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Abstract: An increasing body of experimental data have suggested that aberrant functional interactions
between large-scale networks may be the most plausible explanation of psychopathology across
multiple mental disorders, including substance-related and addictive disorders. In the current research,
we have investigated the association between problematic cannabis use (PCU) and triple-network
electroencephalographic (EEG) functional connectivity. Twelve participants with PCU and 24
non-PCU participants were included in the study. EEG recordings were performed during resting
state (RS). The exact Low-Resolution Electromagnetic Tomography software (eLORETA) was used for
all EEG analyses. Compared to non-PCU, PCU participants showed an increased delta connectivity
between the salience network (SN) and central executive network (CEN), specifically, between the
dorsal anterior cingulate cortex and right posterior parietal cortex. The strength of delta connectivity
between the SN and CEN was positively and significantly correlated with higher problematic patterns
of cannabis use after controlling for age, sex, educational level, tobacco use, problematic alcohol use,
and general psychopathology (rp = 0.40, p = 0.030). Taken together, our results show that individuals
with PCU could be characterized by a specific dysfunctional interaction between the SN and CEN
during RS, which might reflect the neurophysiological underpinnings of attentional and emotional
processes of cannabis-related thoughts, memories, and craving.

Keywords: problematic cannabis use; triple network; EEG functional connectivity; eLORETA;
resting state

1. Introduction

Cannabis is the most widely used illicit drug in Europe, with 18% and 9.3% of young people
(i.e., the 15–24 age group) reporting having used cannabis in the last year and in the last month,
respectively [1]. The lifetime prevalence of cannabis use disorder is about 6% [2], and the frequency of
patients being treated for the first time for cannabis problems has dramatically increased over the last
decade [1]. Therefore, cannabis use is considered a relevant topic that is gaining greater attention not
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only from a political point of view [1] but also from a scientific point of view, with a specific focus on
the cognitive, behavioral, and neurobiological consequences associated to its use and abuse [3].

For example, research on animal models documented that while high concentrations of
∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis [4], are necessary to
impair memory and cognition in old rats, even low concentrations are deleterious in young animals [5].
Animal studies also showed that chronic THC exposure is associated with widespread neurochemical
and neuroanatomical alterations in several brain areas, such as the limbic system and prefrontal
cortex [6].

Similarly, human neuroimaging studies have shown that problematic cannabis use is related to
different structural, functional, and neurophysiological brain alterations [7]. For instance, structural
neuroimaging studies showed abnormalities in hippocampus volume and gray matter density
associated with cannabis use [8]. Furthermore, Moreno-Alcázar et al. [9] recently reported that,
compared to healthy controls, long-term heavy cannabis users showed increased gray matter volume
in the basal ganglia and nucleus accumbens. A recent meta-analysis [3] on 35 task-related functional
imaging studies also showed that cannabis use is associated with a decreased activity in brain areas
involved in cognitive control process (e.g., the anterior cingulate cortex and dorsolateral prefrontal
cortex (dlPFC)) and increased activity in brain structures involved in reward processing (e.g., the
striatum). Lastly, electroencephalographic (EEG) studies showed that cannabis use is related to several
neurophysiological abnormalities, such as increased cortical activation and connectivity, not only
during drug cue exposure [10–12] but also during resting state (RS) condition [13–15].

Taken together, all these data are in line with the perspective that reward-related behaviors and
addictive disorders are associated with dysfunctional dynamic interactions between large neural
networks rather than alterations in single brain areas [16–19]. Within this modern view of the brain as
a highly integrated and dynamic system, in the last years, a theoretical model has gained particular
attention in the neuroscientific literature, the so-called triple network model [20]. This conceptualization
underlines the crucial role of the synergistic interaction between large-scale networks in regulating
the general access to cognitive functions [21] and conversely, it suggests that the dysfunctional
communication within these neural systems is the most plausible explanation of psychopathology
across multiple mental disorders [20,22].

