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Coumarins effectively inhibit bacterial a-carbonic anhydrases
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ABSTRACT
Coumarins are known to act as prodrug inhibitors of mammalian a-carbonic anhydrases (CAs, EC 4.2.1.1)
but they were not yet investigated for the inhibition of bacterial a-CAs. Here we demonstrate that such
enzymes from the bacterial pathogens Neisseria gonorrhoeae (NgCAa) and Vibrio cholerae (VchCAa) are
inhibited by a panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester
moieties in various positions of the ring system. The nature and the position of the substituents in the
coumarin ring were the factors which strongly influenced inhibitory efficacy. NgCAa was inhibited with KIs
in the range of 28.6–469.5mM, whereas VchCAa with KIs in the range of 39.8–438.7mM. The two human
(h)CA isoforms included for comparison reason in the study, hCA I and II, were less prone to inhibition by
these compounds, with KIs of 137–948.9mM for hCA I and of 296.5–961.2mM for hCA II, respectively.
These findings are relevant for discovering coumarin bacterial CA inhibitors with selectivity for the bacter-
ial over human isoform, with potential applications as novel antibacterial agents.
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1. Introduction

Bacterial genomes encode for at least four genetic families of the
enzyme carbonic anhydrase (CA, EC 4.2.1.1), the a-, b-, c- and
i-CAs1–3. These enzymes catalyse the interconversion between
CO2 and bicarbonate, generating Hþ ions which have a role in pH
regulation processes in prokaryotes and eukaryotes3–8. However,
CAs possess other crucial functions in bacteria, participating in
metabolic processes that encompass carboxylating reactions in
which both CO2 and bicarbonate may act as substrates2,3,9, but
also in photosynthesis in the case of cyanobacteria9. These rele-
vant functions that CAs play in bacteria led to the proposal of
using their inhibitors as novel antibacterial agents, considering the
well-known and prevalent phenomenon of drug resistance to clin-
ically used antibiotics2–7. In fact, relevant inhibition of growth has
been reported for several pathgenic bacteria (e.g. Helicobacter
pylori10, vancomycin-resistant enterococci4, Neisseria gonorrheae4,
etc.) with sulphonamides, the most investigated class of CA inhibi-
tors (CAIs)11. However, there are many other classes of CAIs, which
possess a rather diversified mode of action and inhibition mecha-
nisms in human CAs compared to sulphonamides12, yet these
have been scarcely investigated for the inhibition of bacterial CAs.
One such class of CAIs is represented by the coumarins (and their
derivatives) 13–15, which have been shown to be mechanism-based
suicide (prodrug) inhibitors. For example, the esterase activity of
CAs appears to hydrolyse the lactone ring of coumarins to gener-
ate 2-hydroxy-cynnamic acids which bind at the entrance of the
CA active site13, as shown in Figure 1.

Many coumarins proved to act as efficient and also isoform-
selective CAIs13–15 targeting the 15 mammalian CAs known to
date11,12, due to the fact that they bind at the entrance of the
active site, where the highest variability in the composition of
amino acid residues is found in the different human (h)CA iso-
forms11,12. However, as mentioned above no bacterial a-CAs have
been investigated until now for their interaction with coumarins,
and this gap in the field is filled here by our report that a small
panel of simple coumarin derivatives indeed inhibit two bacterial
a-class enzymes from two human pathogens of urgent concern,
Vibrio cholerae and Neisseria gonorrheae. It should be mentioned
that the esterase activity of CAs is only documented and investi-
gated in detail for the a-class of CAs. We have shown previously
that b-, d- and c-CAs (also present in some bacteria) do not pos-
sess esterase activity16, whereas for other genetic CA families only
scarce or inconclusive data are available in the literature17,18.
Thus, due to the lack of esterase activity observed in other bacter-
ial CA isoforms we chose to investigate only bacterial a-CAs for
their possible inhibition with coumarins.

2. Materials and methods

2.1. Enzymology and CA activity and inhibition measurements

An Applied Photophysics stopped-flow instrument was used to
assay the CA-catalysed CO2 hydration activity19. Phenol red
(0.2mM) was used as a pH indicator, working at the absorbance
maximum of 557 nm, with 10mM HEPES (pH 7.4) as a buffer, and
in the presence of 10mM NaClO4 to maintain constant ionic
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strength, in order to follow the initial rates of the CA-catalysed
CO2 hydration reaction for a period of 10–100 s. The CO2 concen-
trations ranged from 1.7 to 17mM for the determination of the
kinetic parameters and inhibition constants. For each inhibitor, at
least six traces of the initial 5–10% of the reaction were used to
determine the initial velocity. The uncatalyzed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitors (10–20mM) were pre-
pared in distilled-deionized water, and dilutions up to 10 nM were
done thereafter with the assay buffer. Inhibitor and enzyme solu-
tions were preincubated together for 1–6 h at 4 �C prior to the
assay, in order to allow for the formation of the E-I complex. The
inhibition constants were obtained by non-linear least-squares
methods using Prism 3 and the Cheng-Prusoff equation, as
reported previously13–15, and represent the mean from at least
three different determinations. The NgCAa concentration in the
assay system was 6.8 nM whereas the VchCAa was 9.2 nM. The
used enzymes were recombinant proteins obtained in-house, as
described earlier5,6.

