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Lung cancer is a life-threatening disease and its diagnosis is of great significance. Data

scarcity and unavailability of datasets is a major bottleneck in lung cancer research. In

this paper, we introduce a dataset of pulmonary lesions for designing the computer-aided

diagnosis (CAD) systems. The dataset has fine contour annotations and nine attribute

annotations. We define the structure of the dataset in detail, and then discuss the

relationship of the attributes and pathology, and the correlation between the nine

attributes with the chi-square test. To demonstrate the contribution of our dataset to

computer-aided system design, we define four tasks that can be developed using

our dataset. Then, we use our dataset to model multi-attribute classification tasks.

We discuss the performance in 2D, 2.5D, and 3D input modes of the classification

model. To improve performance, we introduce two attention mechanisms and verify the

principles of the attention mechanisms through visualization. Experimental results show

the relationship between different models and different levels of attributes.

Keywords: deep learning, radiology, pulmonary dataset, classification, attention

1. INTRODUCTION

Lung cancer is caused by tumors which leads to the fastest increase in morbidity and mortality. It
has a significant negative impact on the health of subjects. Therefore, the early diagnosis of lung
lesions is of great significance for the treatment of lung cancer.

The early form of lung cancer is categorized as pulmonary nodules, which are clinically
examined using computed tomography (CT). The characteristics of pulmonary nodules in CT
images are diverse, which results in a large workload for radiologists to diagnosis the disease and
leads to the subjective assessment of features. Therefore, accurate and quantitative analysis of the
appearance characteristics of lung nodules is very essential for doctors to determine whether the
nodules will grow into malignant tumors.

In recent years, with the development of deep learning technology (1), lung nodule diagnosis has
made unprecedented progress in detection (2–7), segmentation (8–11), classification (2, 6, 12–15),
and registration (16, 17) tasks. In order to improve the performance of the model, there is a great
need of large datasets and accurate annotation of pulmonary lesions.

There are many publicly available datasets of pulmonary nodules. However, there are some
shortcomings in the existing datasets, and the diversity of lesions cannot be balanced in these
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datasets. For example, LIDC/IDRI (18) has rich attributes,
however, it only marks nodules, and the prediction of other
pulmonary diseases cannot be performed.

In this paper, we propose a dataset of lung lesions that
could help the development of a pulmonary computer-aided
diagnosis system. Our dataset is multi-centered, data-diversified,
and informative. The proposed dataset is rich in lesion types
and covers most of the signs of lung lesions. The lesions of the
dataset are labeled with contours and attribute annotations by
experienced radiologists using a professional tool. The attribute
annotations are composed of nine attributes that are most
useful for pathological assessment. In order to make the selected
attributes hierarchical, we have selected multi-level attributes:

• Low-level attributes: Margin, spiculation, etc, which can be
judged basically by the local features of the lesion;

• Middle-level attributes: Pleural indentation, vessel
convergence, etc, which need to be judged by the relationship
with the surrounding tissue around the lesion or cavity and
calcification, which need to be judged by the relationship
between local features and global features of the lesion;

• High-level attributes: The type and the location of the lesion,
which requires to be judged by the abstract features of the
entire lesion.

In order to describe the proposed dataset clearly, we first
count the characteristics of our dataset, define the data storage
format and data annotation rules for our dataset. We then
propose the contours annotation format. We also focus on the
correlation between the attributes of the lesions. In order to study
the relationship between multiple attributes, we calculated the
probability of a total of 27 categories of 9 different attributes
using the chi-square test and conditional probability, and infer
the correlation with the attributes by probability.

In order to illustrate the practical significance of our dataset,
we discuss several applications that could be studied using
our dataset, and then select the attribute classification for
further study. First, we model the attribute classification and
then explored the performance of the 2D, 2.5D, and 3D input
modes on the accuracy of the model. Through experiments,
we demonstrate that there is implicit competition between
multiple attributes, we, therefore, use two attention mechanisms
to filter different feature activations for different attributes. Our
experiments show that the attention mechanisms have different
effects on attribute classification.

2. RELATED WORK

In this section, we briefly discuss the existing datasets of lung
nodules and the relevant classification methods.

2.1. Lung Nodule Datasets
2.1.1. LUNA16 Dataset
The LUNA16 (4) dataset was designed for the Open Pulmonary
Nod Challenge, which screened 888 CT volumes from a large
dataset LIDC/IDRI as challenge data. Their slice thickness is
within 2.5 mm and the nodule size is greater than 3 mm,
which was annotated by more than 3 experimental doctors using
tow-phase annotation. The detection annotations of a nodule

in LUNA16 use the center coordinates and diameter of the
inscribed circle of the nodule. In contrast, we use the gravity
center coordinates as the center coordinates of the nodule and
the longer geometric moment as the diameter to generate the
world coordinates. For small round nodules, the two datasets
are not much different, but the need is to detect large lesions
with irregular shapes and our proposed approach achieves better
results for large lesion detection.

2.1.2. LIDC/IDRI Dataset
The LIDC/IDRI (18) dataset labels each nodule with a contour
and nine attributes. Besides the benign and malignant nodules,
the other eight attributes are all the appearance attributes of the
nodules. In contrast, in our dataset, two of the attributes are
the basic attributes of the lesion, five are appearance attributes,
and two have relationships with the tissue surrounding the lesion
in context. These attributes are richer and can better represent
a lesion.

2.1.3. LISS Database
The LISS (19) database has 271 CT volumes, including
677 abnormal regions. These abnormal regions are divided
into nine categories, which are called common CT imaging
signs of lung disease (CISLs). In other words, there is
only one CISLs label for each abnormal region. Although
it can better help medical scholars learn a certain type
of disease (12), it is not very good for CAD system
development, because it cannot capture the relationship between
disease signs.

