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Abstract
With the ability to observe the activity from large numbers of neurons simultaneously using

modern recording technologies, the chance to identify sub-networks involved in coordinated

processing increases. Sequences of synchronous spike events (SSEs) constitute one type

of such coordinated spiking that propagates activity in a temporally precise manner. The

synfire chain was proposed as one potential model for such network processing. Previous

work introduced a method for visualization of SSEs in massively parallel spike trains, based

on an intersection matrix that contains in each entry the degree of overlap of active neurons

in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal

structures of high overlap values. The method as such, however, leaves the task of identify-

ing these diagonal structures to visual inspection rather than to a quantitative analysis. Here

we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully

automated method which determines diagonal structures in the intersection matrix by a

robust mathematical procedure. The method consists of a sequence of steps that i) assess

which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries

into individual diagonal structures and iii) determine the neurons composing the associated

SSEs. We employ parallel point processes generated by stochastic simulations as test data

to demonstrate the performance of the method under a wide range of realistic scenarios,

including different types of non-stationarity of the spiking activity and different correlation

structures. Finally, the ability of the method to discover SSEs is demonstrated on complex

data from large network simulations with embedded synfire chains. Thus, ASSET repre-

sents an effective and efficient tool to analyze massively parallel spike data for temporal

sequences of synchronous activity.
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Author Summary

Neurons in the cerebral cortex are highly interconnected. However, the mechanisms of
coordinated processing in the neuronal network are not yet understood. Theoretical stud-
ies have proposed synchronized electrical impulses (spikes) propagating between groups
of nerve cells as a basis of cortical processing. Indeed, animal studies provide experimental
evidence that spike synchronization occurs in relation to behavior. However, the observa-
tion of sequences of synchronous activity has not been reported so far, presumably due to
two fundamental problems. First, the long-standing lack of simultaneous recordings of
large populations of neurons, which only recently were enabled by advances in recording
technology. Second, the absence of proper tools required to find these activity patterns in
such high-dimensional data. Addressing the second issue, we introduce here a fully
automatized mathematical method that advances an existing visual approach to identify
sequences of synchronous events in large data sets. We demonstrate the efficacy of our
method on a range of simulated test data that capture the characteristics and variability of
experimental data. Our tool will serve future studies in their search for spike time coordi-
nation at millisecond precision in the brain.

Introduction
Synchronous input spikes to a receiving neuron are considered most effective in generating an
output spike, as predicted by theoretical studies coining the term coincidence detector [1]. The
argument rests on the premise that excitatory post-synaptic potentials (EPSPs) in the cortex
are typically small in relation to the firing threshold, so that many EPSPs need to overlap to
produce an output spike. Due to leak currents in the neuronal membrane, the firing threshold
is reached with fewer spikes when these arrive synchronously at the post-synaptic neuron
rather than sparsely, thus making the neuron behave like a coincidence detector. Experimental
studies provide evidence for the existence of coincidence detectors (e.g., [2]) and relate them to
various mechanisms of spike-timing dependent plasticity [3, 4] as well as to different encoding
and decoding schemes [5, 6].

Cortical anatomy supports such considerations. Individual neurons receive synaptic con-
nections from a large number of neurons (on the order of 10,000 in the human cortex, see e.g.
[7]) and project to a similar number of other cells. Such a connectivity structure combined
with suitable synaptic delays may produce spatio-temporal spike patterns, as proposed in [8–
11]. A simple case is represented by a temporal sequence of synchronous events (SSE), each
event consisting of synchronous spikes from a group of neurons.

The synfire chain model [8] is a neural network model that has been proposed to exhibit
such activity through a suitable wiring of the neurons in the network in successive groups inter-
connected in a highly divergent and convergent manner. Each neuron of one group projects to
several neurons of the next group, thus forming a chain structure. Under the assumption that
the synaptic transmission delays from neurons of one group to neurons of the next group are
identical, the synchronous stimulation of neurons in the first group leads to robust propagation
of synchronous spiking activity through the chain [10] even in the presence of noise. The acti-
vation of a synfire chain would thus lead to the occurrence of an SSE.

In order to assess whether SSEs are indeed observed in the brain and have a functional role,
the spiking activity of several neurons needs to be recorded simultaneously, analyzed for tem-
poral correlation and related to behavior. Under the assumption that an SSE occurs sparsely in
a given data set, for instance in relation to a specific behavior, pairwise correlations between
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neurons engaged in the activity are weak and will not be detected by means of pairwise correla-
tion analyses. For this reason, an analysis method was proposed in [12] that directly searches
for SSEs in massively parallel spike data.

The basic idea of the method presented in [12] is the following: after discretizing time in
bins of a few ms (see Fig 1A), a synchronous event which repeats at two different time bins
leads to a large number of neurons that are active in both bins. Building an intersection matrix
I where each entry Iij represents the number of neurons active in both bins i and j, a group of
synchronous events occurring in bins i and j results in a large overlap Iij compared to other
entries of the matrix. An SSE which occurs twice produces in the matrix I a sequence of high-
valued entries, which we name diagonal structures (DS), aligned parallel to the main diagonal
(Fig 1B). A diagonal filter applied to the matrix I enhances the contrast between the DS and
surrounding entries, mapping I into a filtered matrix F.

The method was calibrated using data from large-scale synfire chain network simulations.
When the neurons of a full chain or a large portion of it are observed, the method reveals the
associated DS in the intersection matrix. However, when only a few hundreds of neurons (com-
parable to the number of cells that can be recorded simultaneously in vivo with modern
electrophysiological techniques) are randomly sampled from the full network, the DSs are less
visible and less likely to be continuous, making it impossible to isolate them from the surround-
ing entries. Indeed, this method leaves the judgment of whether individual entries are large or
small, as well as the grouping of proximal entries into DSs, to visual inspection. As a conse-
quence, the results are prone to subjectiveness and the procedure is not open to automation.

In this paper we present a method, named ASSET (Analysis of Sequences of Synchronous
EvenTs), which improves the approach proposed in [12] by providing a mathematical and fully
automated detection of SSEs in parallel spike train data. The analysis features i) a statistical
assessment of membership of individual entries of the intersection matrix to a DS, ii) a rigorous
construction of individual DSs and associated SSEs by clustering, and iii) the reconstruction of
the neuronal composition and occurrence times of each event in the found SSEs.

The manuscript is organized as follows. In “Methods” we derive a statistical assessment of
the membership of matrix entries to a DS based on two statistical tests for the significance of
each individual entry and the joint significance of an entry and its neighbors, respectively.
Entries passing both tests are then grouped together into individual DSs depending on their
reciprocal distance by a clustering procedure. Once the DSs are identified, it is readily possible
to reconstruct their neuronal composition.

Fig 1. From spike trains to the intersection matrix. (A) Raster plot of parallel spike trains of multiple neurons (vertical axis)
over time (horizontal axis). Dots in each row correspond to the spike times of one neuron. Time is discretized into adjacent
bins (marked by white and blue shaded backgrounds) to define synchronous events. Synchronous spikes forming an SSE
repeating twice are indicated by colored dots (one color per event). (B) Intersection matrix I. Each matrix entry Iij (values
encoded by gray levels) contains the degree of overlap of neurons active in time bins bi and bj. Only the entries Iij with i < j are
shown due to the symmetry of the matrix.

doi:10.1371/journal.pcbi.1004939.g001
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In “Results” we assess the performance and robustness of ASSET on various types of simu-
lated data that replicate typical features of electrophysiological recordings. These include firing
rate heterogeneity across neurons, variability over time and different types of correlation struc-
ture in the spiking activity. In addition, we demonstrate the ability of the ASSET analysis to
find repeated SSE activity in simulated data generated by a neural network model of overlap-
ping synfire chains as introduced in [12].

We conclude by discussing benefits and limitations of the ASSET method, open problems
and future plans for the analysis of electrophysiological data.

Methods
In this section we provide a formal definition of the intersection matrix as introduced in [12],
introduce statistical tests to determine whether individual entries of the intersection matrix are
part of any DS, and propose a clustering technique to group significant entries into the different
DSs. After the last step, we can determine the occurrence times and neuronal composition of all
events of the repeated SSEs associated to the DSs found.We then formally describe the stochastic
models employed in “Results” to assess the performance of the method in a variety of scenarios.

The intersection matrix
Our approach builds on the notion of intersection matrix defined in [12]. Here we introduce
this concept mathematically and provide definitions. Given a set of N parallel spike trains
observed in the time interval [0, T], synchronous spike events across neurons are determined
by discretizing the time interval into B adjacent time bins b1, b2, . . ., bB of identical width
Δ = T/B (typically of a few ms), as illustrated in Fig 1A. Each set Si of spikes falling in time bin
bi forms a synchronous event. The value |Si \ Sj| represents the number of neurons being active
at both time bins bi and bj. The intersection matrix I is defined by

Iij≔jSi \ Sjj 8i; j ¼ 1; 2; . . . ;B:

In this setting I is a symmetric matrix, whose main diagonal contains the population histogram,
i.e. the time histogram of the number of neurons simultaneously active in each time bin. A syn-
chronous spike event occurring at two bins i and j, e.g. as a result of the repeated activation of
the same synfire chain, results in a larger value for Iij compared to the chance level. A repeated
SSE composed of lSSE successive synchronous events, each of which occurs at time bins (bir, bjr),
r = 1, 2. . ., lSSE, determines a sequence of large-valued entries Iir, jr in I—which we term a diago-
nal structure (DS)—as sketched in Fig 1B.

To account for the variability of firing rates over time when comparing different entries of I,
in [12] each entry of Iij was normalized by the number of neurons active in each bin bi and bj.
After normalization, the entries take value 1 for a complete overlap and value 0 for no overlap.
To enhance the contrast between high-valued entries belonging to the same diagonal structure
and the surrounding entries, the matrix was further filtered by a linear kernel having an orien-
tation parallel to the main diagonal. We take here a different approach, as outlined in the fol-
lowing section.

Statistical significance of individual entries in the intersection matrix
To derive a measure of overlap that is independent of firing rates, we first need the probability
mass function (pmf) pij(�) of each individual entry Iij in the intersection matrix, under the null
hypothesis H0 that the spike trains under consideration are realizations of mutually indepen-
dent Poisson processes. If the null hypothesis is rejected, i.e. if the observed value ξ taken by Iij
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is too large to be interpreted as chance, we classify the overlap Si \ Sj as a statistically significant
repeated synchronous event. In “Results” we show that the statistics of the method are robust
to deviations from Poissonianity as well as to the presence of various types of correlations
other than repeated SSE activity.

