages having a relative fitness less than one, indicating a slightly delete-

rious mutation load. Accounting for these fitness differences results in the MFBD model informed by

the DMS data fitting the H3N2 phylogeny substantially better (Log likelihood: �4184) than a model

assuming all mutations are neutral (Log likelihood: �7510). As would be expected, lineages pre-

dicted to be more fit also tend to persist between influenza seasons. Most notably, a lineage with

higher than average fitness circulates in 2009 and 2010 during the H1N1 pandemic. This lineages

carries the T228A mutation, which is predicted to have a large beneficial effect in the DMS
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Figure 9. Relative fitness of influenza H3N2 lineages circulating in the United States between 2009 and 2012. Fitness values were reconstructed based

on a fitness model that maps mutational fitness effects predicted based on deep mutational scanning experiments to population level fitness. The inset

shows this fitness mapping for the model parameters with the highest posterior probability: a ¼ 0:0098 and k ¼ 0:964. Uncertainty in ancestral amino

acid sequences was taken into account by first computing the marginal site probability at each site. Ancestral fitness values were then reconstructed by

marginalizing over all possible ancestral sequences using the marginal site probabilities.
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experiments. It is therefore tempting to speculate that this mutation may have conferred an advan-

tage that helped seasonal H3N2 compete with the pandemic H1N1 virus.

Discussion
Many assumptions are made in phylogenetics to model molecular evolution in a statistically tractable

way. Historically, one of the most pervasive yet biologically questionable of these assumptions has

been that sequences evolve neutrally along lineages, such the mutations do not feedback and alter

the branching process shaping the phylogeny. Our marginal fitness birth-death (MFBD) model allows

us to relax this core assumption in order to consider how non-neutral evolution at multiple sites

affects sequence evolution, the fitness of lineages, and the overall branching structure of a phylog-

eny. While our approach is not exact in that it approximates genotype probabilities by assuming

sites evolve independently when computing the marginal fitness of a lineage, we have shown that

this approximation generally works well and only produces significant errors in rather extreme situa-

tions, such as the four genotype model with very strong selection or epistasis. While an earlier

approach based on birth-death models allowed for lineage-specific fitness values to be inferred from

the branching pattern of a phylogeny (Neher et al., 2014), this approach did not connect fitness

back to the mutational process nor allow for the fitness effects of individual mutations or genotypes

to be estimated. Using our approach, we demonstrated that the fitness effects of specific mutations

can be estimated from simulated phylogenies under the MFBD with accuracy comparable to an

exact multi-type birth death model. The MFBD model therefore provides a new, statistically power-

ful way of incorporating adaptive molecular evolution into phylodynamics.

The MFBD model allows us to exploit phylogenetic information about adaptive evolution that

most methods for inferring selection from patterns in sequence data ignore. Currently, codon-sub-

station models (Goldman and Yang, 1994; Muse and Gaut, 1994) and the related class of muta-

tion-selection models (Yang and Nielsen, 2008) are by far the most widely used approach for

inferring selection. These approaches rely on comparing sequence substitution patterns such as the

dN/dS ratio of non-synonymous to synonymous substitutions across sites. These approaches can be

very powerful when sequences from highly divergent taxa are compared, such that enough time has

elapsed for multiple substitutions at a single site to have accumulated between lineages. But on the

shorter timescales relevant to evolution within a population, substitution patterns like the dN/dS

ratio are relatively insensitive to selection pressures and may produce misleading inferences of selec-

tion (Kryazhimskiy and Plotkin, 2008). For example, a highly beneficial non-synonymous mutation

that occurs in a single lineage and then spreads through a population may produce a very low dN/

dS ratio, indicative of purifying selection rather than adaptive evolution. In contrast, comparing the

evolutionary dynamics of lineages with and without the mutation allows us to infer if that mutation

confers a competitive advantage. Thus, considering the branching pattern of phylogenies provides

additional information about molecular evolution not visible from substitution patterns in sequence

data alone.