2.1.4. ILD Database
The ILD (20) database has 108 image series with more than
1946 ROIs. This dataset is a multimedia collection of cases of
interstitial lung disease (ILDs). These ROIs are divided into
13 categories, which are lung tissue patterns from histological
diagnoses of ILDs. The lesions in the ILD dataset are large, and
the annotations are all high-level attributes. The dataset does not
focus on a certain nodule, but on the pathology presented by a
piece of tissue.

2.2. Lung Nodule Classification
The classification of lung nodules based on deep learning can be
divided into two types of methods: one is to judge the benign
and malignant lung nodules. Some methods directly predict
the benign and malignant nodules by CT images, and other
methods use different attributes of the nodules as the auxiliary
basis to judge the benign and malignant nodules, such as (21–
23). The other type of method has classified the disease, such
as DeepLung (2) or LISCs classification (12). Dey et al. (21)
have built a network that produces multiple outputs from multi-
scale features to judge the benign and malignant nodules. Nibali
et al. (22) has made a three-column configuration to fuse the
features generated from three axes. Song et al. (14, 23) proposed
methods that split the whole image into patches and predict the
lesions. In contrast, Gao et al. (13) have used the whole image
for classification. With the development of computationally
efficient computers, the 3D models such as (24) has achieved
an impressive performance in nodule classification. He (12)
proposed a method to generate images for data augmentation,
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FIGURE 1 | Lesions in our dataset. Except for some small nodules, which are marked with a circle, such as the second image in the first row, other lesions are

marked by a very close contour. The six images in the first row are different types of lesions, and in the second to fourth rows, each set of three images are spiculation,

lobulation, calcification, cavity, vessel convergence, and pleural indentation.

which achieved a good improvement in performance. Zhu et al.
(2) detected the position of the nodules first, then cropped the
sent the nodules before feeding it into a classification model to
predict one of nine attributes.

Multi-attribute classification is a problem to classify multiple
targets using one model. There are currently two approaches to
solve this problem. The first is to regard it as a classification task
with a fixed number of categories, and solve attribute correlation
in one model by using multiple branches to decompose the
relationship between multiple targets onto each branch. The
second is to treat it as a multi-label classification task, with the
positive attribute as the label of the lesion, then each lesion has
a floating number of labels, and the labels are decoupled using
different methods. In this paper, we use the first method to
classify different attributes in a model using a fixed number of
branches, and use two attentionmechanisms to help decouple the
correlation among the attributes.

3. LUNG LESION DATASET

In this section, we provide a description of our dataset. CT data
were collected from four hospitals. The body parts examined
are mainly the chest and abdomen. Among them, the chest CT
was mostly thin (less than 3 mm), and the abdomen CT was
mostly thick (greater than or equal to 5 mm). Figure 1 shows
examples of lesions in our dataset. As shown in Figure 1, except
for some small nodules, which are marked with circles, such as
the second image in the first row, other lesions are marked by a
very close contour.

Table 1 shows the parameter comparison of our dataset with
several other public datasets. Same with LUNA16, our dataset
annotates lesion with contour, which is shown in Figure 1.
Compared with box and polygon, contour annotation has
more generalization ability to different tasks, such as location,
detection, and segmentation. At the same time, though the
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TABLE 1 | The statistical result of comparing our dataset parameters with other datasets.

Dataset Annotation Lesion attributes Multiple categories Scans Lesion amount Lesion size (mm) Slice thickness (mm) Pixel spacing (mm)

LUNA16 contour 9 X 888 1,186 3.25–32.27 0.45–2.50 0.461–0.976

LISS (2D) Box 9 × 252 511 – 5.0 0.42–1.00

LISS (2D) Box 9 × 19 166 – 1, 1.25 0.60–0.87

ILD Polygon 13 × 108 1,946 – 1.00–2.00 0.40–1.00

Ours Contour 9 X 694 5,113 0.83–191.32 1.00–2.00 0.176–0.977

number of scans in our dataset is not the largest, the number
of lesion annotations and the range of lesion size in our dataset
are. These annotations support more robust models. Moreover,
the thickness of the slices of our datasets is relatively uniform,
especially compared to LUNA 16. It reduces unnecessary
processing of the data and makes it easier to use.

3.1. File Storage and Annotation Format
The raw data obtained from the hospital contains some sensitive
information of subjects, and the data collected from different
hospitals are stored in different ways, making the data difficult to
use directly for analysis. Therefore, we first desensitize the data
by removing subjects’ sensitive information and retain only the
necessary information, such as weight. Then, we store the CT
volumes and annotation files as described below.

We define the directory structure to store files as follows:

c t _ t y p e / h o s p i t a l / y e a r / month / day / s u b j e c t _ i d / s e r i e s _ i d .

The directory with series_id SE01 stores the CT data with
DICOM format, and the directory with series_id SE01_01_0n
stores the contour annotation file aid_loc .anno, where n is
the identification number of the doctor who annotated the
scans; aid is the number of the annotation in the CT for
correspondence with the attribute information; loc is the slice
number in the CT volume, and the description in the DICOM
file is SliceLocation (0020, 1041). An anno file represents
an annotation. Each anno file has a different aid, but two
anno files can have the same loc, indicating that the two
annotations are in the same slice. It uses a dictionary to store the
annotation information we need to use in the CAD tasks. The
keywords of the anno format are SeriesID, NoduleSerialNumber,
InstanceNumber, Origin, Dimension, Spacing, Coords, XMin,
XMax, YMin, YMax. Among them, SeriesID is a unique number
of a DICOM volume which described as SeriesInstanceUID
(0020, 000E), NoduleSerialNumber and InstanceNumber are aid
and loc, respectively as mentioned above, Origin, Dimension,
Spacing are the information from DICOM volume, Coords is the
contour coordinate of this annotation, and its value is relative
to the size of this slice. (XMin, YMin), (XMax, YMax) are the
coordinates of the lower left and upper right corners of the
bounding box of this annotation.