In particular, the triple network model [20] focuses on the dynamic interaction among the default
mode network (DMN), salience network (SN), and central executive network (CEN). While the DMN,
centered on nodes in the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), is
typically active during RS and involved in several higher-order integrative mental functions such as
self-referential processing and mentalization [23,24], the CEN, anchored bilaterally in the dlPFC and
posterior parietal cortex (PPC), is typically active during a wide range of cognitive tasks and involved
in several mental functions such as working memory and problem solving [20,21]. The functional and
dynamic switch between the DMN and CEN (i.e., between task-based and task-free states) is assured
by the regular activity of the SN [25,26], which includes the dorsal anterior cingulate cortex (dACC)
and bilateral anterior insula [20]. Indeed, this network plays a crucial role in filtering, detecting, and
integrating relevant internal (e.g., autonomic input) and external (e.g., emotional information) salient
stimuli in order to guide behavior [27,28].

In the last decade, an increasing body of experimental data has suggested that different aberrant
functional interactions among the SN, CEN, and DMN may be considered potential neurophysiological
biomarkers of different psychopathological phenomena emerging across several neuropsychiatric
disorders, including substance-related and addictive disorders [20,22,29].

For example, it has been reported that, compared to the smoking state, nicotine abstinence is
associated with lower SN–DMN connectivity, suggesting that a weaker network interaction contributes
to smoke craving [30]. Decreased connectivity between the SN and DMN was also reported in
cocaine-dependent individuals [31,32]. Furthermore, Li et al. showed that greater connectivity between



Brain Sci. 2020, 10, 136 3 of 17

the SN and DMN, as well as lower connectivity between the CEN and DMN, is associated with relapse
behavior in heroin-dependent patients [33].

To the best of our knowledge, only one report has explored the association between cannabis
use and triple network connectivity. In a functional magnetic resonance imaging (fMRI) study,
Wall et al. [34] showed that in recreational cannabis users (i.e., not regular users) THC administration
disrupts the DMN, where the PCC was the key brain region involved in the subjective experience of THC
intoxication. Thus, the primary purpose of the current research was to extend these previous results
examining the association between problematic cannabis use (PCU) and triple network EEG functional
connectivity. Indeed, although fMRI is widely used to investigate brain functional connectivity, EEG
is considered a suitable tool to investigate network properties [35,36], providing relevant data on
functional interactions between dynamic neural systems in each frequency band [37,38].

2. Materials and Methods

2.1. Participants

Study participants were enrolled using advertising material posted around the university
campus (i.e., a brief explanation of the study procedure including EEG procedure and questionnaire
administration). The enrolment lasted from September to December 2019. Ninety-five undergraduate
students who agreed to participate were screened for eligibility. All the individuals provided informed
consent and contributed voluntarily to the study (i.e., they did not receive payment or academic
credits). This research was approved by the ethics committee of the European University of Rome
(Prot. N.008/19) in line with the Helsinki declaration standards.

Twelve participants (7 males and 5 females) with problematic cannabis use (PCU group) and
twenty-four (9 males and 15 females) non-cannabis-using participants (non-PCU group) were finally
enrolled. PCU individuals were enrolled if they met the following inclusion criteria: (i) Cannabis
Abuse Screening Test (CAST) [39] total score ≥7, as recommended by Bastiani et al. [40] (see “self-report
measures” section for details); (ii) frequency use of cannabis during the last 12 months≥20 times [40]; (iii)
age range 18–30 years old; (iv) negative past or current diagnosis of any psychiatric and/or neurological
diseases (including head trauma); (v) right-handedness; (vi) negative psychoactive medications use
and other illegal drugs consumption in the past two weeks prior to the EEG recordings.

Non-PCU group were included if they met the following inclusion criteria: (i) CAST total score = 0;
(ii) frequency use of cannabis during the last 12 months = 0 times; (iii) age range 18–30 years old; (iv)
negative past or current diagnosis of any psychiatric and/or neurological diseases (including head
trauma); (v) right-handedness; (vi) negative psychoactive medications use and other illegal drugs
consumption in the past two weeks prior to the EEG recordings.

2.2. Self-Report Measures

After the enrolment, all subjects were administered the CAST [39], a self-report measure of alcohol
use problems (CAGE) [41], and the Symptom-Checklist-K-9 (SCL–K–9) [42], and they were asked
screening questions according to a checklist developed for previous studies [43–46].