Under the stated hypotheses, the distribution of Iij is determined by the firing rate of each
neuron k at the time bins bi and bj. Iij represents the (stochastic) number of neurons firing
simultaneously in both bins and can thus be expressed as

Iij ¼
XN
k¼1

IðkÞij ; ð1Þ

where IðkÞij is a Bernoulli random variable taking value 1 if neuron k fires in both bins i and j,

and 0 otherwise. The probability parameter pðkÞij of IðkÞij is related to the local firing rate lðkÞi of

neuron k at bin bi and l
ðkÞ
j at bin bj by

pðkÞij ¼ ð1� e�lðkÞ
i

DÞð1� e�lðkÞ
j

DÞ

for each i 6¼ j, where each factor 1� e�lðkÞ
i

D is the probability for neuron k to emit at least one
spike in the time bin i. The knowledge of the firing rate profiles of all neurons is therefore a pre-
requisite for the exact computation of the pmf pij(�) of Iij, i, j = 1, . . ., N.

In light of Eq 1, Iij is a Poisson Bernoulli random variable [13]. Its pmf pij(�) is analytically
given by

pijðxÞ ¼
X

A2PN;x

Y
k2A

pðkÞij

Y
h2AC

ð1� pðhÞij Þ
( )

; ð2Þ

where PN;x is the family of all possible subsets of ξ elements that can be extracted from the set

{1, . . ., N}, A is one such subset and AC = {1, . . ., N}nA is the complement of A. Thus pij(ξ) is a

summation of N
x

� �
addenda, for a total of 2N terms needed to compute pij(�). The computation

is feasible for small N, but soon becomes prohibitive as N increases beyond a few dozens, as in
the applications to large parallel recordings we are interested in.

By use of Le Cam’s theorem [13], we approximate pij(�) by a Poisson density function p(λ)
with rate parameter λ = ∑k λk

pijðxÞ ’ pðlÞðxÞ ¼
lxe�l

x!
: ð3Þ

The approximation error grows quadratically with the pðkÞij ’s and stays low if the pðkÞij ’s are suffi-

ciently small, as shown in Fig 2.
Given the firing rate profile (i.e. the rate at each time bin) of each neuron, we can thus calcu-

late the pmf pij(�) and its cumulative distribution function (cdf) Pijð�Þ≔
P

x<�pijðxÞ, either
exactly from Eq 2 or approximately relying on Le Cam’s approximation in Eq 3. Transforming
each entry Iij by its respective cdf Pijð�Þ, we map the observed overlaps Iij to cumulative proba-

bilities

Pij≔PijðIijÞ ¼
X
x<Iij

lxe�l

x!
; ð4Þ

obtaining the probability matrix P≔ (Pij)ij, as illustrated in Fig 3A.
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If the null hypothesis holds, then Pijð�Þ is the true probability distribution of the amount of

overlap between bins bi and bj, and Iij is a realization from that probability distribution. If so,
Pij :¼ PijðIijÞ takes N + 1 values x 2 [0, 1) (as many as the intersection values from 0 to N), and

its cdf is the identity function over the domain of this set of values: Pr(Pij < x) = x for any x. If
Pij is large (close to 1), the null hypothesis is rejected in favor of the alternative hypothesis that
the observed overlap reflects active synchronization between the involved neurons at time bins
bi and bj. After setting a significance threshold α1 (e.g. α1 = 0.99), we classify all entries Iij for
which Pij > α1 as statistically significant, along with the associated repeated synchronous
events.

Note that the sum in Eq 4 includes only values of ξ strictly lower than Iij. This choice,
which assigns the observed value Iij to the critical region of the hypothesis test, ensures that
1 − Pij retains the property of a p-value, namely that Pr(1 − Pij � y) = y for each y. 1 − Pij
reflects the probability, computed under the null hypothesis, that Iij would take a value equal
to or exceeding the observed value. We reject the null hypothesis if this probability is lower
than 1 − α1 = 0.01.

Fig 2. Le Cam’s approximation. The continuous gray curves show two Poisson Bernoulli distributions
resulting from the sum of 100 Bernouilli random variables, having rates λk = 0.01 8k (right curve) and λk =
0.001, 0.002, . . ., 0.1 (left curve), respectively. The distributions are drawn as histograms from samples of
size 108 (calculating their exact analytical expression as in Eq 2 exact is computationally prohibitive). In both
cases, Le Cam’s approximation given by a Poisson distribution with parameter λ = ∑k λk (dashed lines) yields
a good match (integrated absolute error <0.04).

doi:10.1371/journal.pcbi.1004939.g002

Fig 3. From spike trains to the cluster matrix. (A)Given parallel spike train data and their intersection matrix I as in Fig 1, for
each entry Iij its cumulative probability Pij is calculated analytically under the null hypothesisH0 that the spike trains are
independent and marginally Poisson. (B) The l largest neighbors of Iij in a rectangular area extending along the 45 degree
direction are isolated by means of a kernel and their joint cumulative probability is assigned to the joint probability matrix J at
position Jij. (C) Chosen a significance threshold α1 for the probability of individual entries (i.e. for entries Pij) and a significance
threshold α2 for the joint probability of the neighbors of an entry (i.e. for entries Jij), each entry Iij for which Pij > α1 and Jij > α2 is
classified as statistically significant. Significant entries of I are retained in the binary masked matrixMij, which takes value 1 at
positions (i, j) where I is statistically significant and 0 elsewhere. (D) 1-valued entries inM falling close-by are clustered together
(or discarded as isolated chance events) by means of a DBSCAN algorithm, which thus isolates diagonal structures.

doi:10.1371/journal.pcbi.1004939.g003
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Joint significance of neighbors of Iij
A DS resulting from a repeated SSE, as sketched in Fig 1B, differs from the surrounding entries
of the intersection matrix I due to not just one, but a sequence of entries with large values
aligned around a diagonal. We devise a statistical test that exploits this feature to detect DSs in
the intersection matrix. In the previous section we have already derived the probability matrix
P as a transformation of I that normalizes raw intersection values by the local neuronal firing
rates. We can now look for DSs in P rather than in I.

Neighbors extracted by rectangular kernel. A visual technique to enhance DSs in the
intersection matrix was proposed in [12], consisting in averaging each entry Iij in the matrix
(previously normalized by estimates of the instantaneous rates) with surrounding entries fall-
ing in the same diagonal, and thus building a filtered version F of the normalized intersection
matrix. Fij is large if the neighbors Ii+h, j+h of Iij are jointly large, and small otherwise.

Inspired by this approach, we aim at mapping the matrix I into a joint probability matrix J
whose entries Jij reflect the joint probability of entries surrounding Iij. We first note that the
DS does not have to be composed of adjacent entries in I, and that these entries do not neces-
sarily lie on the same off-diagonal. For instance, if any r-th entry of the DS, r 2 {1, 2, . . ., lSSE},
is such that ir > ir − 1+1 and/or jr > jr − 1+1, then (ir − 1, jr − 1) and (ir, jr) will not be adjacent. If
ir − ir − 1 6¼ jr − jr − 1, then (ir − 1, jr − 1) and (ir, jr) will not lie on the same diagonal, as sketched
in Fig 4. The number of parallel diagonals spanned by the DS, or its “wiggliness”, is given by

wDS :¼ max
r
fDir � Djrg �min

r
fDir � Djrg þ 1;

where Δir: = ir − i1 and Δjr: = jr − j1 are the lags (in number of bins) of the r-th synchronous
event from the first one, for the first and second occurrence of the SSE, respectively.

To select the entries around Iij for which to calculate the joint probability, we center a rect-
angular kernel of length lK and width wK around Iij, aligned along the diagonal Iij belongs to.
If Iij belongs to a DS, the kernel should optimally cover all the entries of the same DS. A rect-
angular kernel having a width wK > 1 allows capturing wiggly DSs, contrarily to a linear ker-
nel. We call the set of matrix entries covered by the kernel the neighborhood of Iij. If the
intersection matrix between two different data segments is calculated, the neighborhood cov-

ers n ¼ lK � wK � bwK
2
c bwK

2
c þ 1

� �
entries in total. However, for the intersection matrix between

one and the same stretch of data, the main diagonal contains the population histogram and is
therefore excluded from the analysis, as is the lower triangular matrix i> j that contains
redundant information due to the symmetry of the matrix in this case. The total number n of

Fig 4. Origin of holes and wiggliness of a DS. Spiking activity containing a repeated SSE (A) and associated intersection
matrix (B). The SSE comprises 5 successive events. If two successive events of the SSE do not fall into adjacent bins (e.g. the
second and third events in the first SSE repetition) a hole appears in the associated DS. If the distance (in number of bins) of two
consecutive events is not identical for the two SSE repetitions, the corresponding entries belong to different off-diagonals of the
intersection matrix.

doi:10.1371/journal.pcbi.1004939.g004
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entries considered in this case is re-calculated accordingly. A similar argument holds for
entries Iij close to the edge of the matrix.

Even when Iij belongs to a DS fully covered by the kernel, only some of the n neighbor
entries belong to the DS. For this reason we select only the d largest (i.e. most significant)
entries in the neighborhood of Pij and evaluate their joint statistical significance. The parame-
ters lK, wK and d reflect the putative length lDS of the DS, its wiggliness wDS and the length lSSE
of the SSE, respectively. As a rule, we set lK and wK odd so that the kernel is symmetric around
Iij. The optimal choice of the parameters would be lK = 2lDS − 1 and wK = wDS, such that the
kernel fully covers the DS also when placed at one end of the DS itself (see Fig 5B). If the kernel
length lK is larger than this optimal value, the kernel would cover all entries forming the DS
plus additional background entries. However, as only the d largest entries are considered for
the joint significance, the background entries would not lower the joint significance and thus
would not reduce the power of the test. Conversely, a smaller value for lK results in a kernel
that covers only part of the DS, thus yielding decreased joint probability values in the matrix J
(see Fig 5C). However, the method tolerates sub-optimal values for lK because the joint signifi-
cance is already very high when the kernel covers just a few (e.g. 2 or 3) entries. This is indeed
the case we investigated in our validation (see “Results”), where we set the filter length to half
of the optimal length. These considerations show that the performance of the method is robust
with respect to departures of the value of lK from the optimal choice.

The kernel width wK reflects the putative wiggliness wDS of the DS, and wK = 5 corresponds
to a value which accounts for highly wiggly DSs, as the one illustrated in Fig 5. Indeed, the
events of the SSE are captured even if their delay from the first event changes between the two
repetitions of the SSE by up to ±2 time bins. We set wK = 5 in our validation (see “Results”) in

Fig 5. Kernel covering a diagonal structure. (A) Illustration of a DS in the intersection matrix composed of lSSE = 7 entries,
numbered 1 to 7. The DS has length lDS = 9 (larger than lSSE, because some entries are separated by holes) and wiggliness
parameterwDS = 5 (because the entries are spread over 5 different diagonals). (B) Kernel centered around the first DS entry (in blue)
with optimal parameters lK = 2 � lDS − 1 = 17 andwK =wDS = 5, ensuring coverage of the full DS. The largest d = 7 entries inside the
kernel (circled) are considered for joint significance, in this case corresponding to the 7 DS entries. (C) Kernel with sub-optimal
parameters lK = 5,wK = 5 and d = 5 (as employed in the validation, see “Results”), centered around the first DS entry. The kernel
covers only 2 DS entries, and additional background entries are considered for joint significance.

doi:10.1371/journal.pcbi.1004939.g005
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order to capture this bad case scenario. This value was larger than the real wiggliness of the
DSs we actually generated in our test data, wDS 2 {1, 2}, so that the kernel spanned more diago-
nals than the DS. The performance was nevertheless close to maximal: as for the parameter lK,
the method tolerates excessively large values of wK because only the d largest entries falling into
the kernel are considered.