The CT volumes in our dataset contain lesions, while those
without lesions have been removed by manually screening of RIS
reports. For repeated subject numbers, such as two volumes of
one subject, we map one of them to a new subject number and
retain the correspondence to restore the original number.

3.2. Two-Phase Annotation Process
We use a two-phase annotation process to label the lesions. We
label the contours of the lesions in the first phase, then label the
attributes of the lesions in the second phase.

3.2.1. Contour Annotation Criterion
The contours are marked by experienced radiologists. In order to
save the doctor’s time and to increase the density of the lesion, we
first manually screen the RIS report, retain the CT volume with
the lesion in the description, and remove the volume without the
lesion from the dataset. In order to standardize the process of
marking the lesions, we have prescribed a rule formarking lesions
with the doctor as follows:

• Mark all visible lesions;
• If the lesion is too small to draw the contour, circle the lesion

with a circle tool;
• If the lesion is larger than one slice, mark the lesion every three

consecutive slices;
• Draw a contour as close as possible to the edge of a lesion.

After the marking process, we perform a secondary screening
to remove the annotations which are too discontinuous to
be processed as contours. Then, we convert the annotations
into anno format and mark lesion numbers. In this way, the
contour annotations and the attribute annotations correspond
with respective file names.

3.2.2. Attribute Annotation Criterion
After discussed with the doctor, we selected nine attributes that
are commonly used in clinical diagnosis as attribute annotations
for the dataset. A detailed description of these attributes will be
provided in section 5.2. Each lesion is independently labeled by a
doctor, and we record the doctor’s number for each lesion that
can be used to identify the doctor if an error is discovered in
the annotation.

In order to simplify the labeling of attributes, we implement an
attribute labeling tool to collect and manage labels. We associate
the slice of the contour with the lesion number so that it is
convenient to label the attributes with the corresponding slice.
When the attribute information is marked, the corresponding
subject number and label number are recorded to correspond
to the contour number. It should be noted that the contour
annotation and the attribute annotation are not one-to-one
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matched. Some problematic contour annotations are filtered out
in the previous step, and no attribute annotation is performed.
Finally, we only select lesions with both contour and attribute
annotations into the dataset. The number of attributes is reported
in Table 1. As can be noted, the categories of some attributes are
very unbalanced. This brings great challenges to the performance
of our attribute classification algorithm.

4. ATTRIBUTES AND PATHOLOGY

We initially selected 15 attributes that are commonly used
in clinical diagnosis, and then selected 9 attributes for our
dataset based on their importance. The number of categories
of these attributes is not balanced and the distributions are not
independent. Here we briefly describe the importance of these
attributes in clinical diagnosis and then discuss the correlation
between attributes from the statistics point of view.

4.1. Attributes Description
Among the 9 attributes we selected, besides the basic attribute,
lesion type, and lesion location, there are vessel convergence
and pleural indentation which represent the relationship between
the lesion and the surrounding tissue. On the other hand,
margin, calcification, lobulation, spiculation, cavity represent the
apparent features of the lesion. The description of the significance
of these nine attributes is as follows.

4.1.1. Lesion Type
The first row of Figure 1 shows six different lesion types. For
the lesion type, we choose placeholder, nodule, ground glass
opacity, air containing space, mutation, and pleural effusion. The
difference between placeholders and nodules is that the lesions
with a diameter of less than 30 mm are nodules, and those larger
than 30 mm are placeholders. Except for the difference in size,
the other attributes of the two lesion types are roughly similar.
The air containing space is different from the cavity in pathology.
The air containing space (Figure 1, the fifth image in the first
row) is a pathological enlargement of the physiological cavity
in the lung, while the cavities (Figure 1, the last three images
in the third row) often appears in nodules or placeholders. In
the air containing space lesions, the wall of the lesion is thinner
and more uniform, mostly occurring in the subpleural area, and
the size varies greatly. This means that the location of the air
containing space is fixed and there are no apparent attributes
such as spiculation and lobulation.

4.1.2. Lesion Location
The location of the nodule is represented by five categories
of lobes, including the right upper lobe, the right middle lobe,
the right lower lobe, the left upper lobe, and the left lower
lobe. Statistics show that the occurrence of lesions has little
relationship with the location. The lesion location is only a basic
attribute of the lesion, and it cannot be used as a basis for judging
its pathological nature. Some lesions are large and span multiple
lung lobes, so we mark them as 0, and do not include it in the five
categories above.

4.1.3. Margin
The margin attribute describes whether the outer boundary of a
nodule is clear. We defined two main categories for this attribute:
clear and unclear margin. Though the margin of a benign mass
is often smooth, while that of a malignant mass is often unclear,
inflammation may also cause an unclear margin of placeholder.
Therefore, it cannot be used as the sole basis for judging benign
and malignant lesion, and needs to be judged in combination
with other attributes.

4.1.4. Calcification
The calcification attribute describes lesions whose density is
significantly higher than other soft tissues in the mediastinal
window, usually with CT values above 100 Hu. The first three
images in the third row of Figure 1 show lesions of calcification.
The white region in the images represents calcification.
Calcification is a pathologically metamorphic lesion, which is
more common in the healing stage of ductal tuberculosis lesions
in the lung tissue or lymph nodes; calcification can also occur in
tumor tissues or cyst walls. Usually, the greater the proportion of
calcification in the lesion, the greater the likelihood of its being
benign. Based on this, we classify the calcification attributes into
three categories: no, partial, and total calcification.