The CAST [39] is a 6-item self-report questionnaire widely used to assess problematic patterns
of cannabis use within the past 12 months [47]. Items are scored on a 5-point Likert scale (from
0 = “never” to 4 = “very often”). The CAST includes two scoring options [48,49]: a binary version (i.e.,
computing the positive response thresholds that vary across items) and a full version (i.e., calculating
the score using the full range of item responses). Good psychometric properties (e.g., high internal
consistency) of both versions have been reported [48,49]. Satisfactory cross-cultural adaptation has
been also documented [50,51]. In a sample of Italian young adults, using the Multiple Correspondence
Analysis (MCA), Bastiani et al. [40] maximized item homogeneity of the CAST and obtained the best
score in relation to the importance of the response categories for each item. Using this procedure, the
authors showed that, compared to both the binary and the full version, the CAST MCA form had
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better psychometric properties and that the optimal cut-off score was 7 [40]. Therefore, in the current
study, the CAST MCA version was used, and the Cronbach’s α in our sample was 0.91.

The CAGE [41] is a 4-item self-report widely used to assess problematic alcohol use [41,52]. The
acronym refers to the 4 dichotomous (yes = 1; no = 0) questions investigated by the questionnaire:
(i) Cut down, (ii) Annoyed, (iii) Guilty, and (iv) Eye. The total score ranges from 0 to 4, and the
recommended cut-off to screen problematic alcohol use is ≥2 [53]. Previous researches [53] reported
that the CAGE has satisfactory psychometric properties (e.g., suitable correlations with other screening
instruments). In the current research, we used the Italian adaptation of the CAGE [54], and the
Cronbach’s α in our sample was 0.68.

The Symptom-Checklist-K-9 (SCL–K–9) [42] is the short unidimensional version of the original
Symptom Checklist-90-Revised (SCL–90–R) [55]. It is composed of the nine items of the SCL-90-R
(rated on a 5-point Likert scale ranging from 0 = “not at all” to 4 = “extremely”), showing the highest
discriminant power with the general level of psychopathology (i.e., the global severity index). Good
psychometric properties (e.g., good reliability and good model fit), as well as significant correlations
with other questionnaires assessing psychological distress, have been reported [56]. In the present
study, we used the Italian adaptation of the SCL-K-9 [57], and the Cronbach’s α in our sample was 0.86.

2.3. EEG Data Acquisition and Functional Connectivity Analysis

All EEG recordings were performed in the Cognitive and Clinical Psychology Laboratory of
the European University of Rome. Eyes-closed RS EEG was recorded for at least 5 minutes. Study
participants were invited to sit comfortably with their eyes closed in a quiet, semidarkened silent
room; subjects were also instructed to avoid alcohol, caffeine, and cigarettes immediately before their
experimental session (i.e., at least 4 h).

EEG data acquisition was performed using Micromed System Plus digital EEGraph (Micromed©
S.p.A., Mogliano Veneto, TV, Italy) and 31 standard scalp leads, placed according to the 10-20
system. In this setting, Electro-oculogram and the Electrocardiogram were also acquired, and the
reference electrodes were placed on the linked mastoids. As regards the EEG signal, it has been
used a sampling frequency of 256 Hz and impedances were kept below 5KΩ before starting the
recording and further controlled at the end of each experimental session. Other details about EEG
recordings (e.g., A/D conversion and preamplifiers amplitude) can be found elsewhere [58,59]. Signal
processing (i.e., filtering and artifact rejection procedure) was performed using EEGlab toolbox for
MATLAB (The MathWorks, Inc). For filtering procedure, the “basic FIR filter” option was selected, and
0.2 Hz and 100 Hz were respectively the high-frequency filter and the low-frequency filter. Artifact
rejection (i.e., removal of eye movements, blinks, cardiac pulses, muscular or movement activities) was
performed visually on the raw EEG (for details, see [59–61]). At least 3 minutes of clean EEG data (not
necessarily consecutive) were selected and analyzed for each subject. According to previous exact
Low-Resolution Electromagnetic Tomography software (eLORETA) studies [43,45,62–66], artifact-free
data were fragmented into epochs of 2 seconds for the EEG coherence analysis.