Finally, setting d = lSSE would ensure that only the lSSE largest entries (likely to be those
forming the DS, if any) are considered, and not all the n entries covered by the kernel. Devia-
tions from this optimal value amount to include additional or fewer entries than those forming
the DS. In “Results” we show that, however, non optimal values are also tolerated. Indeed, as
soon as 2 to 3 DS entries are considered among the d = 5 that are selected to determine the
joint significance in our validation, the statistical test crosses significance threshold in almost
all the cases (FN rate close to 0).

Significance of the d largest kernel entries. Under the null hypothesisH0 that the spike
trains are independent and Poisson, we calculate the joint cumulative distribution of those d
neighbors of Iij whose corresponding cumulative probabilities P(1), P(2), . . ., P(d) (already calcu-
lated and stored in the probability matrix P) are the largest among the n neighbors covered by
the kernel. We consider P(1), P(2), . . ., P(d), of which we aim to evaluate the joint significance, as
independent samples from the same cumulative probability distribution F(x): = Pr(P(k) < x) = x.
Indeed, underH0 each entry Pij is the cumulative probability of the corresponding intersection
value, and its distribution is therefore the identity function over the discrete domain of the pos-
sible intersection values from 0 toN. These entries are not exactly independent if they share an
index, e.g. (i, j1) and (i, j2). The approximation as independent samples, however, yields high
performance, as shown in the validation (see “Results”).

For a sample (X1, X2, . . ., Xn) of n independent realizations extracted from a probability dis-

tribution F defined on the interval [0, 1], the joint survival function F of the d largest order sta-
tistics X(n − d+1) < X(n − d+2)< . . .< X(n) is defined by

Fn�dþ1;...;nðx1; x2; . . . ; xdÞ≔PrðXðn�dþ1Þ � x1; X
ðn�dþ2Þ � x2; . . . ; X

ðnÞ � xdÞ

and represents the probability that at least d samples are larger than or equal to x1, at least d − 1
samples are larger than or equal to x2, . . ., and at least 1 sample is larger than or equal to xd.

Since the x1 � . . .� xd are ordered, the distribution vanishes if at least d samples are not
�x1. Hence the number i1 of samples�x1 can take values i1 = d, d+1, . . ., n and the remaining
n − i1 samples are below x1. Of the i1 samples�x1, there must be at least d − 1 samples�x2. Of
the i2 samples�x2, i2 = d − 1, d, . . ., i1, there must be at least d − 2 samples�x3 and so on. Con-
tinuing this reasoning we arrive at the expression

Fn�dþ1;...;nðx1; x2; . . . ; xdÞ

¼
Xn

i1¼d

Xi1
i2¼d�1

. . .
Xid�1

id¼1

Prðexactly ik X’s are � xk; k ¼ 0; 1; . . . ; dÞ

¼
Xn

i1¼d

Xi1
i2¼d�1

. . .
Xid�1

id¼1

Prðexactly ik � ikþ1 X’s are in ½xk; xkþ1Þ; k ¼ 0; 1; . . . ; dÞ

¼
Xn

i1¼d

Xi1
i2¼d�1

. . .
Xid�1

id¼1

n!
Yd
k¼0

½Fðxkþ1Þ � FðxkÞ�ik�ikþ1

ðik � ikþ1Þ!
;

for any x1 � x2 � . . .� xd, and 0 otherwise, where x0 = 0, xd+1 = 1, i0 = n and id+1 = 0.
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Substituting to F(xr)! P(r) and denoting for simplicity Fn�dþ1;...;n by F yields

FðPð1Þ; Pð2Þ; . . . ; PðdÞÞ ¼ n!
Xn

i1¼d

Xi1
i2¼d�1

. . .
Xid�1

id¼1

Yd
k¼0

ðPðkþ1Þ � PðkÞÞik�ikþ1

ðik � ikþ1Þ!
; ð5Þ

which represents the upper-tail probability of the joint event

Xðn�dþ1Þ � Pð1Þð Þ \ Xðn�dþ2Þ � Pð2Þð Þ \ . . . \ XðnÞ � PðdÞð Þ
under H0.

The upper-tail probability is small (that is, reflects high significance) either if P(1), P(2), . . ., P(d)

are jointly large (for instance, all>0.99) or if just one of them (e.g. the largest, P(d)) is extremely
large (e.g. 0.99999999). The first scenario indicates the presence of a possible DS, while the second
corresponds to the presence of an isolated entry which is individually so large (tail probability
very close to 1) that its joint significance with neighboring entries taking values at chance level
still crosses the significance threshold α2. To avoid the second scenario we impose an upper
bound on the values of P by replacing each P(r), r = 1, . . ., d, with PðrÞ

� ¼ minðPðrÞ; pmaxÞ
(e.g. pmax = 0.999) to obtain

FðPð1Þ; Pð2Þ; . . . ; PðdÞÞ ¼ n!
Xn

i1¼d

Xi1
i2¼d�1

. . .
Xid�1

id¼1

Yd
k¼0

ðPðkþ1Þ
� � PðkÞ

� Þik�ikþ1

ðik � ikþ1Þ!
: ð6Þ

By doing so, statistically highly significant values of F are possible only in the presence of jointly
large neighbors of Pij, and not, as in the original expression Eq 5, when isolated entries take
extremely high values while neighboring entries are at chance level.

The complementary function 1� Fð�Þ returns the probability of not having the joint event,
and can be used to map the probability matrix P into a joint probability matrix J

Pij ! Jij ¼ 1� FðPð1Þ; Pð2Þ; . . . ; PðdÞÞ: ð7Þ

Fig 3B illustrates the joint probability matrix J derived from the probability matrix P in panel
A.

After setting a significance threshold α2 (e.g. α2 = 0.99999), we classify entries Iij in the raw
intersection matrix (Fig 1B) as having significantly jointly large neighbors if Jij > α2.

Clustering entries of I into DSs
Each entry Iij in the raw intersection matrix is tested for its individual significance and for the
joint significance of its neighbors. If both tests pass, i.e. if Pij > α1 and Jij > α2, the entry is clas-
sified as belonging to one DS. Such entries are collected in a binarymasked matrix M that takes
value 1 if both tests pass, and 0 otherwise,

Mij≔1fIij>a1g � 1fJij>a2g; ð8Þ

as illustrated in Fig 3C. It remains to be established which entries belong together to the same
DS. Intuitively, entries in the masked matrix that take value 1 belong to the same DS if close-
by, and to different DSs if far apart. The masked matrix in Fig 3C shows for instance two clearly
separated DSs.

A suitable notion of “distance” for matrix entries should make entries falling in the same
diagonal, i.e. aligned along the natural direction of a DS, closer together than entries aligned
along the anti-diagonal. We introduce the following elliptic distance between any two matrix
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entries (i1, j1) and (i2, j2):

drðði1; j1Þ; ði2; j2ÞÞ≔ 1þ ðr� 1Þ � sin y� p
4

��� ���� �h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði2 � i1Þ2 þ ðj2 � j1Þ2

q
=

ffiffiffi
2

p
;

where y ¼ arctan j2�j1
i2�i1

� �
is the angular coefficient of the line intersecting (i1, j1) and (i2, j2),

the first square root factor is the Euclidean distance between the two points and ρ� 1 is a
stretching factor for angular coefficients deviating from π/4. d(�) grows as θ approaches 3π/4
or − π/4, i.e. the anti-diagonal orientation. For instance, dρ((i, j), (i+k, j+k)) = k for any

ρ, dρ((i, j), (i+k, j − k)) = ρk and drðði; jÞ; ði; jþ kÞÞ ¼ 1þ
ffiffi
2

p
2
ðr� 1Þ� 	

k.

We set ρ = 5 and, based on the distance d5(�, �) of their positions in the matrix, group all
entries Iij withMij = 1 (see Eq 8) into clusters via a density based scanning (DBSCAN) algo-
rithm [14]. The algorithm considers two entries as part of the same neighborhood if their dis-
tance is not larger than a maximum value ε. Neighborhoods sharing an entry are joined
together and eventually classified as a cluster if they contain a minimum number l0 of entries.
We set ε = 3.5, thus allowing for a maximum of bεc − 1 = 2 holes between two consecutive
entries of a DS along the main diagonal, and l0 = 3, thus requiring a DS to reflect at least 3
repeated synchronous events. The elliptical neighborhood used when clustering should be con-
tained into the kernel used to build the joint probability matrix J. The reason is that the first
defines the “immediate” neighbors of the entry, while the second is meant to cover all entries
that may belong to the same DS. Thus, the parameter ε should not be chosen larger than the
kernel length lK, while the stretching coefficient ρ should be chosen such that the shorter axis
of the ellipse fits into the kernel width wK. The values ε = 3.5 and ρ = 5 we set for the validation
satisfy these requirements. Fig 6 illustrates the matrix entries falling inside the ellipse (red dots)
for various choices of the parameters ρ and ε, and the kernel (gray area) centered around the
same entry. Entries in the matrixM not belonging to any cluster are discarded as events that do
not reflect repeated SSE activity.

Fig 6. Neighborhood of SSE entries in DBSCAN clustering. Each panel shows, for a different choice of the stretching
coefficient ρ and of the maximum distance ε, the entries falling inside (red dots) and outside (black dots) the ellipse defined by
the elliptical distance. The ellipse is centered around the entryMij (green cross, here marked at position (0, 0)). Entries inside
the ellipse are considered neighbors ofMij by the DBSCAN clustering algorithm. The gray shaded area represents the kernel,
centered around the position ofMij, used to build the joint probability matrix J. The ellipse should be contained within the kernel
centered around the same position.

doi:10.1371/journal.pcbi.1004939.g006
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Fig 3D shows the cluster matrix C assigning value 1 (colored in black) to entries belonging
to a cluster, and 0 (white) to the others. The matrix contains two clusters composed of 5 entries
each, corresponding to the 5 synchronous events highlighted in Fig 1A.

Rate estimation methods
Calculating the entries of the probability matrix as given by Eqs 2 and 3 requires the knowledge
of the firing rate of each neuron over time. Firing rate estimation is a problem that has been tar-
geted by a number of studies.