4.1.5. Lobulation
The lobulation attribute indicates that the nodule or mass grows
at different speeds in various directions or is blocked by the
surrounding structure. The contours may have a plurality of
arcuate protrusions, and the curved phases are concave cuts to
form a lobulated shape. The last three images in the second row
of Figure 1 show the lesions of lobulation. We can clearly see the
convex part of the masses. We simply define two categories for
this attribute: with and without lobulation.

4.1.6. Spiculation
The spiculation attribute is characterized by a radial, unbranched,
straight, and strong thin line shadow extending from the edge of
the nodule to the periphery, and the proximal end of the shadow
is slightly thicker. The first three images in the second row of
Figure 1 show lesions of spiculation. As shown in Figure 1, the
burrs of the lesion are often not circled in the scope of annotation.
The spiculation is not connected to the pleura, and distinct
from the pleural depression.We classify the spiculation attributes
into no, short and long spiculation; 5 mm burrs are called
short spiculation, and larger than 5 mm burrs are called long
spiculation. The pathological basis of the burr is the fiber band in
which the tumor cells infiltrate into the adjacent bronchial sheath
and local lymphatic vessels, or the tumor promotes connective
tissue formation. Benign nodular inflammatory pseudotumor,
tuberculoma can also be seen burrs, but longer, softer, more often
formed by hyperplastic fibrous connective tissue. The possibility
of lung cancer should be considered when there is a burr in
solitary lung nodules.

4.1.7. Cavity
The cancerous cavities are mostly located in the anterior segment
of the upper lobe and the basal segment of the lower lobe. Most
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of the cavities larger than 3 cm in diameter are tumors. Most
cancerous cavities present an irregular or lobulated outer edge
and irregular inner edge. Those with a wall thinner than 4 mm
are mostly benign lesions, and those thicker than 15 mm are
mostly malignant lesions. The last three images in the third row
of Figure 1 show the lesions of a cavity. We simply defined two
categories for this attribute: with and without cavity.

4.1.8. Vessel Convergence
The vessel convergence attribute appears on the slices as one
or more vessels around the pulmonary nodule that touch with,
cut or pass through the placeholder at its edge. The appearance
of vessel convergence is related to the size of the placeholder
or nodule. The lesions less than 1 cm in diameter have fewer
vessel convergence signs. The first three images in the last row
of Figure 1 shows the lesions of vessel convergence. Images of
the cavities and vessel convergence are similar, because the blood
vessels look like cavities when they are transacted. A multi-
vessel-directed lesion presents vessel convergence, which leads to
a higher chance of malignancy. In particular, the phenomenon
that one blood vessel leads to a nodule or tumor is not only
seen in malignant nodules, but also in benign lesions such as
tuberculosis, inflammatory pseudotumor, or hamartoma. We
simply defined two categories for this attribute: with and without
vessel convergence.

4.1.9. Pleural Indentation
The typical pleural indentation shows a small triangular shadow
or a small trumpet shadow on the visceral surface of the visceral
pleura. The bottom of the triangle is on the inside of the chest
wall, the tip points on the nodule, and the nodule and the triangle
shadow can be connected by a linear shadow. The last three
images in the last row of Figure 1 shows the lesions of pleural
indentation. Peripheral lesions of the pleural indentation are
often accompanied by other imaging signs. The pathological basis
and imaging manifestations of pleural indentation in benign and
malignant lesions are different. We simply define two categories
for this attribute: with and without pleural indentation.

4.2. Correlation Between Attributes
In order to evaluate the correlation between attributes, we used
the chi-square test. We assume that if the two attributes are
independent of each other, their data distribution should not
affect each other, which means that the proportional relationship
between the categories of one attribute is the same under each
category of the other attribute. If the chi-square test value
calculated by the two attributes is greater than the statistical
significance, there is a correlation between the two attributes. The
approximate calculation equation for the chi-square test statistic
is as follows:

χ2 =
∑

(

f0 − fe
)2

fe
(1)

where f0 is the actual number of observations and fe is the
expected number of times. The larger the value of fe, the Equation
(1) approximately obeys the chi-square distribution. To simplify

the calculation of the chi-square test, we used a variant of
Equation (1):

χ2 =
∑

(

fxy −
fxfy
N

)2

fxfy
N

= N





R
∑

x=1

C
∑

y=1

f 2xy

fxfy
− 1



 (2)

where fx and fy represent the number of samples of the categories
of two different attributes x and y, respectively, R and C are
the number of categories of fx and fy, and the total number of
attributes is N. The degree of freedom df of the independence
test is calculated as follows:

df = R× C − R− C − 1 = (R− 1) (C − 1) (3)

We use the data shown in Table 2 and select a significance
level of 0.05 for calculation. Figure 2A shows the result of
the chi-square test. As the results show, there is a strong
correlation between the three attributes of margin, speculation,
and lobulation. Meanwhile, there is a strong correlation between
vessel convergence and spiculation, margin, lobulation and lesion
type, pleural indentation, and margin.

To further explore the specific relationship between the
various categories of attributes, we calculated the conditional
probability between a total of 27 categories for all attributes. The
equation for calculating the conditional probability is as follows:

P (X|Y) =
P (XY)

P (Y)
(4)

where P(X) and P(Y) represent the probabilities of two categories
X and Y , P(X|Y) represents the probability of X to occur when Y
is present, and P(XY) represents the probability of co-occurrence
for X and Y . The value of P(X|X) is 1, which is represented
by white color in Figure 2B. We calculated the conditional
probability between each of the two categories. As shown in
Figure 2B, the white color represents a probability of 1 and the
black color represents a probability of 0, while the lighter gray
color represents higher conditional probability values.

According to the statistical results, there is a strong correlation
between different lesion types and other attributes. For the
placeholder, their margins are almost unclear, the degree of
lobulation is more obvious, the degree of spiculation and the
degree of pleural indentation are the highest among other lesion
types. The nodules, ground glass, and mutation categories have a
small number of spiculation and lobulation, and more features
of vessel convergence and pleural indentation. For cavity and
pleural effusion, they almost have no other attributes and their
margins are all clear.