The exact Low-Resolution Electromagnetic Tomography software (eLORETA), a well-corroborated
computer program able to detect electrocortical activity [67], was used for all EEG analyses. The
eLORETA provides a “discrete, three-dimensional (3D) distributed, linear, weighted minimum norm
inverse solution” [62]. Assuming that adjacent neuronal sources will be highly synchronized, the
exact weights used in this software “endow the tomography with the property of exact localization to
test point sources, yielding images of current density with exact localization albeit with low spatial
resolution” [62]. The head model for the inverse solution uses the electric potential lead field computed
with the boundary element method [68] averaged of a magnetic resonance image (MRI) data set.
This forward equation “corresponds to an instantaneous discrete sampling of the measurement
space (scalp electrodes) and the solution space (cortical voxels)” [67]. In other words, computations
were performed using a realistic head model [68] determined according to the digitized MNI152
template provided by the Brain Imaging Center of the Montreal Neurological Institute (MNI) [69].
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The standard electrode locations on the MNI152 scalp have been determined according to previous
studies [70,71]. The three-dimensional spatial solution is limited to cortical gray matter, as determined
by the probabilistic Talairach atlas [72], comprising 6239 voxels of 5 cubic mm spatial resolution (for
details, see [62–64,73,74]). Only voxels that were unambiguously identified as cortical grey matter and
those unequivocally felled within the brain compartment were considered by the software. Therefore,
eLORETA images reflect the exact electrocortical activity at each voxel in neuroanatomic MNI space
as the exact magnitude of the estimated current density [75]. Although the computations should
be ideally performed on the exact head model, determined from each individual subject’s MRI, the
boundary element method is considered a suitable technique and it is one of the often-used realistic
models in EEG source analysis [76]. Furthermore, compared to the previous version (e.g., sLORETA),
the eLORETA is characterized by a correct localization even in the presence of structured noise [67,74].
Previous reports showed that the eLORETA provides a suitable localization agreement (the average
depth localization error was 7 mm) with other neuroimaging methods [77–83], and also when a low
number of electrodes were used (i.e., <30). The eLORETA is also characterized by no localization bias
even in the presence of structured noise [62,67,84]. This software is also considered a suitable tool to
investigate large brain network dynamics [35,36,38] by evaluating the modifications in the neuronal
synchronization at varying time delays and frequencies [36]. As a matter of fact, compared to other
brain-imaging methods, EEG time-series data provide a direct measure of postsynaptic potentials with
millisecond temporal resolution [38,84], providing a relevant and precious complementary source of
data for scholars and practitioners in a relatively ecological and economical way [85,86].

In the present study, the lagged phase synchronization (LPS) method [67,87] was used in order to
investigate functional connectivity. The LPS evaluates “the similarity of two time series by means of the
phases of the analyzed signal” [88] based on normalized Fourier transforms [63] with values ranging
from 0 (i.e., no synchronization) to 1 (i.e., the maximum synchronization). Therefore, this approach is
related to nonlinear functional connectivity, and it is considered to be accurately corrected, representing
the synchrony of two signals after the removal of the instantaneous zero-lag component, which is
characterized by several artifacts, such as volume conduction [63]. Although removing zero-lag phase
synchronization could not completely remove volume conduction [89], the LPS is considered to include
only physiological connectivity information and, compared to other connectivity indexes, it is also
minimally affected by low spatial resolution [63,67]. For these reasons, the LPS is broadly used in
clinical neurophysiology studies [62–65,88,90–92].

According to Li and coworkers [33], the triple network functional connectivity was
investigated defining

9 Regions of Interest (ROIs; Table 1 and Figure 1). The LPS was calculated between all the ROIs (i.e.,
81 connections) by the eLORETA, which also performed the source reconstruction [93,94]. According to
previous reports [67,84], the “single nearest voxel” option (i.e., each ROI consisted of a single voxel, the
closest to each seed) was chosen. In the current research, the following frequency bands were analyzed:
delta (0.5–4 Hz); theta (4.5–7.5 Hz); alpha (8–13 Hz); beta (13.5–30 Hz); and gamma (30.5–60 Hz).
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Table 1. eLORETA coordinates of the triple network.

Brain Network Anatomical
Structure

eLORETA MNI Coordinates 1

eLORETA Talairach Coordinates 1

x y z

DMN
mPFC

0 55 25
0 54 20

PCC
0 −55 20
0 −52 21

SN

dACC
0 20 35
0 21 31

Left AI
−45 15 −5
−45 14 −5

Right AI 50 15 −5
50 14 −5

CEN

Left dlPFC
−45 20 35
−45 21 31

Right dlPFC 40 25 50
40 27 45

Left PPC
−40 −70 45
−40 −66 45

Right PPC 50 −60 40
50 −56 40

Note: 1 coordinates referred to the ROI centroid; coordinates should be considered approximate due to the uncertain
boundaries of the anatomical structures and brain activation patterns.