The peri-stimulus time histogram (PSTH, [15]) is an estimate of the firing rate performed
by discretizing time into adjacent bins and by counting the number of spikes falling into each
bin. The bin width for the PSTH is typically larger (tens of ms) than the one used to define syn-
chrony, as firing rates change on a slower time scale. The larger the bin width, the coarser but
less biased the estimate. Normalizing the spike count in each bin by the bin width yields the
rate of the process, i.e. the number of spikes per time unit.

Kernel convolution [16] replaces each spike with a kernel (a probability density function) cen-
tered around the spike time and estimates the firing rate by the sum of these distributions. For-
mally, this is done by representing the spike time by a Dirac delta function centered around the
spike time t� and by convolving it with the kernel. Following a standard choice, we specify the
kernel as a normal distribution with assigned standard deviation σ, truncated at ±2.7σ to yield a
finite support. When setting the kernel width w� = 5.4σ to a fixed value, we employ w� = 200 ms.

Both PSTH and kernel convolution can be applied to the case when multiple independent,
identically distributed trials of the activity of a neuron are available, by averaging the estimates
obtained for each trial. For identical bin and kernel widths, the PSTH typically better represents
sharp changes in the firing rate from one bin to the next, while kernel convolution yields
smoother curves.

Both estimates are parametric and require the choice of a bin- (kernel-) width. Methods
have been recently proposed to determine the optimal bin- or kernel-width by minimizing the
error between the true (unknown) rate and its estimate in some statistical sense (see [17, 18]).
These methods have been shown to outperform their fixed width variants and are particularly
helpful when analyzing parallel spike train data from different neurons with different rates,
where the optimal bin width varies across neurons.

In the “Results” we compare the performance of ASSET employing either PSTH or kernel
convolution or optimized-width kernel convolution [18] estimates of the firing rate profiles
over an increasing number of trials.

Results
We propose here an extension of the method presented in [12] that visualizes repeated tempo-
ral sequences of synchronous events (SSE) as diagonal structures (DS, a sequence of large val-
ues along a diagonal) within an intersection matrix I. Iij represents the number of neurons
which have spikes both in time bin i and time bin j (see Fig 1 and Eq 1 for the formal defini-
tion). We map the intersection matrix I into a probability matrix P which contains at each posi-
tion Pij the probability of an overlap lower than Iij between the spike trains at the two time bins
(Fig 3A). The calculation is derived analytically under the null hypothesis H0 that the spike
trains are Poisson and independent. We then further compute the joint probability matrix J
whose entries Jij represent the cumulative joint probability of neighbors of Iij, again under H0

(Fig 3B). Set two statistical thresholds α1 < α2, each entry such that both Pij > α1 and Jij > α2
hold is classified as a potential member of a DS. Technically, this is done by building a masked
matrixM such thatMij = 1 if the two conditions hold, andMij = 0 otherwise (Fig 3C). Entries
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inM that take value 1 are finally clustered into individual DSs or discarded as isolated entries
based on their reciprocal distance, thus yielding a cluster matrix C (Fig 3D).

The positions (i, j) of entries composing each DS, which can be obtained from the matrix C,
allow us to reconstruct the synchronous events forming the associated repeated SSE as the
intersection of the neurons active at bins i and j.

We investigate the performance of the proposed method on simulated test data. The data are
generated by stochastic simulations ofN parallel spike trains (here we chose N = 100) over a time
period of 1s. We define 10 types of background spiking activity, differing by the marginal proper-
ties of the spike trains (firing rate profile and ISI distribution) and the correlations among the
spike trains. We use these data to determine the false positive (FP) rate of the method in cases
where SSEs are not included in the data. Then we enrich the data with two occurrences of an SSE
composed of lSSE = 7 synchronous events, each event involving ξSSE = 5 neurons with IDs 1 − 5,
6 − 10, . . ., 31 − 35, and investigate therein the true positive (TP) and FP rates. In data containing
SSE activity, a found SSE is considered as an FP if it is not composed of (or it is only partly com-
posed of) the events forming the embedded SSE. Details are given below. For the diversity of data
types we test the power of the method, further identify critical cases, and suggest solutions.

Test data
To assess the quality of the method, we first measure its performance in the case when all
assumptions entering the derivation of Eq 2 (alternatively Eq 3) and Eq 6 are met. In addition,
we test the robustness of the statistics of the method with respect to deviations from these
assumptions which are typically found in experimental data. In particular, we investigate how
the following features of the data affect the performance of the method and test if these lead to
false positive (FP) outcomes. The first four features relate to aspects of firing rates, such as vari-
ous types of non-stationarities and rate correlations, i.e. correlations between the spike trains
on a slower time scale than SSEs. The last two features relate to spike synchrony, however with
a different organization than in SSEs.

1. Variability of firing rates over time by means of a sudden rate jump that is coherent across
all neurons (Fig 7A).
Firing rate changes over time are the basic observation of experimental data, in particular in
response to an external stimulus or in relation to behavior. Neurons reacting to a common
stimulus often exhibit a co-modulation of their rates. Ignoring or mis-estimating such rate
changes is a typical generator of false positives in synchrony analyses [19–21]. We thus
investigate a worst case scenario of coherent and instantaneous rate changes.

2. Heterogeneity of the firing rates across neurons (Fig 7B).
The firing rates of simultaneously observed neurons typically differ. Although we estimate
the firing rates on a neuron by neuron basis, we still want to ensure that the method can
cope with this rate variability. Such variability combined with cross-trial variability was
shown to be a strong generator of FPs (see e.g. [21]).

3. Increased regularity of the spiking activity compared to the Poisson assumption, by means
of Gamma-distributed ISIs (Fig 7C).
Deviations from Poisson statistics in terms of ISI regularity, which is observed in experi-
mental data [22–24], was shown to bias synchrony analysis methods [20, 25] that, like
ASSET, assume Poisson spike trains in the null hypothesis.

4. Short lasting, simultaneous rate jumps in a group of neurons, propagating to other groups
in a sequence; this “chain” of rate jumps re-occurs at a later time (Fig 7D).
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This model mimics a rate propagation model, instead of spike synchrony propagation as
represented by SSEs. In the ongoing debate on rate coding vs temporal coding [26–28] it
was proposed that coherent short-lasting firing rate changes at the input of neurons would
be as efficient in bringing neurons to emit a spike as synchronous input. Whether rate corre-
lation and spike synchrony can be distinguished mathematically is being debated (see e.g.
[29] vs [30]). Here we ensure that ASSET can distinguish sequences of coherent rate
changes from SSE activity when using suitable statistical thresholds.

5. Population synchronization, represented by the occurrence of synchronous spike events at
random time points, each involving a random selection of neurons (Fig 7E).
ASSET operates under the null hypothesis of spike train independence given the estimated
firing rate of each neuron. Thus, fine temporal correlations are not incorporated in the null
hypothesis. However, studies of recurrent neuronal networks show the presence of weak
temporal correlations [31], as those caused for instance by the recurrent connectivity in the
network. To study their effect on the performance of our method, we generate test data that
contain population correlations with unspecific neuronal compositions. As a correlation
model we choose the compound Poisson process, which inserts synchronous spikes at a pre-
defined occurrence rate in randomly selected sets of neurons, rather than in specific groups
of neurons as for the SSEs.

Fig 7. Different features of the data. Each box illustrates one feature (from A to F) of the test data (left column) and an
associated exemplifying raster plot (right column). The dots in the raster plots mark the occurrence time of each spike. (A)
Variability of firing rates over time. The underlying rate profile is shown on the left. (B) Heterogeneity of the firing rates across
neurons: the different stationary firing rate levels are marked on the left. (C)Gamma-distributed ISIs: the underlying Gamma
distribution (solid line) is contrasted to a Poisson distribution (dashed). (D) Short lasting, sequential rate jumps (different colors)
coherent within groups of neurons, repeat identically at two time points. (E) Population synchronization: the occurrence
probability of the size of the synchronous, but randomly selected spike events, is shown in red, the occurrence probability of
independent background spikes (size 1) in black. (F) Intra-group synchronization: the complexity distribution is identical to the
case of population synchronization in panel E, but the events involve specific groups of neurons (each group is marked in the dot
display by one color).

doi:10.1371/journal.pcbi.1004939.g007
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6. Intra-groups synchronization, where multiple disjoint groups of neurons exhibit synchro-
nous spiking within the group, at independent points in time for each group (Fig 7F).
This model represents a second type of correlation structure at fine temporal scale differing
from SSE activity. Here, synchronous spike events of specific groups of neurons exist in the
same number (7) and size (5) as for the embedded SSE, but in contrast to the SSEs are not
emitted in a temporal sequence. This type of correlation was explored already in [32], were
it was shown to produce in the intersection matrix isolated high-valued entries, but no DSs.
We test here whether this holds true for our more advanced method.

For the concrete test cases we formulate 10 different stochastic models of spiking activity
(see Fig 8 as examples of the realizations), each including only one or a combination of the
above-mentioned features, as summarized in Table 1. We use these models to generate back-
ground activity into which we subsequently embed the spiking activity corresponding to a
repeated SSE. We provide here the definition of each model.

Model 0—Independent Poisson. N = 100 independent Poisson spike trains having identi-
cal, stationary firing rates λ = 15 Hz.

Fig 8. Spiking activity of the stochastic models. Examples of population raster plots of the spiking activity
of 100 neurons (vertical axis) over time (horizontal axis), for each stochastic model 0 to 9. Model 0 consists of
independent Poisson spike trains with firing rates that are stationary over time and identical across neurons.
The other models destroy one or more of these aspects by including some of the features A to F, as listed in
Table 1.

doi:10.1371/journal.pcbi.1004939.g008
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Model 1—Poisson with simultaneous rate jump. N = 100 Poisson spike trains having an
identical, time-varying firing rate profile λ(t) = 10 Hz + 50 Hz � 1{600ms<t<700ms}. Thus, all spike
trains undergo a simultaneous sudden rate excursion of +50 Hz between times t1 = 600 ms and
t2 = 700 ms. The average rate over the 1 s simulation period is 15 Hz, as in model 0.

Model 2—Heterogeneous, time-stationary Poisson. N = 100 independent Poisson spike
trains with heterogeneous firing rates across neurons ranging from 5 Hz to 25 Hz. Neuron k
has stationary firing rate lk ¼ 5þ 20

99
kHz, k = 0, 1, . . ., 99. The population-averaged firing rate

is 15 Hz, identical to models 0 and 1.
Model 3 / 4 / 5—High inter-spike interval regularity. Same as models 0 / 1 / 2 respec-

tively, but the spike trains have marginally Gamma distributed inter-spike intervals (ISIs) with
shape factor α = 5 (α = 1 for the Poisson case) and mean parameter μ = 1/15 s

PðISI ¼ tÞ ¼ a
m


 �a ta�1e�at=m

GðaÞ :

The Gamma distribution determines ISIs having mean length μ (firing rate: 1/μ = 15 Hz),
standard deviation s ¼ m=

ffiffiffi
a

p
and thus a coefficient of variation s=m ¼ 1=

ffiffiffi
a

p
. The larger the

α, the more regular the ISIs compared to their mean value.
Model 6—Fast rate-jump propagation. N = 100 independent Poisson spike trains, orga-

nized in 20 groups of 5 spike trains each. The first group experiences a sudden, simultaneous
rate jump from λ1 = 14 Hz to λ2 = 100 Hz at two times t1 = 50 ms and t2 = 500 ms, lasting 5
ms (one time bin) each time. Then the second group undergoes the same rate jump 5 ms (one
bin) later, and so on. The l-th group experiences the rate jump at time t1 + 5(l − 1) ms and
t2 + 5(l − 1) ms, l = 1, . . ., 20.