The margin attribute is highly correlated with lobulation,
vessel convergence, and pleural indentation. When vessel
convergence and pleural indentation are present, they are often
accompanied by lobulation, and the margin is not very clear.
The calcification attribute is concentrated in the nodules, and the
cavity is also related to the margin and lobulation.
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TABLE 2 | The distribution of each attribute category used for experiments.

Attribute Categories Lesions Attribute Categories Lesions Attribute Categories Lesions

Lesion type Placeholder 675 Lesion location Right upper 496 Calcification None 1,902

Nodule 728 Right middle 151 Partial 62

Ground glass opacity 220 Right lower 286 Total 50

Air containing space 153 Left upper 374 Cavity Without 1,924

Mutation 208 Left lower 271 With 90

Pleural effusion 30 Margin Clear 887 Vessel Convergence Without 1,461

Spiculation None 1,198 Unclear 1,127 With 553

Long 307 Lobulation Without 1,015 Pleural Indentation Without 1,222

Short 509 With 999 With 792

FIGURE 2 | The visualization of chi-test and conditional probabilities. (A) is the visualization of the chi-test result. (B) is the visualization of conditional probabilities. The

brighter grid means that the attributes indicated by its row and column numbers are more relevant. For (A), the meaning of labels 1–9 is listed in legend, and for (B),

the legend lists the meaning of label in each group.

5. TASKS OF DATASET

Our dataset is rich in data and diverse in annotations, which
means that our dataset can be used for several tasks and aid in the
development of CAD systems. We recommend using our dataset
for the following tasks:

(1) Detection: Some of the lesions in our dataset are smaller
than 30 mm, which are nearly circular and suitable for
lung nodules detection. This can be helpful for the initial
diagnosis of lung cancer.

(2) Segmentation: The lesions larger than 30 mm are all marked
with precise contours. These lesions are more complex in
shape and are suitable for the lung lesion segmentation task.
This can be helpful for volume measurement and further
treatment.

(3) Classification: Multiple attributes of the lesion are suitable
for multi-task lung disease prediction. This can be helpful to
judge benign and malignant tumors.

(4) Reconstruction: At present, medical datasets are small, and
their size is not enough for deep learning. Our dataset has
various types of data, and we can use real data to train
generative adversarial networks to generate synthetic data.

In this paper, we focus on exploring the correlation
between attributes. We, therefore, perform multi-attribute

classification and report our experimental results
in section 6.

5.1. 2D, 2.5D, 3D Modes for Classification
In order to study the importance of the inputmode for themodel,
we use different data dimensions for the same data and the model
for classification experiments.

We use three input modes including 2D, 2.5D, and 3D.
Assuming that the size of a CT volume is H × W × C,
which corresponds to the three axes of X-Y-Z, the diameter
of a lesion is d, the three input modes are expressed
as follows:

5.1.1. 2D Mode
The lesion is cut out from the grayscale slice in which it is located
with a length d of side, and fed to a 2D network for prediction.
The input size is d × d × 1. The 2D input mode can retain the
lesion at the spatial structure in the X-Y direction, but the context
information in the Z direction cannot be captured.

5.1.2. 2.5D Mode
The grayscale image of the lesion and the five images above and
below are cut out by the bounding box, and fed to the 2D network
for prediction. The number of input channels is 5, and the input
size is d × d × 5. Compared to the 2D input mode, the 2.5D
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FIGURE 3 | The structure of our basic classification model.

FIGURE 4 | The structures of the two attention modules. In the figures above, blue boxes represent the convolutional layers,
⊕

represents the element-wise sum,

and
⊗

represents the spatial-wise reweight in (A) and channel-wise reweight in (B).

input mode is supplemented by a fixed number of slices in the
Z direction.

5.1.3. 3D Mode
In the X-Y-Z direction where the lesion is located, the bounding
box (d × d × d) is cropped and fed to the 3D network for
prediction. 3D network can capture the correlation on the Z-
axis of the whole lesion by convolution. Compared with 2D, the
information of 2.5D is more detailed, but the amount of 3D
network parameters is more than that of 2D network, which can
cause the deep learning model to overfit as the size of training
data is small.

The architecture of our basic model is shown in Figure 3.
In order to extract the relationship of nine attributes, we use a
ResNet-based network (25) to extract the characteristics of the
nodule and then use nine classification branches to predict nine
attributes independently. We will explain the details and the
results in section 6.1.

5.2. Two Attention Mechanisms
Through the experiments, we found that there is an implicit
competition between multiple attributes during training. In the
training phase, when the loss value is stable, the accuracy of
some attributes increases while the accuracy of other attributes
decreases. To solve this problem, we add an attention module
in front of each attribute classifier to focus the activation on the
features which are useful for classification. In this way, different
input features for attributes are extracted, which could mitigate
the conflict between attributes. Inspired by (26–28), we employed
soft-attention and self-attention, commonly used mechanisms
that compute a weight matrix used to filter noise and to focus
on important features. These two attention mechanisms are
described below in our model, and Figure 4 shows the structure
of the two attention modules.

5.2.1. Soft-Attention Module
As shown in Figure 4A, we add a soft-attention module (26)
before feeding the features into the classifier to filter out
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shallower features with deeper features. While preserving the
spatial structure, the attention module extracts a mask from the
features to suppress noise which is not related to the attribute to
improve accuracy.