2.2. Chemistry

Coumarins 1–14, buffers, acetazolamide AAZ and other reagents
were of > 99% purity and were commercially available from
Sigma-Aldrich (Milan, Italy).

3. Results and discussion

Bacterial CAs were thoroughly investigated for their inhibition
with the two main types of classical CAIs, the sulphonamides (and
their isosteres) and the metal complexing anions2–8. However, no
inhibition data with the many other classes of inhibitors, including
the coumarins, are available so far in the literature for these
enzymes11,12.

Thus, we decided to investigate a series of simple coumarin
derivatives of type 1–14 (Table 1) with their interaction with two
bacterial a-CAs, NgCAa and VChCAa, for which sulphonamide/

anion inhibition data have already been reported in the litera-
ture5,6. Both enzymes have been proposed as potential antibacter-
ial drug targets and their inhibitors might be useful to address
the antibiotic drug resistance which constitutes a serious medical
problem worldwide2. Being the first investigation of coumarins as
potential bacterial CAIs, we have chosen relatively simple scaffolds
in order to delineate the structure-activity relationship (SAR) of
this underexplored class of CAI. As seen from Table 1, the simple
unsubstituted coumarin 1 as well as its mono- and di-substituted
derivatives in various positions of the ring system were included
in our study. The moieties present in these derivatives were again
rather simple but derivatizable ones, such as hydroxyl, primary/ter-
tiary amino, ketone, carboxylic acid ester, and they are found in
diverse combinations and positions on the ring system. In fact, we
have demonstrated earlier, for mammalian CAs, that the nature of
these moieties and the substitution pattern on the coumarin ring
are the most prominent features connected with efficient inhibi-
tory action13–15.

We observed that as for the mammalian CAs for which cou-
marins were reported to act as inhibitors13–15, the inhibition pro-
cess of bacterial enzymes is different compared to inhibition with
sulphonamides/anions that was reported previously2–5. For sul-
phonamide inhibitors the rapid equilibration between the enzyme
and inhibitor to form the enzyme-inhibitor complex typically is
achieved in a few minutes, thus, this is the reason why the
enzyme and the sulphonamide/anion inhibitors are generally incu-
bated for 15min prior to assay2,5,19. However, for coumarins and
mammalian CAs, which require catalytic cleavage of the lactone
ring prior to the enzyme-inhibitor complex being formed, such an
inhibition period led to weak millimolar inhibitory activity for a
range of structurally diverse coumarins13. For this reason, the
inhibition was investigated with longer incubation times, of
1–24 h, which led to the observation that the process is time-
dependent, with an inhibitory action increasing over time, and
typically an equilibrium is achieved after 6 h incubation between
enzyme coumarin13. X-ray crystallography and detailed kinetic
measurements thereafter confirmed the fact that the coumarin is
hydrolysed by the esterase CA activity leading to the formation of
the 2-hydroxy-cinnamic acids shown in Figure 1, which in fact are
the de facto CAIs. The same situation was observed here for the
inhibition of the two investigated bacterial enzymes with coumar-
ins 1–14: a time dependency of the inhibition has been observed,
with a steady inhibitory effect being achieved after 6 h incubation
of the enzymes and the coumarin (data not shown). Thus, all cou-
marins were investigated as CAIs in the same conditions as for
hCAs, and data of Table 1 report KIs obtained after 6 h incubation
time. The following SAR can be drawn from data of Table 1:

i. All coumarins 1–14 inhibited the two bacterial enzymes with
inhibition constants in the medium–high micromolar range.
The modest potency is not unexpected considering the sim-
ple structures, but as our intention was to provide a proof-
of-concept study that bacterial CAs are inhibited by non-sul-
phonamide compounds, the modest inhibition was accept-
able. For NgCAa the KIs were in the range of 28.6–469.5 mM,
whereas for VchCAa in the range of 39.8–438.7 mM. It should
be observed that the two human isoforms included for com-
parison reason in the study, hCA I and II, were also weakly
inhibited by these compounds, as the KIs were in the range
of 137–948.9 mM for hCA I and of 296.5–961.2 mM for hCA II,
respectively. It is in fact well-known that the cytosolic hCAs
show a poor inhibitory effect with coumarins (as also recon-
firmed here) whereas many trans-membrane, tumor-

Figure 1. Surface representation of hCA II in adduct with the superimposed
hydrolized (and active) coumarin species (cyan from 5BNL, green from PDB 3F8E).
The hydrophobic half of the active site is coloured in red, the hydrophilic one in
blue. His64, the proton shuttle residue, is in green.
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Table 1. Inhibition data of hCA I and II and bacterial enzymes NgCAa and VchCAa using AAZ as standard drug by a stopped-flow CO2 hydrase assay at 6 h incuba-
tion time between enzyme and inhibitor.