Model 7—Population synchronization. N = 100 spike trains having all stationary firing
rates λ = 15 Hz. From time to time, 5 randomly selected neurons fire synchronous spikes, with
a frequency that yields a mean pairwise correlation coefficient among any two spike trains of
ρ = 0.01. The rest of the spiking activity is mutually independent. Formally, the model is
described by a Compound Poisson process (CPP; [33, 34]) with a two-peak amplitude distribu-
tion A(�) such that A(1) = 0.938, A(5) = 0.062 and A(ξ) = 0, 8ξ 6¼ 1, 5. Each neuron has an aver-
age participation rate in synchronous events of 4.63 Hz.

Model 8—Intra-group synchronization. Multiple Single-Interaction Process (mSIP, see
[32, 35]; cf. [36] for details on the basic SIP model) comprising 65 independent neurons plus 7
groups (SIPs) of 5 neurons each, for a total of N = 100 neurons. Each SIP exhibits synchronous
activity in two randomly selected time bins, independent for each group. Thus, the resulting
data contains 7 disjoint repeated synchronous events of size 5. This is the same as for the case
when we inject a repeated SSE into the data, with the difference that the synchronous events do

Table 1. Features embedded in the stochastic models. The crosses mark the features (A to F) included and combined in each model (0 to 9) to simulate
the background activity of the test data.

model id

0 1 2 3 4 5 6 7 8 9

A: firing rates varying over time x x x

B: heterogeneous rates across neurons x x x

C: high regularity of ISIs x x x

D: rate propagation x

E: population synchronization x

F: intra-groups synchronization x

doi:10.1371/journal.pcbi.1004939.t001
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not form a temporal sequence here. Each neuron has a total firing rate λ = 15 Hz, stationary
over time.

Model 9—Time-varying heterogeneous Poisson. N = 100 independent, marginally Pois-
son spike trains whose firing rates are heterogeneous across neurons and non-stationary over
time. Spike train k has rate profile

lkðtÞ ¼ 5þ 10 � k
99


 �
Hzþ 50Hz � 1f600 ms<t<700 msg;

k = 0, 1, . . ., 99. Thus, the spike trains have baseline firing rates ranging from 5 Hz to 15 Hz
and experience a coherent rate jump of +50 Hz between 600 ms and 700 ms. The time- and
population-averaged firing rate is 15 Hz. This model mixes non-stationarity and heterogeneity
of firing rates individually characterizing models 1 and 2, respectively.

Fig 8 shows example raster plots of the activity associated to each of these stochastic models,
without additional injection of SSE activity.

Validation of the method on test data
Significance of the two statistical tests. Eq 3 provides an analytical expression of the

cumulative probability Pij of the intersection value Iij under the null hypothesis H0 of indepen-
dent, marginally Poisson spike trains. The complementary test p-value 1 − Pij represents the
probability that the intersection between bins bi and bj is larger than or equal to Iij. Analo-
gously, Eq 6 provides the joint tail probability 1 − Jij of neighbors of Pij. For positions (i, j) of
the intersection matrix corresponding to a real DS, Jij should take values which are orders of
magnitude lower than Pij, as it represents the joint significance of multiple rather than individ-
ual repeated synchronous events. To confirm this, we simulate data from each background
activity model 0 to 9 (see Fig 8) for 100 realizations. For each realization, we additionally inject
at two points in time, chosen at random, an SSE composed of 7 links and 5 neurons/link,
resulting in a real DS composed of a set of 7 entries SDS :¼ fðik; jkÞ; k ¼ 1; 2; . . . ; 7g in the
intersection matrix. We estimate the firing rate profile of each neuron from single spike trains
by kernel convolution (boxcar kernel, kernel width: 200 ms), segment the data in 5 ms bins
and calculate the matrices P and J. Given the large number of neurons involved, we need to
rely on Le-Cam’s approximation of the probability mass function of the intersection values
(see Eq 3) to compute P. We then extract from each matrix the tail probabilities 1 − Pik, jk and
1 − Jik, jk of the entries forming the embedded DS, and consider the largest (i.e. least significant)
ones, maxk(1 − Pik, jk) and maxk(1 − Jik, jk). Fig 9 shows for each model a cloud of the 100 points
(maxk(1 − Jik, jk), maxk(1 − Pik, jk)), one per simulation. As expected, for entries belonging to
the true DS the joint significance Jij is orders of magnitude higher than the individual signifi-
cance Pij. For this reason it makes sense to set the respective statistical thresholds α2 and α1
such that α2 > α1. In particular, on the basis of the scatter plots in Fig 9, which show that most
tail probabilities 1 − Pik, jk and 1 − Jik, jk are lower than 10−2 and 10−5 respectively, we set α1 =
0.99 and α2 = 0.99999.

True positive and false positive DSs. For each simulation of models 0 to 9 we identify sta-
tistically significant entries (i, j) in the intersection matrix. We then cluster these entries into
diagonal structures using the DBSCAN algorithm, as explained in “Methods”. Table 2 summa-
rizes the parameter values used in the analysis.

We define a DS found in stochastic simulations containing SSE activity as a TP if it contains
at least 50% of the entries of the true DS, and if at least 50% of its entries belong to the true DS.
If either requirement is not met, or if the data do not contain embedded SSE activity in the first
place, the found DS is classified as an FP. Fig 10, left, illustrates the entries composing a true
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Fig 9. Scatter of the upper-tail probabilities of the two tests in the presence of a repeated SSE. The
upper tail probability of the first test (y-axis) in relation to that of the second test (x-axis) for all models 0, . . ., 9.
Each model is repeated 100 times and in each repetition an SSE composed of 7 links and 5 neurons/link is
injected at two random points in time. The represented values max(1 − Pik, jk) and max(1 − Jik, jk) are taken
each as the maximum (i.e. least significant) significance value across all entries SDS :¼ fðik ; jkÞ; k ¼
1; 2; . . . ; 7g of the intersection matrix composing the embedded DS. The figure shows for each model the
cloud of the 100 points (max(1 − Jik, jk), max(1 − Pik, jk)), one per simulation. The red lines mark the significance
levels 1 − α1 (horizontal) and 1 − α2 (vertical) for individual tail probability values 1 − Pij and tail joint probability
values 1 − Jij, respectively.

doi:10.1371/journal.pcbi.1004939.g009

Table 2. Analysis parameters. Parameters of the ASSETmethod employed for the analysis of stochastic and network data. Each column shows the param-
eters employed for the corresponding step of the method.

intersection matrix statistical assessments DBSCAN clustering

parameter value parameter value parameter value

Δ: bin size 5 ms α1: 1
st threshold 0.99 ρ: stretch coeff. 5

l: kernel length 5 α2: 2
nd threshold 0.99999 ε: max distance 3.5

w: kernel width 5 s: min cluster size 3

d: # largest neighbors 5

doi:10.1371/journal.pcbi.1004939.t002
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DS in data with embedded SSE activity. Fig 10, right, illustrates FPs arising from the fact that
the found DS contains less than 50% of the entries composing the true DS (top, first require-
ment not met), or contains more than 50% of entries not belonging to the real DS (middle, sec-
ond requirement not met). The central column in the figure similarly illustrates different types
of TPs, when both criteria are satisfied. Note that both TP and FP DSs can be contained in the
real DS (top), contain it (middle) or partially overlap with it (bottom).

Fig 11, top, shows the FP rate (i.e. average number of FPs over the 100 simulations) in each
test data model introduced above, for the case where no SSE is embedded in the data (therefore,
each found DS is an FP). The middle and bottom panels show the TP and FP rate for the corre-
sponding cases where two occurrences of an SSE are embedded in the data. Optimal perfor-
mance is achieved in SSE-free data when the FP rate, which can take values between 0 and +1,
is 0. In data with embedded SSEs the TP rate, ranging between 0 and 1, is optimally 1.

Assumptions of null hypothesis met. When the null hypothesis of Poisson and indepen-
dent spike trains holds, and the firing rates are stationary over time (model 0, identical rates
across neurons, and model 2, different rates) the performance is high both in terms of TP rate
(= 1.00) and FP rate (= 0.00, both in test data with and without embedded SSEs). Cross-neuron
heterogeneity of firing rates does not affect the performance. These results demonstrate the
adequacy of kernel convolution, used to estimate the rate profiles on a single spike train basis,
when the rates are stationary. The high performance also indicates the efficacy of Le Cam’s
approximation (Eq 3) of the true but intractable probability distribution of intersection values
(Eq 2).

ISI regularity. The optimal TP and FP levels observed in model 0 and 2 are maintained
when the spike trains exhibit higher ISI regularity than Poisson (model 3 and 5, respectively).
This shows that the method is robust to deviations from the Poisson assumption employed to
derive the null distribution.

Fig 10. Illustration of true positive and false positive DSs. Left: DS composed of 7 entries, resulting from
the two occurrences of the SSE embedded in the test data.Middle, right: A found DS in the cluster matrix
can contain entries that belong to the true DS (dark gray) or not (light gray), and may miss entries of the true
DS (white).Middle column:Different types of TP DSs found in data: contained in (top), containing (middle)
and partially overlapping with (bottom) the true DS. Right column:Different types of FP DSs found in data:
contained in (top), containing (middle) and partially overlapping with (bottom) the true DS.

doi:10.1371/journal.pcbi.1004939.g010

Analysis of Sequences of Synchronous Events

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004939 July 15, 2016 19 / 34



Rate propagation. We further evaluate whether high and short-lasting rate increases
affecting a group of neurons simultaneously and propagating from one group to the next in a
sequence would be interpreted by the method as the occurrence of an SSE. The main difference
between rate propagation and SSE activity is that the first causes neurons to fire stochastically
(probability<1) rather than reliably (probability = 1). The first model converges to the second
as the rate increase grows to infinity, so that ASSET should find SSE activity in this case. It is
otherwise understood as a different model of information coding, which should not yield SSEs.