Assuming that feature map x ∈ R
N×Cx×H×W from the basic

model is the input feature for the attention model, and feature
map xg ∈ R

N×Cg×H×W is from a deeper layer as the gate, we
firstly use 1 × 1 convolutional layer to get the same number
of channels Cg for both the features, then sum the features x
and xg together and add a non-linear transform ReLU which
can be formulated as σ1 (x) = max (0, x). So far, the feature
x is mixed with richer semantic information xg , and we use
a 1 × 1 convolutional layer to fuse the channel information
and retain the spatial information, and get a mask xm with
a value of [0, 1] through the sigmoid function which can be

formulated as σ2 (x) =
(

1+ e−x
)−1

. Finally, we use the mask
xm to spatial-wise reweight the feature map x and get the output
feature x̂. After filtering by the soft-attentionmodule, the features
x̂ are re-weighted by high-dimensional semantic information
in the spatial dimension, which is more conducive to multi-
attribute classification.

5.2.2. Self-Attention Module
As shown in Figure 4B, we add a self-attention module (27,
28) before the features and fed to the classifier to squeeze the
spatial structure of a feature map into one vector with spatial
information. Then, we gather and filter the information to
enhance the activation related to that attribute, and add the
information to the original feature map to enhance the feature.

TABLE 3 | Performance of the basic model on the 3D, 2.5D, and 2D modes.

Attributes
Categories Accuracy Sensitivity Specificity

3D 2.5D 2D 3D 2.5D 2D 3D 2.5D 2D

Lesion type Placeholder 0.8636 0.8182 0.8864 0.7451 0.8780 0.7959 0.9500 0.9344 0.9561

Nodule 0.7460 0.6984 0.7619 0.8545 0.8462 0.9057 0.8621 0.8288 0.8636

Ground glass opacity 0.8800 0.8000 0.8000 0.8462 0.8333 0.8000 0.9793 0.9640 0.9638

Air containing space 0.9375 1.0000 0.9091 0.9375 0.4400 0.7143 0.9935 1.0000 0.9933

Mutation 0.8235 0.9286 0.8571 0.8235 0.8667 0.8571 0.9805 0.9932 0.9866

Pleural effusion 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 1.0000 1.0000 1.0000

Margin Clear 0.8437 0.8523 0.8636 0.8617 0.8427 0.8261 0.8052 0.8243 0.8310

Unclear 0.8267 0.8133 0.7867 0.8052 0.8243 0.8310 0.8617 0.8427 0.8261

Spiculation None 0.8672 0.8083 0.8083 0.9407 0.9604 0.9604 0.6792 0.6290 0.6290

Long 0.3333 0.6000 0.7333 0.4167 0.2571 0.2558 0.9371 0.9531 0.9667

Short 0.7143 0.2857 0.4286 0.4878 0.2963 0.6316 0.9385 0.8529 0.8889

Lobulation Without 0.8972 0.8990 0.9091 0.9143 0.9271 0.9375 0.8333 0.8507 0.8657

With 0.8594 0.8906 0.9062 0.8333 0.8507 0.8657 0.9143 0.9271 0.9375

Calcification None 0.9937 0.8684 0.7763 0.9464 0.9565 0.9516 0.6667 0.2000 0.1282

Partial 0.0000 0.2500 0.2500 0.0000 0.1176 0.0741 0.9529 0.9589 0.9559

Total 0.6667 1.0000 1.0000 1.0000 0.3750 0.2500 0.9941 1.0000 1.0000

Cavity Without 0.9819 0.9557 0.9367 0.9702 0.9742 0.9801 0.0000 0.1250 0.1667

With 0.0000 0.2000 0.4000 0.0000 0.1250 0.1667 0.9702 0.9742 0.9801

Vessel convergence Without 0.9618 0.8618 0.8780 0.8936 0.8548 0.9076 0.8333 0.5641 0.6591

With 0.6250 0.5500 0.7250 0.8333 0.5641 0.6591 0.8936 0.8548 0.9076

Pleural indentation Without 0.8500 0.8125 0.7946 0.8430 0.8922 0.9082 0.6400 0.6557 0.6462

With 0.6275 0.7843 0.8235 0.6400 0.6557 0.6462 0.8430 0.8922 0.9082

Lesion location Right upper 1.0000 0.7083 0.7083 1.0000 1.0000 1.0000 1.0000 0.8793 0.8793

Right middle 0.8571 0.7500 0.7500 1.0000 0.3000 0.3000 0.9934 0.9929 0.9929

Right lower 1.0000 0.8750 0.8333 0.9630 0.6562 0.7143 1.0000 0.9746 0.9672

Left upper 1.0000 0.7143 0.8571 0.9118 0.9524 0.9231 1.0000 0.9380 0.9677

Left lower 0.9348 0.9783 0.9565 1.0000 0.8491 0.8462 0.9739 0.9897 0.9796

Average 0.7513 0.7511 0.7816 0.7671 0.7006 0.7184 0.8305 0.7995 0.8116

Bold value means better performance, compared between 2D, 2.5D, 3D.
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Assuming that feature map x ∈ R
N×Cx×H×W is generated

from the basic model as the input feature of the attention
model, we use a channel squeeze and spatial excitation branch
to transform x to extract the spatial information and reweight
the origin x with the transform of itself. We use a global pool
which can squeeze x to a vector z ∈ R

N×Cx×1×1. Then use
two fully connected layers to transform the vector z to ẑ =

W1

(

σ1(W2 · z)
)

withW1 ∈ R
C×C/16 andW2 ∈ R

C/16×C and the
activation σ1.We also use the non-linear function σ2 to transform
the values to [0, 1] to get the channel mask xm. Finally, we use
the xm to channel-wise reweight the feature map x and get the
output feature x̂. After filtering by the self-attention module, the
features x̂ are re-weighted by the information after squeeze and
excitation in the spatial dimension, which is more conducive to
multi-attribute classification.

6. EXPERIMENTAL RESULTS

In this section, we first verify that the proposed model can learn
the correlation between attributes, and then empirically select
the best input mode, and verify the attention mechanism on this
input mode.