Name Structure

Ki (mM)
a

hCA I hCA II NgCAa VchCAa

1 160.0 (3.1)b 600.0 (9.2)b 81.6 94.7

2 192.0 683.0 92.4 77.5

3 263.5 690.6 77.1 68.5

4 393.5 513.1 94.7 92.2

5 489.8 625.2 110.0 289.5

6 646.3 485.7 70.9 71.1

7 939.6 733.5 97.1 95.0

8 516.5 558.9 28.6 53.9

9 948.9 646.2 42.5 39.8

10 137.0 296.5 68.0 66.8

11 748.9 875.6 469.5 438.7

12 181.8 758.4 77.6 66.0

(continued)
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associated CAs, such as hCA IX and XII, lead in many cases to
low nanomolar inhibitors20.

ii. The substitution pattern of the coumarin seems to be the
most relevant factor connected with inhibitory efficacy. This
was observed for both bacterial CAs investigated here and
the panel of coumarins 1–14, similar to what was previously
reported for hCAs13–15. Thus, substituents bulkier than H or
Me in position 3, led to ineffective bacterial CAIs (e.g. cou-
marins 13 and 14 against both bacterial enzymes; 5 against
VchCAa), the same was also observed for 11, possessing a
bulky group in position 4, which was the least effective cou-
marin against bacterial CAs in the investigated series. Smaller
and more compact moieties in position 4, such as OH (com-
pounds 4 and 12), methyl (compounds 6 and 8), CF3 (deriva-
tive 7) were tolerated and led to effective micromolar
inhibitors (Table 1).

iii. Substituents in positions 6, 7 and/or 8 of the coumarin ring
generally led to effective CAIs against both bacterial
enzymes, a situation also observed for hCA IX/XII; as those
groups do not interfere with the hydrolysis of the lactone
ring, being further away from carbonyl site of hydrolysis13–15.
Thus, 4-methyl-7-diethylamino-coumarin 8 was the most
effective NgCAa inhibitor in the series (KI of 28.6 mM)
whereas 7-hydroxy-8-acetyl-coumarin 9 was the most effect-
ive VchCAa inhibitor (KI of 39.8 mM). With respect to place-
ment of the substituents on the coumarin rings there are a
couple factors to consider regarding potency. First, steric hin-
derance by substituents nearby the hydrolysable bond of the
lactone may reduce the ability of the CA to cleave the ester.
Second, there may be electronic considerations with the sub-
stituents they could make the carbonyl more electrophilic for
attack by water to provide the corresponding cinnamic acids.
Alternatively, these substituents may also be involved in the
binding interaction of the resulting cinnamic acids, and
either improve inhibition of reduce it.

iv. A range of the tested coumarins had a behaviour of medium
potency inhibitors against both bacterial isoforms, with KI
values < 100 mM, being thus amenable to be considered as
viable hit compounds for developing tighter binding com-
pounds. Indeed, some of these derivatives such as 2, 3, 4, 6,
7, 9, 10, and 12 incorporate free OH or NH2 moieties which
are easy to derivatize in a multitude of ways, and in the case
of hCAs led to much more effective CAIs compared to
the lead21.

v. The sulphonamide CAI acetazolamide (AAZ) used as standard
compound was much more effective for the inhibition of the

bacterial enzymes as expected. However, an interesting
observation is that some of the coumarins investigated here
do show a much better inhibitory profile for the bacterial
over the human isoforms (e.g. 8 and 9), which may prove
beneficial for obtaining potential antibacterials with selectiv-
ity over human isoforms, such as hCA I and II.

4. Conclusions

This is the first report demonstrating that bacterial a-class CAs are
susceptible to inhibition by coumarins, a class of inhibitors investi-
gated previously only for their interaction with human CA iso-
forms. Our data indicate that a panel of simple coumarin
derivatives inhibit two enzymes from human bacterial pathogens
with a medium efficacy in the low–medium micromolar range.
This proof-of-concept study demonstrates that coumarins possess
inhibitory potential and lays groundwork to further explore SAR
modifications to probe steric and electronic contributions to bac-
terial CA hydrolysis of the lactone prodrug and/or contributions to
binding and inhibition of the resulting cinnamic acids.
Additionally, significant selectivity for inhibiting the bacterial over
the human isoforms hCA I and II was observed suggesting promis-
ing data for obtaining more effective and bacterial CA–selective
coumarin inhibitors. Bacterial CA active sites are slightly more
voluminous compared to the mammalian CA isoforms active
sites10, which may explain why bacterial enzymes are more effect-
ively inhibited by this class of compounds. Indeed, many of the
effective bacterial CA inhibitory coumarins incorporate easily deri-
vatizable moieties of the phenol, amine, ketone or carboxylate
type, which in principle can be used for obtaining better inhibi-
tors. This investigation warrants further studies in order to find
effective non-sulphonamide CAIs which may be useful for explor-
ing antibacterials that can revert the extensive drug resistance
observed with the clinically used anytibiotics.
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