Using model 6, we simulate an intermediate scenario in which each of 20 groups of neurons
successively increases its firing rate from a baseline of 14 Hz to 100 Hz for a period of 5 ms,
with an inter-group delay of 5 ms matching the analysis bin width. This fast rate change propa-
gation occurs twice, thus resembling a repeated SSE (see Figs 7D and 8, model 6), but with the
firing probability of each neuron of 0.39 during the high-rate regime (instead of 1 for SSE activ-
ity and 0.067 during the baseline regime). With these parameters the method yields an FP rate
of 0.48 (equivalent to less than 1 FP every 2 model iterations), despite the unrealistically high
and sudden rate jump, its coherence across neurons and the fact that the high-rate state per-
fectly falls into adjacent analysis bins. Deviations from these three features would decrease the

Fig 11. Performance of the method for different models of background activity. The 10 different models
of background (SSE-free) activity, numbered from 0 to 9, are simulated 100 times each. Top panel: Average
number of FPs found in the data when estimating the firing rates of individual spike trains by kernel
convolution (filled circles) and when using the theoretical rate profiles that underlie the generation of the test
data (empty circles). Bars indicate the standard deviation. Center and bottom panel: Average number of
TPs and FPs found in the data containing 2 repetitions of an SSE of lSSE = 7 synchronous events involving
ξSSE = 5 neurons each.

doi:10.1371/journal.pcbi.1004939.g011
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false discovery rate substantially. This indicates that the method distinguishes rate propagation
from SSE activity as long as the two models are substantially different, but would identify the
two when the two models converge.

Correlated spike trains. The presence of synchrony involving different groups of neurons
each time (model 7) does not harm the performance of the method: the TP and FP rates stay at
levels 1.00 and 0.00, respectively. The same results are obtained in data characterized by spe-
cific groups of neurons that synchronize their activity within the group, however indepen-
dently among groups (model 8). These results taken together indicate that, for the range of
parameters employed here, the presence of synchronous activity, at the population level or
even involving specific groups of neurons, does not affect the performance of the method.

In general, however, one may explicitly include such correlations in the null-hypothesis. To
this end we suggest here a Monte-Carlo approach to estimate the probability matrix J while tak-
ing the observed repeated synchronous events into account. The basic idea is to estimate J from
surrogates obtained by manipulations of the intersection matrix I by destroying the arrange-
ment of rows and columns of I. Using this approach, we aim to distinguish synchrony that
leads only to isolated high-valued entries in the intersection matrix (non-SSEs) from synchrony
that leads to DSs. Concretely, the steps are:

1. Generate S (e.g. S = 1000) surrogates of the binned discretized data by shuffling the bins
randomly.

2. For each surrogate s, s = 1, 2, . . ., S, compute the corresponding intersection matrix ~I s and

derive the associated probability matrix ~Ps by Eq 2 or Eq 3, using the original firing rate pro-
files. This operation preserves all synchronous events in the original data but not their tem-
poral order, and effectively corresponds to an identical random shuffling of rows and

columns of P. Any DS originally present in P is thus destroyed in ~Ps, thereby implementing
the null hypothesisH00 that the observed repeated events do not form temporal sequences.

3. Transform each surrogate probability matrix ~Ps into a filtered probability matrix ~Fs as
follows:

• apply to each entry ~Ps;ij a rectangular kernel

• for each ~Ps;ij extract its d largest (most significant) neighbors ~PðkÞ
s;ij , k = 1, 2, . . ., d and set

~Fs;ij :¼ 1�Q
kð1� ~PðkÞ

s;ijÞ.
4. In the same way transform the original probability matrix P into a filtered matrix F.

5. Compute the significance of each entry Fij in F by comparison with the sample

f~Fs;ij; s ¼ 1; 2; . . . ; Sg, i.e. set

~J ij ¼
1

S
jfs : ~Fs;ij � Fijgj:

The matrix ~J is a Monte-Carlo estimate of the joint probability matrix underH00. Its entries ~J ij
are statistically significant if ~J ij > a2. In summary, if a repeated SSE was present in the data, the

surrogate destroys the corresponding DS in I and thereby leads to higher (more significant) val-

ues in ~J than if there was no such arrangement in the first place, as e.g. for non-SSE synchrony.
Fig 12 shows the performance on models 0 to 9 using this Monte-Carlo estimate (and thus

working underH00). The FP rate is comparable to that obtained using the analytical approach
under H0. Importantly, this holds also for models 6 − 8 where correlations are present,
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demonstrating that the correlations embedded in the data do not bias the analytical estimates.
The Monte Carlo approach shows also decreased TP rate, especially for the cases where firing
rates are non stationary (models 1, 4 and 9, TP rate<0.6). The reason is that time bin shuffling
effectively destroys the rate profiles and thus ignores rate changes when building the null distri-
bution. Nevertheless, scenarios may be thought of where correlations need to be taken into
account by means of the Monte-Carlo approach illustrated above.

Time-varying firing rates. We further investigate how time-varying firing rates affect the
performance of the method. Model 1 contains independent Poisson spike trains, as in model 0,
with the difference that the firing rate profiles exhibit a coherent rate jump from 10 Hz to 60
Hz at time t1 = 600 ms and back to 10 Hz at time t2 = 700 ms (see Figs 7A and 8). Similarly,
models 4 and 9 combine this rate non-stationarity with Gamma-distributed ISIs (Fig 7C) and
with cross-neuron rate heterogeneity (Fig 7B), respectively. In all cases the FP rate increases
beyond 14.0 (filled circles in Fig 11). The problem resides in the inability to estimate the
instantly varying firing rates by means of a fixed-width kernel convolution, which smooths the
rate jump over a larger window. Indeed, when using the true rate profiles to compute the statis-
tics, the FP rate drops back to values lower than 2.0 for models 1 and 9, and as low as 5.7 for
model 4 which features highly regular ISIs (empty circles).

Fig 12. Performance of the Monte-Carlo approach. Top panel: Average number of FPs (vertical axis)
found over 100 simulations of each model from 0 to 9 (horizontal axis) using the Monte-Carlo estimate ~J of
the joint probability matrix underH00.Middle panel: Average number of TPs found for each model from 0 to 9
after injecting two repetitions of an SSE (equivalent to one DS in the intersection matrix) with 7 events and 5
neurons/event.Bottom panel: Average number of FPs for the same data as in the middle panel.

doi:10.1371/journal.pcbi.1004939.g012
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In realistic scenarios of analysis of experimental data firing rate profiles are not known.
However multiple trials, i.e. repetitions of the same stimulus or behavioral condition related to
a given trigger event, are often available that make the estimation of the firing rate possible and
more reliable. Common tools for firing rate estimation across trials are the peri-stimulus trial
histogram (PSTH, [15]) or trial-averaged kernel estimates. We use model 4, which represents a
worst case scenario (sudden co-modulation of rates, non-Poisson spiking), to investigate
whether cross-trial estimation of the firing rates is accurate enough for our needs since it com-
prises a worst case scenario (coherent rate jump, non-Poisson). To this end we estimate the fir-
ing rate profile of each neuron by simulating its activity R times (“trials”), R = 1,2,. . .,10 and
computing its time-resolved average rate over these trials using three different estimation tech-
niques (for details, see “Rate estimation methods”): PSTH with a bin width of 5, 10 or 20 ms,
kernel convolution [16] with fixed kernel width (200 ms) and kernel convolution with an opti-
mized kernel width [18]. Fig 13 illustrates the resulting performance for each method as a func-
tion of the number R of trials considered for the estimation. The PSTH (gray bars) performs
well for a properly predetermined bin width (here the best being 10 ms, resulting in a TP rate
>0.9 and an FP rate<0.2 when 3 or more trials are available). The same problem affects kernel
convolution with a fixed kernel width, which is here chosen too large, resulting in large num-
bers of FPs. Instead, the optimized-width kernel convolution solves the problem by determin-
ing the optimal kernel width in a statistical sense, and yields here a TP rate>0.9 and an FP rate
<0.2 as soon as 3 or more trials are considered. Thus, this proves to be a suitable method for
the rate estimation for experimental data, which are typically characterized by strong and fast
rate changes, provided that multiple trials are available.

Number of neurons and size of the DS. We finally investigate how the power of the
method is affected by a reduced number of neurons involved in SSE activity in the total data set.
To this end, we repeatedly simulate background activity as in model 0 varying the total number

Fig 13. Rate profiles estimated via 3 different methods computed over an increasing number of trials. Average number
of TPs (top) and FPs (bottom) resulting from different firing rate estimation methods, as a function of the number of trials used
to estimate the firing rates of individual neurons (horizontal axis). The data are defined by model 4 and enriched with two
repetitions of an SSE with lSSE = 7 links and ξSSE = 5 neurons/link.Gray bars: PSTH (dark: 20 ms bin width, medium-dark: 10
ms, light: 5 ms). Blue bars: kernel convolution with fixed kernel width (200 ms). Red bars: optimized-bandwidth kernel
convolution.

doi:10.1371/journal.pcbi.1004939.g013
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N of neurons from 50 to 500, and add two occurrences of an SSE varying the number lSSE of
links (from 3 to 7) and the number ξSSE of synchronous spikes per link (from 2 to 5). For each
value of N, lSSE and ξSSE we generate the data 100 times and analyze each of them with ASSET
employing the parameters reported in Table 2. Note that the kernel length employed (lK = 5) is
suboptimal for values of lSSE higher than 3, as in those cases the kernel centered at the ends of
the DS does not cover the full DS and a longer kernel would yield higher performance.

The results are shown in Fig 14. The TP rate (column A) increases for a larger size ξSSE of
the synchronous events and a smaller total number N of spike trains, as a larger fraction of the
total neurons are involved in the SSE. However, the TP rate does not increase substantially
with the number lSSE of synchronous events composing the embedded SSE, because the kernel
has fixed length and does not cover the additional events, thus resulting in stationary joint sig-
nificance values Jij of the second statistical test. For low lSSE, low ξSSE or large N the TP rate
drops considerably to values lower than 0.5. This is partly due to our strict definition of a TP,
which does not include found SSEs containing less than 50% of the synchronous events com-
posing the embedded SSE (true positive events). Fig 14, column B, shows the average fraction
of true positive events composing each found SSE. The FP rate (column C) is close to 0 (and
always lower than 0.1; note the different scale of the color map) for all investigated values of
lSSE, ξ and N. Importantly, it does not increase with N, which is a relevant feature of the method
for applications to large-scale data. For lSSE = 7 and ξSSE � 3 we observe occasionally jumps in
the FP rate. Almost all of these FPs consist of SSEs which partially overlap with the embedded
one, but not enough to be classified as TPs. As a comparison, Fig 14, column D, shows the rate
of FP SSEs that are completely disjoint from the true one. This rate is indeed close to 0 for all
parameter choices, showing that the increased FP rates shown in column C result from par-
tially true discoveries.

We then investigate the special case of SSEs composed of 1 spike per group only (ξSSE = 1),
to test if our method is able to detect spatio-temporal patterns involving no spike synchroniza-
tion. We inject as before two repetitions of a spatio-temporal pattern, now composed of lSSE =
7 spikes with a time delay of 5 ms, into independent data (model 0, composed of N = 10 neu-
rons). Because the previous analysis indicates low performance already for ξSSE = 2 for the
parameters employed so far, we increase the kernel length to lK = 7.