2.4. Statistical Analysis

EEG connectivity analyses were compared between PCU group and non-PCU group, for each
frequency band, using the statistical nonparametric mapping (SnPM) methodology available in
the eLORETA package. This procedure is based on the Fisher’s permutation [95]. Correction of
significance for multiple comparisons (i.e., between all ROIs for each frequency band) was performed
using the nonparametric randomization procedure, included in the eLORETA software (for more
details, see [64,73]). Briefly, this procedure computes 5000 data randomizations to determine the
critical probability threshold of T-values [95,96] corresponding to a statistically corrected (i.e., after
the multiple ROIs comparisons in each frequency) p-values (p < 0.05 and p < 0.01). Furthermore, the
eLORETA software provides effect size thresholds for t-statistics corresponding to Cohen’s d values [97]:
small = 0.2, medium = 0.5, large = 0.8. Kolmogorov–Smirnov Z test and chi-squared test were performed
to analyze differences between groups for continuous and dichotomous variables, respectively. The
association between CAST total score and only statistically significant EEG connectivity data observed
in the between-group comparison was evaluated using partial correlation (rp) analyses, with age,
sex, educational level, tobacco use, problematic alcohol use (i.e., CAGE ≥ 2), and SCL-K-9 total score
as covariates. IBM SPSS Statistics for Windows, version 18.0 (Chicago, USA), has been used for the
statistical analyses.
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Figure 1. eLORETA ROIs of the triple network and Montreal Neurological Institute coordinates (Axial, Sagittal, and Coronal view). Abbreviations: eLORETA = exact
Low Resolution Electromagnetic Tomography software; ROIs = Regions of Interests; mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; DMN = default
mode network; dACC = dorsal anterior cingulate cortex; AI = anterior insula; SN = salience network; dlPFC = dorsolateral prefrontal cortex; PPC = posterior parietal
cortex; CEN = central executive network.
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3. Results

For all participants, suitable EEG recordings have been gained. In these recordings, no relevant
modifications of the background rhythm frequency (e.g., focal abnormalities or evidence of drowsiness)
were detected through a visual assessment of the EEG recordings. The average time analyzed was 248.83
± 43.58 seconds (Min./Max.: 180/306) and 268.17 ± 38.72 seconds (Min./Max.: 180/318), respectively, for
PCU and non-PCU participants (Z-test = 1.02, p = 0.252).

Differences between groups are reported in Table 2. No significant differences were observed for
socio-demographic data or for general psychopathology, even though, compared to non-PCU, PCU
participants reported more frequent tobacco use in the last 6 months, as well as more problematic
alcohol use.

Table 2. Demographic and clinical data of participants (N = 36).

PCU
(N = 12)

Non-PCU
(N = 24) test p

Variables
Age–M (SD) 23.33 ± 3.47 21.21 ± 2.70 Z-test = 1.06 0.211

Educational level (years)–M ± SD 16.42 ± 1.51 15.54 ± 1.50 Z-test = 0.83 0.504
Men–N (%) 7 (58.3%) 9 (37.5%) χ2

1 = 1.41 0.236
Tobacco use in the last 6 months–N (%) 8 (66.7%) 7 (29.2%) χ2

1 = 4.63 0.031
CAST–M (SD) 10.25 ± 4.31 0.00 ± 0.00 - -
CAGE–M (SD) 0.67 ± 1.07 0.04 ± 0.20 Z-test = 0.82 0.504

CAGE ≥ 2–N (%) 3 (25%) 0 (0%) χ2
1 = 6.55 0.011

SCL-K-9–M (SD) 1.22 ± 0.97 0.73 ± 0.44 Z-test = 0.94 0.336

Note: PCU = problematic cannabis users; CAST = Cannabis Abuse Screening Test; CAGE = self-report measure of
alcohol use problems; SCL-K-9 = Symptom-Checklist-K-9.