We used part of the data with a thickness of 1.0–2.0 mm in
our experiments, which has 355 CT volumes and 2014 lesions
labeled with 9 attributes in our dataset. The dataset has been
split into 8:2 as the training set and validation set, with 1,847
lesions in the training set and 163 lesions in the validation set.
During training, we randomly select 30% of the data for data
augmentation i.e., random flip and rotation. As Table 2 shows,
the number of categories in the dataset is unbalanced, which
could affect the convergence of the model. We use weighted cross

TABLE 4 | Performance of the basic, soft-attention, and self-attention models on the 2D mode.

Attributes
Categories Accuracy Sensitivity Specificity

Basic model Soft-att Self-att Basic model Soft-att Self-att Basic model Soft-att Self-att

attention Lesion type Placeholder 0.8864 0.8182 0.8636 0.7959 0.7347 0.7755 0.9561 0.9298 0.9474

Nodule 0.7619 0.6825 0.7302 0.9057 0.8776 0.9787 0.8636 0.8246 0.8534

Ground glass opacity 0.8000 0.9200 0.8800 0.8000 0.7419 0.7857 0.9638 0.9848 0.9778

Air containing space 0.9091 1.0000 0.9091 0.7143 0.7857 0.7143 0.9933 1.0000 0.9933

Mutation 0.8571 0.9286 1.0000 0.8571 1.0000 0.7368 0.9866 0.9933 1.0000

Pleural effusion 1.0000 1.0000 0.8333 0.7500 0.8571 0.8333 1.0000 1.0000 0.9936

Margin Clear 0.8636 0.8523 0.8636 0.8261 0.8621 0.8352 0.8310 0.8289 0.8333

Unclear 0.7867 0.8400 0.8000 0.8310 0.8289 0.8333 0.8261 0.8621 0.8352

Spiculation None 0.8083 0.7750 0.7917 0.9604 0.9894 0.9500 0.6290 0.6087 0.6032

Long 0.7333 0.5333 0.4667 0.2558 0.3478 0.2500 0.9667 0.9500 0.9407

Short 0.4286 0.7500 0.5357 0.6316 0.4565 0.4286 0.8889 0.9402 0.8984

Lobulation Without 0.9091 0.9091 0.9192 0.9375 0.9474 0.9479 0.8657 0.8676 0.8806

With 0.9062 0.9219 0.9219 0.8657 0.8676 0.8806 0.9375 0.9474 0.9479

Calcification None 0.7763 0.8158 0.8224 0.9516 0.9538 0.9398 0.1282 0.1515 0.1000

Partial 0.2500 0.2500 0.0000 0.0741 0.1111 0.0000 0.9559 0.9586 0.9437

Total 1.0000 1.0000 1.0000 0.2500 0.2000 0.3333 1.0000 1.0000 1.0000

Cavity Without 0.9367 0.8734 0.9557 0.9801 0.9857 0.9805 0.1667 0.1304 0.2222

With 0.4000 0.6000 0.4000 0.1667 0.1304 0.2222 0.9801 0.9857 0.9805

Vessel convergence Without 0.8780 0.7967 0.8211 0.9076 0.9515 0.9182 0.6591 0.5833 0.5849

With 0.7250 0.8750 0.7750 0.6591 0.5833 0.5849 0.9076 0.9515 0.9182

Pleural indentation Without 0.7946 0.7857 0.7589 0.9082 0.9167 0.9551 0.6462 0.6418 0.6351

With 0.8235 0.8431 0.9216 0.6462 0.6418 0.6351 0.9082 0.9167 0.9551

lesion Location Right upper 0.7083 0.7083 0.7083 1.0000 1.0000 0.9714 0.8793 0.8793 0.8783

Right middle 0.7500 0.7500 0.7500 0.3000 0.3333 0.3000 0.9929 0.9929 0.9929

Right lower 0.8333 0.8333 0.8750 0.7143 0.6897 0.7241 0.9672 0.9669 0.9752

Left upper 0.8571 0.8214 0.9286 0.9231 0.9200 0.9630 0.9677 0.9600 0.9837

Left lower 0.9565 0.9565 0.9565 0.8462 0.8302 0.8980 0.9796 0.9794 0.9802

Average 0.7816 0.8032 0.7763 0.7184 0.7183 0.7155 0.8116 0.8117 0.8128

Bold value means better performance, compared between different models.
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entropy loss to reduce the impact of data imbalance during the
training phase.

In the experiments, each model has four blocks. The first
one is a convolutional block and the other three are residual
blocks. At the end of the model, there are nine classifier blocks
for the classification of nine attributes, respectively. We use the
reweighted logistic loss to balance the numbers of categories.
During the training phase, we set the learning rate to 0.01
with warm restart (29) and use SGD to optimize the model.
The momentum was set to 0.09, the weight decay was set
to 10−4 and the batch size was set to 64. Since the model
converges quickly, we have trained 200 epochs for each model
and choose the model with the smallest validation loss as the
best model.

The imbalanced data causes that no valid features can be
learned, and results in low sensitivity of the model to this
attribute. As shown in Tables 3, 4, categories with too few
samples, such as partial calcification and with cavity, were not
recognized. A given category prediction may have the following
four cases: TP, True Positive; FP, False Positive; TN, True
Negative; FN, False Negative.

To evaluate the imbalanced categories of each attribute, we use
three metrics to score the results. Accuracy (ACC) is the basic
metric to evaluate the result, which can be calculated as:

ACC =
TP + TN

P + N
(5)

Sensitivity (SE), also called the true positive rate, means the
probability that a sick person is diagnosed as positive, which can
be calculated as:

SE =
TP

TP + FN
(6)

The larger the SE value, the more sensitive our model is in
diagnosing this category.