As shown in Fig 15, the tail probability of individual entries in the intersection matrix corre-
sponding to the real DS and the joint tail probability of their d = 5 largest neighbors are both
too large (weakly significant) to yield sufficient test power. A larger number of repetitions of
the spatio-temporal pattern may increase the statistical significance to acceptable levels, as
commented in “Discussion”. Thus, we conclude that ASSET is not suitable for the detection of
spatio-temporal patterns involving no spike synchrony.

Analysis of a synfire chain network simulation
Synfire chain data. Synthetic data from simulations of a balanced neuronal network with

embedded overlapping synfire chains (SFCs, [8]) were produced in [12]. The full network com-
prises 40,000 excitatory and 10,000 inhibitory neurons, with biologically realistic connectivity.
50 synfire chains are embedded, each obtained by selecting 2000 neurons of the network and
randomly organizing them in 20 successive groups of 100 neurons each. All neurons in one
group are connected to all neurons in the next group in a feed-forward fashion, resulting in
high synaptic convergence and divergence. Individual neurons participate in up to 3 SFCs,
which therefore overlap. The SFCs are stimulated by injection of a current pulse in the first link
of the chain, leading to synchronous spiking activity in the first group of the chain which prop-
agates downstream. The propagation delay between one group and the next is*2 ms. The
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Fig 14. Performance as a function of lSSE, ξSSE and N. (A) Average number of TP SSEs (over 100 model
simulations) found in data where an SSE with varying number of links (horizontal axis, from 3 to 7) and neurons per link
(vertical axis, from 2 to 5) is injected twice in the activity of N otherwise independent spike trains (model 0). N varies from
50 to 500 (top to bottom panels). For N = 100 the cross at position (lSSE = 7, ξSSE = 5) marks the parameters used in the
previous calibrations. (B) Average number of events of the embedded SSE contained in each found SSE (“true positive
events”). (C) Average number of FP SSEs (note the different scale of the color map). A FP can either be completely
disjoint from the true embedded SSE, or contain part (or all) of its member events (see definition above and Fig 10). (D)
Average number of found SSEs completely disjoint from the embedded one.

doi:10.1371/journal.pcbi.1004939.g014
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propagation is robust to the presence of noise and does not require all neurons in a link to be
active for propagation to the next link [10].

We consider the activity of 2000 neurons of the network, having identities 8001 to 10,000,
over a time segment of 300 ms. The considered neurons compose the entirety of one of the 50
SFCs. In particular, neurons 8001 to 8100 compose the first link, neurons 8101 to 8200 the sec-
ond link and so on until neurons 9901 to 10,000, which compose the last link of the chain. Fig
16 shows the activity of these neurons over a time stretch of 10 s (A) and of 300 ms (B,C). Pan-
els A and B are adapted from Figure 2 in [12]. As apparent from panel B, in the considered
time window the selected synfire chain is active three times. The first and last time the activity
runs through all the 20 links, the second time it propagates only until the 13-th link. Panel C
reproduces the same data as in panel B, but with a random shuffling of the neuron identities
along the vertical axis. Here, the SFC activity misleadingly appears as a co-modulation of firing
rates across neurons.

In addition, some of these neurons also belong to 3 successive groups of a second SFC. The
3 groups comprise 14, 12 and 14 neurons of the population analyzed, respectively. In the con-
sidered time period, this second SFC is active twice. Contrarily to the first SFC, the activity of
the second SFC does not become apparent in the raster plot of Fig 16B, because the sorting of
neuron identities along the vertical axis of the plot does not place neurons belonging to the
same group close-by. Neither does this activity reflect in the plot as population co-modulation,
because it involves a relatively small fraction (2%) of the population.

Analysis of synfire chain data. We analyze the stretch of data illustrated in Fig 16B with
ASSET to demonstrate that the method is able to discover repeated synfire chain activation.
The activation of each SFC generates an SSE, and each pair of SSEs corresponds to a DS in the
intersection matrix. Therefore, the triple activation of the first SFC generates 3 diagonal struc-
tures that the method should find in the cluster matrix: one (DS 1, composed of 20 links) is
given by the overlap of the two complete runs of the SFC (which involve 20 synchronous events

Fig 15. Scatter plot of the upper-tail probabilities of the two tests in the presence of a repeated spatio-
temporal pattern. The upper tail probability of the first test (vertical axis) over the upper-tail probability of the
second test (horizontal axis) for a reduced version of model 0. The model consists of parallel activity from
N = 10 independent Poisson spike trains, plus two repetitions of a temporal sequence of lSSE = 7 spikes from
7 different neurons (ξSSE = 1). The repeated spatio-temporal pattern generates a DS in the intersection matrix
composed of 7 entries SDS :¼ fðik ; jkÞ; k ¼ 1; 2; . . . ; 7g, and corresponding values Pik, jk and Jik, jk in the
probability and joint probability matrices, respectively. The data are generated 100 times. For each data set
and corresponding DS in the intersection matrix, the figure shows a point (maxk(1 − Jik, jk), maxk(1 − Pik, jk)),
corresponding to the least significant entries in the matrices J and P among those composing the DS. The
figure shows the cloud of the 100 such points, one per simulation.

doi:10.1371/journal.pcbi.1004939.g015
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each), and the other two (DSs 2 and 3) are composed of 13 links each, resulting from the com-
parison of each complete activation with the one stopping at the 13-th group. The double
activation of the second SFC, composed of 3 successive synchronous events each, should analo-
gously yield 1 significant DS (DS 4) of length 3. Indeed, the method finds all of these DS, as
shown in Fig 16H. The raster plot in Fig 16D shows the SSEs generated by the activation of the
two SFCs (black and red dots, respectively; spikes not belonging to the SSEs not shown), which
ASSET reconstructs in their entirety.

Table 3, first row, reports for each DS the true number of composing entries and the true
distance (in number of bins) between the first and the last event for the first SSE occurrence
(dx) and for the second SSE occurrence (dy). The second row shows the corresponding values

Fig 16. Synfire chain network data and analysis results. (A-D) Activity of 2000 neurons (numbered 8001 to 10,000) forming
the entirety of an active SFC in a balanced random network [12] composed of 20 groups. Neurons 8001 − 8100 form the first
group of the chain, neurons 8101 − 8200 the second group and so on. A subset of the neurons also participate in 3 successive
groups of a second SFC in the network. (A) Activity over a time window of 10 s (replicated from [12], Fig 2A). (B) Enlargement of
(A) showing 300 ms of data (replicated from [12], Fig 2B). The SFC under consideration is activated three times in this time
interval. (C) Same as in panel (A), but with random sorting of the neuron IDs on the vertical axis. (D) SSE activity detected by
ASSET. In the time interval considered, the two SFCs are stimulated three times (black dots) and two times (red dots),
respectively. (E-H) Probability matrix P, joint probability matrix J, masked matrixM and cluster matrixC. Numbers 1 to 3 and 4 in
the cluster matrix mark the significant DSs found by ASSET and associated to the activations of the first and second SFCs,
respectively.

doi:10.1371/journal.pcbi.1004939.g016

Table 3. Diagonal structures of active synfire chains. The top row shows in bold the true number of repeating synchronous events forming the four pairs
of repeating SSEs present in the data. The second row shows the number of entries composing each of the four associated DSs as found by the analysis,
and in brackets the distance (in number of bins) between the first and the last event of the first SSE occurrence (dx) and the second SSE occurrence (dy).
The other rows in the table show the median value of the entries in the intersection matrix (second row), in the probability matrix (third row) and in the joint
probability matrix (fourth row) corresponding to each DS.

DS 1 DS 2 DS 3 DS 4

true nr. entries (dx/dy) 20 13 13 3

nr. entries (dx/dy) 23 (14/15) 13 (9/9) 18 (10/10) 3 (2/2)

median i-mat value 93 88 53 14

median p-mat value < 10−22 < 10−22 < 10−22 * 6.6 � 10−8
median j-mat value < 10−22 < 10−22 < 10−22 * 3.9 � 10−14

doi:10.1371/journal.pcbi.1004939.t003
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found by the analysis. Due to a larger bin width (3 ms) than the inter-link propagation delay
(*2 ms), the found SSEs are shorter than the number of links in the chain: some successive
events fall in the same time bin and are therefore merged into a single event. Nevertheless the
composing spikes are correctly retrieved, as well as the associated units. Rows 3 to 5 in the table
show the median values of matrix entries corresponding to the DS in the intersection matrix,
the probability matrix and the joint probability matrix, respectively. As a comparison, the
median values of the full matrices were 0, 1 and 1 respectively, indicating the high statistical
significance of the entries forming the found DSs compared to the other entries in the matrices.
Note that the kernel length employed (length lK = 5) is shorter than the number of entries
composing the DSs associated to the first SFC (�9). Nevertheless, these DSs are successfully
retrieved.

These results taken together demonstrate the ability of the method to retrieve repeated SSE
activity, here generated by repeatedly active SFCs, in massively (2000) parallel spike trains. The
method yields high significance values even when employing sub-optimal parameters, such as
a larger bin size than the inter-link transmission delay orsignificantly smaller kernel length
than the DS length.

Computational performance
The computational cost of the algorithm is almost entirely determined by the time required to
evaluate the joint probabilities defined in Eq 6. The expression involves a nested sum of several
terms. The number of terms grows with the number n of matrix entries covered by the kernel
(determined by the kernel length lK and the kernel width wK) and with the number d of largest
neighbors among which the joint significance is computed. These are free parameters of the
analysis, whereas features of the data, such as the number of neurons or their firing rates, do
not influence this step of the computation. As an estimate, for the values we employed in the
manuscript (lK = 5, wK = 5, d = 5) the evaluation of a single entry took about 10 ms on a single
core of a dual AMD 12-core Opteron 6174 machine with 64GB RAM using the Python code
provided with this manuscript. Thus, the evaluation of a full matrix J of 200 × 200 entries took
on average less than 7 minutes. However, the fact that single entries are evaluated indepen-
dently may be easily exploited by parallelizing the analysis on multi-core machines or com-
puter clusters, where each worker process is assigned to perform the computation for a subset
of the matrix entries (see [37]).