Functional Connectivity Results

In the comparison between PCU and non-PCU participants, the thresholds for significance,
corrected for multiple comparisons, were T = ± 3.72 corresponding to p < 0.05, and T = ± 4.41,
corresponding to p < 0.01. The effect sizes for T-threshold were 1.17, 2.92, and 4.67, corresponding,
respectively, to small, medium, and large effect sizes.

Significant differences between groups were observed in delta band. PCU participants showed an
increase of delta connectivity between the dACC and right PPC than non-PCU (T = 4.37, p = 0.010;
Figure 2A). The strength of delta connectivity between the dACC and right PPC was positively and
significantly correlated with the CAST total score after controlling for age, sex, educational level,
tobacco use, problematic alcohol use, and general psychopathology (rp = 0.40, p = 0.030; Figure 2B).
The correlation between EEG connectivity data and CAST total score remains significant also when the
seconds of analyzed EEG were added and considered (rp = 0.39, p = 0.038).
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Figure 2. Panel (A) Results of the eLORETA between comparisons in delta frequency band. PCU individuals showed an increase of delta connectivity (red line)
between the dACC and right PPC than non-PCU (T = 4.37, p = 0.010). Panel (B) Scatterplot of the correlation between CAST total score and delta connectivity
between dACC and right PPC values adjusted for the effect of potentially competing factors (i.e., sex, age, education level, tobacco use, problematic alcohol use,
and SCL-K-9 total score). Abbreviations: dACC = dorsal anterior cingulate cortex; rPPC = right posterior parietal cortex; CAST = Cannabis Abuse Screening Test;
SCL-K-9 = Symptom-Checklist-K-9; PCU = problematic cannabis use.
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No significant differences were detected in the other frequency bands. The most evident
modifications of EEG connectivity observed in the theta band was noticed between the left anterior
insula and the PCC (T = 2.45, p = 0.61). The most prominent modifications of EEG connectivity
observed in the alpha band were reported between the mPFC and the PCC (T = −1.70, p = 0.99). The
most relevant modifications of EEG connectivity observed in the beta band were detected between the
dACC and the right PPC (T = 3.04, p = 0.23). Lastly, the most evident modifications of EEG connectivity
observed in the gamma band were noticed between the left anterior insula and the PCC (T = 2.67,
p = 0.45).

4. Discussion

The main aim of the current study was to investigate the association between PCU and triple
network EEG functional connectivity. Compared to non-PCU, PCU participants showed an increase
of delta connectivity between the SN and CEN, specifically, between the dACC and right PPC.
Furthermore, SN–CN functional connectivity strength was positively correlated with CAST total score
(i.e., higher connectivity was associated with higher problematic patterns of cannabis use), even when
controlling for the presence of other variables (i.e., sex, age, educational level, general psychopathology,
tobacco use, and problematic alcohol use). No significant association was observed among DMN hubs,
suggesting that individuals with PCU could be characterized by a specific dysfunctional communication
between the SN and CEN during RS.

In order to support a wide range of cognitive functions, both SN and CEN are conceptualized as
task-positive networks interacting with each other [98,99]. Specifically, the SN detects and provides
a selective amplification of relevant stimuli generating a top-down control input that activates
the CEN in order to respond to salient information [28]. The dACC is considered a key region
involved in reward-based decision making, which integrates various task-relevant stimuli and
supports goal-directed behavior [100]. Furthermore, it is known that this brain area is crucial during
craving-related experiences, not only in response to drug-cues [101] but also during RS condition [78].
On the other hand, the involvement of PPC in a wide range of cognitive tasks, such as attention,
decision making, and episodic memory, is well documented [102].

Therefore, the increase of RS functional connectivity between the SN and CEN, detected in the
present study, might reflect the tendency of PCU individuals to focus on reward-based decision making,
triggered by attentional and emotional processes of cannabis-related thoughts, memories, and craving.
Accordingly, this study pointed out an increase in SN–CEN connectivity in the delta band. This
result is in accordance with previous neurophysiological studies reporting the involvement of delta
frequency band in the brain reward system [103,104] and consequently in substance-related disorders,
especially during withdrawal and craving states. For instance, the increase of frontal delta and theta
power has been reported in crack-cocaine-dependent subjects during guided cocaine imagery [105]
as well as in response to acute smoked cocaine self-administration [106]. Similarly, Li et al. [107]
reported that delta-increased coherence between frontal and posterior regions was associated with
cigarette cravings. Recently, Prashad et al. [13] also showed that cannabis users exhibited a greater
cortico-cortical connectivity in both frontal and central regions in delta and theta frequencies band
than noncannabis users.