While new technologies increasingly allow researchers to quantify mutational fitness effects in

vitro or even in vivo (Zanini and Neher, 2013; Thyagarajan and Bloom, 2014), how fitness mea-

sured in the lab translates to fitness in nature is largely unknown. This is especially pertinent for

emerging pathogens whose epidemic potential often depends on new adaptive mutations

(Antia et al., 2003; Longdon et al., 2014). Phylodynamic approaches like the MFBD model that can

quantify fitness at the host population level are therefore greatly needed, as they offer a means to

assess the epidemiological significance of mutant lineages. Extrapolating from our experience with

Ebola, where the population-level fitness effects of each mutant genotype we considered matched

the sign of their effect in cell culture, we suspect that fitness measured in the lab will generally agree

with fitness in nature. This seems reasonable, as mutations that increase replication or cellular infec-

tivity within hosts should generally promote transmissibility between hosts (e.g. Quinn et al., 2000;

Fraser et al., 2007). But at the same time, there is no reason to believe that transmission rates will

increase linearly or even monotonically with increasing within-host growth rates. We therefore

expect that the magnitude of fitness effects might often greatly differ across scales, as we found for

the A82V glycoprotein mutation in Ebola. While A82V doubles infectivity in cell culture, we esti-

mated that it only increases transmissibility at the population level by 5% (95% CI: 4–7%). Interest-

ingly, (Diehl et al., 2016) found that A82V only slightly increases viral titers in Ebola patients, which
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is likely a much better proxy for transmissibility than cellular infectivity, lending support to our more

moderate estimates at the population level.

For influenza, we were unable to reliably estimate the fitness effects of individual mutations from

the H3N2 phylogeny. We believe that these inference problems likely stem from the fact that many

of these mutations occur only once in the phylogeny and in the same genetic background as other

mutations in the HA protein. The shared phylogenetic ancestry of mutations creates an identifiability

problem akin to the problem of collinearity in more standard regression-type models. In either case,

the individual effects of highly correlated variables are difficult or impossible to infer. Nevertheless,

including the mutational fitness effects predicted by deep mutational scanning experiments

improved the fit of the MFBD model to the H3N2 phylogeny by thousands of log likelihood units.

Accounting for these fitness effects in the MFBD model also revealed substantial variation in popula-

tion-level fitness among viral lineages within a single antigenic cluster. Most lineages were recon-

structed to have a slightly deleterious mutation load, consistent with earlier reports that background

variation in fitness arising from deleterious mutations, not just antigenic mutations, plays a large role

in determining which H3N2 lineages ultimately persist (Illingworth and Mustonen, 2012;

Luksza and Lässig, 2014; Koelle and Rasmussen, 2015). Moreover, the fitness variation uncovered

by our analysis likely represents only the ‘tip of the iceberg’, since there are likely mutations in other

genomic segments besides HA with large fitness effects (Raghwani et al., 2017), which we did not

consider.

The influenza analysis highlights some of the inevitable difficulties encountered when inferring

mutational fitness effects from phylogenies. Increasing the number of sites under consideration also

increases the complexity of the genetic background in which mutations occur due to the increased

probability of mutations being linked to other mutations rather than occurring in isolation. This leads

to strong correlations between the fitness effects of different sites in an increasingly high dimen-

sional parameter space, making statistical inference challenging, especially using MCMC methods.

Spurious correlations may also arise due to additional, unmodeled sources of fitness variation. For

example, if a mutation occurs coincidently with another beneficial mutation or the mutation occurs

by chance along a lineage spreading through a higher fitness environment, it will likely be inferred

to increase fitness even if it is actually neutral. In the future, the MFBD should therefore be extended

to account for unmodeled sources of fitness variation. For example, each lineage could be assigned

a random fitness effect representing the unmodeled components of fitness variation. These random

effects could then be modeled as a continuous trait evolving along lineages, such that more closely

related lineages would be expected to have similar fitness and overly large changes between closely

related lineages would be penalized. Such a model would then allow us to say whether a fitness

effect attributed to a particular mutation could be equally well explained by random effects arising

from unmodeled fitness variation. Until such a principled approach is implemented, the fitness

effects of individual mutations need to be interpreted carefully unless they occur in multiple genetic

backgrounds and confounding sources of fitness variation can be accounted for, as we tried to do

for Ebola by including potentially confounding geographic fitness effects.

In spite of these shortcomings, we believe the MFBD model offers a powerful means to explore

many questions not previously possible with strictly neutral phylodynamic models. Even if the fitness

effects of individual mutations are not identifiable, it may still be possible to infer the distribution of

fitness effects across sites, a key determinant of adaptive evolution that has only been explored in a

few systems (Eyre-Walker and Keightley, 2007). The MFBD model can also be used to compare

the fitness of a mutation or lineage across different environments, such as in different hosts of a

pathogen. Finally, the MFBD is not limited to exploring sequence evolution, as the model is general-

izable to any discrete character state, including phenotypic, geographic or environmental characters.

Thus, more generally, our model can be thought of as a multi-trait, multi-type birth-death model

that can be used to explore how different molecular and non-molecular characters interact to shape

the overall fitness of lineages in a phylogeny.
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