Discussion
Temporal sequences of synchronous spike events (SSEs) have been postulated as a working
mechanism of activity propagation in the cortex [38–40]. The present manuscript introduces a
novel statistical method for the detection of SSEs in massively parallel spike train data, named
ASSET (Analysis of Synchronous Spike EvenTs). The method is inspired by a visual technique
first proposed in [12], which represents the repeated occurrence of an SSE as a sequence of
large entries along the diagonals of an intersection matrix (diagonal structure, or DS) that indi-
cates for any two time bins the number of neurons firing in both bins. ASSET automatizes the
detection process of the original visual technique, assesses the statistical significance of SSEs by
exploiting the multiple evidence of its events to derive their joint significance, and determines
the structure and neuronal composition of the identified SSEs. In evaluating the null distribu-
tion, the method accounts for the temporal profiles of the firing rates of the observed neurons.
As such, it detects SSEs which cannot be explained on the basis of rate coding mechanisms,
and thus arise from spike correlations on a shorter temporal scale. Rate correlation is under-
stood as a conceptually different mechanism of information processing than spike synchrony
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(as for SSEs), because it corresponds to stochastic (probability<1) rather than reliable (proba-
bility 1) neuron activation [29, 41–43].

We assessed the performance of ASSET in terms of false positive (FP) DSs found in various
types of stochastic models which mimicked typical features of neuronal spike trains, such as var-
iable firing rates in time or across neurons, different inter-spike interval distributions, and corre-
lation structures differing from SSEs. We then additionally injected repeated SSE activity in the
data to assess the power of the method in terms of true positive (TP) detections. The analysis
performs two statistical tests on each pair of time bins, which amounts to tens of thousands of
tests for a stochastic simulation of 1 s binned at 5 ms. In addition, entries passing the two tests
have to lie close to each other in the matrix in order to be clustered into a common DS. To avoid
FPs, the statistical threshold needs to be set to low values (here, 10−5). This is possible without
incurring into large levels of FNs because the joint tail probabilities associated to the second test
are very low (typically<10−5, and as low as 10−12) for the entries corresponding to the embed-
ded SSEs. Indeed, the method shows high performance, i.e. FP and FN rates both close to 0. We
did not need to further correct the statistical thresholds by the amount of tests performed (e.g.
by Bonferroni or FDR correction), because already the set of combined requirements that need
to be fulfilled to identify a DS (success of the two tests for matrix entries, and proximity of these
entries in order to be clustered into a DS) makes the analysis very conservative.

The underlying null hypothesis assumes independent Poisson spike trains, which enables
an analytical formulation of the test statistics. The method proves to be robust to deviations
from Poissonianity, such as a higher regularity of the inter-spike intervals, which may be
observed in experimental data [22, 44]. It is also selectively sensitive to SSEs, but not to other
models of spike correlation, such as synchronous events not organized in a temporal sequence.
Nevertheless, anticipating scenarios where strong correlations not forming an SSE might
indeed bias the statistics, we proposed a Monte-Carlo approach to account for these correla-
tions. To this end, we constructed the null hypothesis by estimating the probability to find a
certain degree of pattern overlap from the repeated generation of surrogate intersection matri-
ces. In our test data the Monte-Carlo approach yielded results comparable to the analytical
approach, yet at a considerably higher computational cost.

Furthermore, the method was able to distinguish SSEs from repeated precise temporal
sequences of sharp, local rate transients from one group of neurons to another (rate propaga-
tion). Rate peaks increased the probability of the involved neurons to spike, which remained
nevertheless a stochastic event, in contrast to SSE activity. Propagation of rate transients thus
generated spike patterns that were different in composition (due to the stochastic activation of
neurons) and less precisely timed than SSEs, but more closely resembled the latter as the rate
modulation became higher and faster. It is likely that, for extremely high firing rates and very
short rate jumps, ASSET would not distinguish the two models. The distinction between rate
correlation and synchrony correlation (see e.g. [29]) has been formally questioned in [30].
Users of ASSET may want to identify waves of co-modulating rates like those defined in our
model 6 as SSEs, rather than rejecting them. This is possible by decreasing the statistical thresh-
olds α1 and α2 to less strict values than those used in this manuscript.

ASSET critically relies on the estimation of the firing rate profile of each neuron to compute
the expected overlap of neuron IDs in the intersection matrix and thus to estimate the signifi-
cance of the observed overlap. Estimating firing rate profiles on the basis of single trial spike
data typically requires some kind of sliding window approach, such as convolution of each
spike with a temporal kernel [16]. Temporal averaging smears out peaks of the underlying orig-
inal firing rate that occur on a shorter time scale than the window width, and creates artificial
peaks if the window width is excessively short. Single-trial rate estimates obtained by kernel
convolution in the presence of time-stationary firing rates yielded high performance of ASSET,
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but led to impaired performance when the rates were non-stationary in time on a fast time
scale, in particular if the rate excursion was coherent across neurons. The reason is that
smoothing by convolution underestimates positive rate peaks and thus the expected overlap,
yielding FPs. Estimating the firing rates on the basis of trial averages solved the problem. We
here tested three such approaches, namely the peri-stimulus time histogram (PSTH, [15]), a
trial-averaged kernel convolution with fixed kernel width [16] and a trial-averaged kernel con-
volution with an optimized kernel width [18]. Already a small number of trials reduced the FP
rate considerably for all three methods, although best performance was achieved for the opti-
mized-width kernel convolution. Importantly, cross-trial rate estimation works under the
assumption of identical rate profiles across trials. Deviations from this assumption lead to a
wrong estimation of the rate in single trials, that is required to calculate the probability matrix,
and thereby enhances the FPs. This bias is amplified if neurons exhibit cross-trial variability in
a coherent manner [19]. Latency variability is a special instance of cross-trial non-stationarity
which causes a mis-estimation around the rate onset. In some cases the onset variability of
rates can be corrected for by choosing a more proper alignment of trials, e.g. to the stimulus or
behavioral event related to the rate change [45]. If this is not possible, we suggest to generate
the probability matrix P on the basis of surrogate spike data, e.g. by spike train shifting or spike
dithering [20]. The details of such an approach, however, still need to be explored.

We further investigated how the performance of ASSET relates to various other parameters
of the SSEs, such as the number of its sequential synchronous events composing the SSE, the
number of neurons in each synchronous event, and the total number of observed neurons.
SSEs were statistically more significant and therefore easier to detect when they involved a
larger fraction of the total neurons. However, they could be retrieved even when employing
sub-optimal parameters such as a kernel length smaller than the length of the DS, given that
the SSE involved enough neurons. In contrast, the method did not detect spatio-temporal pat-
terns, i.e. a special case of SSE where each event is composed by a single spike only. Spatio-tem-
poral patterns in a more general sense (with different time intervals between spikes) were
suggested as signatures of synfire chain activity in data of low numbers of simultaneously
recorded neurons [40, 46, 47].

A less constrained model of cortical processing (synfire braid) was proposed in [48], which
incorporates synchronous input to individual neurons as in the synfire chain model, however
transferred by connections of different temporal delays compensated by differences in their
activation times. This model was further analyzed in [11] and termed polychronization. Since
spike synchrony occurs with a temporal lag in this framework, one expects that, although
ASSET is not designed to capture this type of coordinated spiking activity, it may still detect
signatures of such activity by choosing a correspondingly larger bin width. We aim to explore
such a scenario and other applications of ASSET to data from different types of network simu-
lations that exhibit correlations on a fine temporal scale to study the potential of our method in
identifying features of the underlying network model.

Importantly, increasing the number of neurons to be analyzed does not increase the compu-
tational cost of the method. Indeed, in order to evaluate significance values, the method relies
on expressions involving a mere sum of the firing rates of individual neurons, which are virtu-
ally instantaneous to evaluate. Rapid advances in electrophysiology will soon enable the simul-
taneous recording of thousands of neurons [49]. These data promise to expose concerted
mechanisms of neuronal coding that remained invisible so far. Our method is designed to keep
up with these advances, and to be applicable to the next generation of large-scale recordings of
spike data.

If an SSE occurs more than two times, it generates multiple DSs in the intersection matrix,
each corresponding to one pair of occurrences. In [32] it was suggested to compute the overlap
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between triplets (or n-tuples) of bins rather than pairs, and generate a corresponding n-dimen-
sional intersection matrix to visualize DSs in three (or n) dimensions. It is possible to extend
this approach to ASSET and to exploit this higher-order evidence to increase the power of the
method. This extension will be considered in future work.

Finally, we demonstrated the efficacy of ASSET on data of large-scale simulations of a bal-
anced random network with embedded synfire chains, which were previously generated and
analyzed in [12] with the original visual method. ASSET fully reconstructed the synfire chains
active in the considered time period and did not return additional FPs. Differently from the
original technique in [12], SSEs were here determined on the basis of their statistical signifi-
cance and the results were obtained by an automated analysis workflow.

When analyzing real data, some parameters of the analysis such as the statistical thresholds
α1 and α2 should be chosen optimally to minimize the risk of FPs, while at the same time not
being excessively strict and thus missing true SSEs. Optimal values for the statistical thresholds
can be inferred from independent surrogates of the original data, which can be created by one
of several approaches, such as spike train shifting or spike dithering [50]. Such surrogate data
contain slightly displaced spikes as compared to the original data, such that correlations in the
original data (and in particular SSEs) are intentionally destroyed while other features of the
data (e.g. firing rates or inter-spike interval regularities) are preserved. These uncorrelated data
can be used to determine the expected value of entries in the probability and joint probability
matrices under independence, and therefore to determine lower bounds for the thresholds α1
and α2 which ensure avoidance of FPs. Taking the least conservative of such values (the lower
bounds) also minimizes the risk for FNs. Suitable values for other analysis parameters can be
determined analogously. As illustrated in “Methods”, some of these parameters are tightly asso-
ciated to putative features of the searched SSEs (for instance, the kernel length and kernel
width to the temporal span and the wiggliness of the SSE, respectively), and may therefore be
tuned in order to optimize the detection of SSE swith specific characteristics.

Taken together, these results demonstrate that ASSET is a reliable and effective tool to
detect and identify repeated sequences of synchronous spiking activity in massively parallel
spike train data. Whether synchrony propagation constitutes a mechanism of information pro-
cessing in the neuronal circuitry still remains an open question, that belongs to the more gen-
eral debate about the role of fine temporal coding versus rate coding. Convincing theoretical
arguments as well as experimental evidence have been provided for both processing mecha-
nisms (see e.g. [2, 6, 51] vs [26, 52, 53]). However, observing fine-scale temporal correlations
requires the simultaneous observation and analysis of sufficiently large portions of the involved
neuronal circuitry: the severe subsampling of such circuitry so far characterizing most available
data prevents this analysis. Next-generation recording technology promises to expose this con-
certed activity, whose analysis may finally resolve the long-standing question about the role of
millisecond-precise spike correlations in cognitive processing. Our work gives a contribution
in this direction by providing, to the best of our knowledge, the first tool for a statistical analy-
sis of synchrony propagation applicable to data of hundreds or thousands of simultaneously
recorded neurons. The ASSET analysis method is available as part of the Electrophysiology
Analysis Toolkit (Elephant; http://neuralensemble.org/elephant/). In future work we plan to
employ the method to investigate the presence of SSE activity in electrophysiological record-
ings from awake animals and study SSE occurrence in relation to behavior.
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