Specificity (SP), also called the true negative rate, means the
probability that a person who is actually not sick is diagnosed as
negative, which can be calculated as:

SP =
TN

FP + TN
(7)

The larger the value of SP, the more accurate our model is for the
diagnosis of this category.

We average out accuracies of all categories for each attribute,
and average the scores of all attributes as the final score to
represent the performance of the model.

FIGURE 5 | The results of the 2D, 2.5D, 3D input modes. As can be noted, the 3D mode has better results on spiculation, lobulation, cavity, vessel convergence, and

pleural indentation.

FIGURE 6 | The results of the base model and two attention models. As can be noted, the self-attention module has better results on lobulation, pleural indentation,

and lesion location attributes; the soft-attention module has better results on lesion type, margin, spiculation, calcification, cavity, and vessel convergence attributes.
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6.1. Results for Input Modes
In order to select the most suitable input mode for the attribute
classification of lung lesions, we train the 2D, 2.5D, and 3D
model with the same structure described in Figure 3. To ensure
the fairness of the three models, we do not adjust the hyper-
parameters for different models. Each model was trained with
200 epochs and a batch size of 64. To evaluate the performance
of the models, we chose the average accuracy of the model with
the lowest validation loss as the metric. The average accuracy
scores of the 3D, 2.5D, 2D model are 0.7513, 0.7511, and
0.7816; the average sensitivity are 0.7671, 0.7006, and 0.7184;
and the average specificity are 0.8305, 0.7995, and 0.8116,
respectively. As Figure 5 shows, the three models have almost
the same scores in lesion type and margin, and the model
with 2D mode has better scores in spiculation, lobulation,
vessel convergence, and pleural indentation. Table 3 shows the
accuracy, sensitivity, and specificity of each category for each
attribute. From the experimental results, we note that the higher-
level attributes, such as lesion type and lesion location, are
more sensitive to the 3D mode and the lower-level attributes,
such as spiculation and lobulation, are more sensitive to the
2D mode.

During training, we noticed that the 3D model has more
parameters than the 2Dmodels, which led to longer training time
and slower convergence. Meanwhile, the 2D model has better
average accuracy than the 3D model. So, we chose the 2D mode
as the basic model for the following experiments.

6.2. Results for Attention Mechanisms
In order to improve the performance of the basic model, we
have used two attention mechanisms to enhance the feature
before feeding it to the classifiers. We called the model with
the soft-attention module Soft-Att, and the model with the self-
attention module Self-Att. Since the number of parameters of
the two attention modules is not large, we use the same hyper-
parameters as the basic model to train the two models. Similar to
the previous section, we used a batch size of 64 and 200 epochs
for training and taking the accuracy of the model with the lowest
validation loss as the metric. The average accuracies scores of the
basic model, Soft-Att and Self-Att are 0.7816, 0.8032, and 0.7763;
the average sensitivities are 0.7184, 0.7183, and 0.7155; and the
average specificities are 0.8116, 0.8117, and 0.8128, respectively.

As Figure 6 shows, the soft-attentionmodule has better results
on margin, vessel convergence, lesion type, and spiculation

FIGURE 7 | The lesions with two heatmaps from the basic model, soft-Att, self-Att, respectively, in the lesion type and lobulation attributes. The color means the

importance of the feature in that position. The red color indicates an important feature. As the figures show, the attention model focuses the features on one point and

self-attention spreads the features in the spatial dimension.
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attributes, and the self-attention module has better results on
lobulation, pleural indentation, and lesion location attributes.
Due to the near-zero sensitivity of calcification and cavity
attributes, we do not take their accuracy into comparison. As
reported in Table 4, the two models with attention modules have
better performance than the basic model.

The heatmaps in Figure 7 visualize the attention mechanisms.
Compared with the basic model, the red value of soft-attention
is concentrated at one point. This is because soft-attention
uses higher-layer semantic information to filter the low-layer
features, which makes the features spatially smoother and more
focused. This is a good feature for high-level attributes because
it is concentrated at the point that best reflects the attribute,
but it does not fully reflect the local information relationship.
Compared with the basic model, the red value of self-attention
is more scattered in the spatial dimension. This is because self-
attention extracts channel information by compressing spatial
information using its own features, and it is more comprehensive
in spatial information due to multi-channel fusion. This is a
good feature for low-level attributes because its local information
relationships are more spatially refined, but because of the noise
in the spatial dimension, it may not be appropriate for high-
level attributes.

7. CONCLUSION

This paper presents a dataset of lung lesions with fine contour
annotation and attribute and explores the correlation between
the attributes of the dataset. To demonstrate the contribution
of this dataset to the development of CAD systems, we
explore two issues of medical data modeling using attribute
classification tasks.

One of the issues is the effect of the 2D, 2.5D, 3D input
mode on the classification model. The 2D mode works well
for low-level attributes that do not require local information
relationships between lesions and surrounding tissues, while the
3Dmodeworks better for high-level attributes that require higher
contextual relationships. The 2.5D mode is a trade-off between
the lightweight of the 2D model and the context information of
the 3D model.

The second is the impact of the two attention mechanisms
on the model. Soft-attention can better handle the noise in the

spatial dimension and concentrate on the features at one point,
which is beneficial for the classification of high-level attributes.
Self-attention can better integrate the spatial information in the
channel dimension, and complement the local relationship in
the spatial dimension, which is beneficial for the classification of
low-level attributes.

In the future, we mainly want to explore and address the
following three issues:

1. For the three categories of cavity, partial calcification,
and long spiculation, the sensitivity is almost zero due
to the high degree of the category imbalance. We will
explore novel methods to improve the accuracy of these
three categories.

2. We will use the correlation between attributes to establish a
loss function suitable for multi-attribute classification from
the statistical learning strategy.

3. There is not a single metric that can well measure the
performance of a multi-attribute model. We will build
evaluation metrics for multi-task modeling.
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