Our results are not consistent with previous studies reporting functional connectivity alterations
between DMN hubs and both SN and CEN nodes [30–33]. These differences could be related to several
discrepancies in study designs (e.g., EEG vs. fMRI) and procedures (e.g., ROIs selection). However,
it is also possible that specific substances are characterized not only by atypical neurophysiological
signatures [13] but also by specific dysfunctional dynamic interactions between neural networks, which
might also change according to the different behavioral states (i.e., intoxication, craving, bingeing,
withdrawal, and relapse) associated with addiction [108]. This interpretation is purely hypothetical,
but it could be investigated in future studies.
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Although potentially interesting, the present findings should be evaluated taking into account
some limits. The first limitation is the small sample size that reduces the generalizability of our findings
and leads us to consider our study only as preliminary. Second, this is a cross-sectional report; thus,
causal relationships between investigated variables cannot be established and should be examined
through longitudinal and experimental studies. Third, our sample is composed of undergraduate
students with no formal diagnosis of cannabis use disorder, which may be characterized by different
EEG connectivity patterns within the triple network. Fourth, we did not assess triple network
connectivity during drug cues exposure, making our interpretation specific to the RS condition (i.e.,
eyes closed). Furthermore, although we have excluded participants reporting psychoactive medication
use and other illegal drug consumption, a formal urine toxicology screen was not performed. Lastly, it
should be noted that abnormalities in grey matter have been reported in PCU, especially in long-term
heavy cannabis users [9]. Therefore, although we have investigated young adults with PCU, it cannot
completely be excluded that structural alterations might affect the forward modeling by means of
different conduction delays and cortical thickness. Notwithstanding these limits, to the best of our
knowledge, this is the first study that has examined the association between triple network EEG
functional connectivity and PCU using a validated tool (i.e., eLORETA) to localize electrocortical
activity and controlling for potential confounding variables.

Based on the results of the current research, future studies should design experimental paradigms
using drug, compared to neutral, stimuli to broaden such findings concerning triple network
connectivity during direct exposure to drug cues. Moreover, due to the association between PCU and
other mental disorders [109], future research considering comorbidity with such disorders is needed
to understand relationships among these variables and the neurophysiological mechanisms pointed
out through this study. Lastly, future studies with larger samples, longitudinal, and/or experimental
designs, and combing multimodal neuroimaging techniques, should be implemented in order to clarify
long-term effects of PCU on both neurophysiological and neurocognitive point of view.

5. Conclusions

Taken together, our data would seem to suggest that individuals with PCU could be characterized
by a trait-specific dysfunctional interaction between the SN and CEN (specifically between the
dACC and right PPC) during RS. This result might reflect certain aspects of PCU such as attentional
and emotional processes of cannabis-related thoughts, memories, and craving. Therefore, future
investigations relating to the triple network model could provide novel insights into human behavior
associated with addiction and substance-related disorder.

Author Contributions: Project administration: C.I. and B.F.; conceptualization: C.I., C.M., G.A.C., E.M.-R., S.M.,
and B.F.; methodology: C.I., C.M., G.A.C., A.P., E.M.-R., and S.M.; supervision: C.I., A.P., and B.F.; data curation,
software and formal analysis: C.I., C.M., G.A.C., M.G., C.C., E.L., and B.R.Z.; writing—original draft preparation:
C.I., C.M., G.A.C., and A.P.; writing—review and editing: E.M.-R., S.M., and B.F. All authors have read and agreed
to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.



Brain Sci. 2020, 10, 136 12 of 17

Abbreviations

eLORETA exact Low Resolution Electromagnetic Tomography software
MNI Montreal Neurological Institute
DMN default mode network
mPFC medial prefrontal cortex
PCC posterior cingulate cortex
SN salience network
dACC dorsal anterior cingulate cortex
AI anterior insula
CEN central executive network
dlPFC dorsolateral prefrontal cortex
PPC posterior parietal cortex
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