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Aging induces a series of immune related changes, which is called

immunosenescence, playing important roles in many age-related diseases,

especially neurodegenerative diseases, tumors, cardiovascular diseases,

autoimmune diseases and coronavirus disease 2019(COVID-19). However,

the mechanism of immunosenescence, the association with aging and

successful aging, and the effects on diseases are not revealed obviously. In

order to provide theoretical basis for preventing or controlling diseases

effectively and achieve successful aging, we conducted the review and found

that changes of aging-related phenotypes, deterioration of immune organ

function and alterations of immune cell subsets participated in the process of

immunosenescence, which had great effects on the occurrence and

development of age-related diseases.
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1 Introduction

Aging, as a universal biological phenomenon, is an inevitable trend during lifespan

and shows close effect on the immune system. The immune system is one of the most

ubiquitous systems of the organism which can protect the human body from internal or

external pathogens and interacts with neural, circulatory and other systems (1–3). Aging

induces declining functions of the immune system, a process called immunosenescence,

affecting the composition, quantity and function of immune organs, immune cells and

cytokines (4). As a result of immunosenescence, the incidence of many age-related

diseases is increased, including neurodegenerative diseases, cancers, cardiovascular

diseases, autoimmune diseases and the COVID-19, ultimately resulting in organ

failure and death (5–7). For a long time, immunosenescence has been considered

harmful. However, later scientists revised the negative meaning because derogatory

descriptions did not seize its essence. Immunosenescence is a multifactorial and dynamic

complex phenomenon, which is shown as a lengthy adjusting and remodeled process
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existing in immune system during lifespan (8, 9). This review

will compile the most recent researches of immunosenescence,

including its relation with aging and its role in age-related

diseases, thereby, providing scientists with theoretical

rationales for intervention targets to aging.
2 The role of aging-related
phenotypes in immunosenescence

The molecular and cellular mechanisms of immunosenescence

are mostly unclear. Many aging related phenotypes contribute to or

are attributed to immunosenescence, including senescence-

associated secretory phenotype (SASP), chronic inflammation,

shortened telomere and decreased telomerase activity, and

metabolic alternations, which are risk factors of age-related

diseases (Figure 1).
2.1 SASP and immunosenescence

SASP is a pro-inflammatory phenotype including

inflammatory factors, chemokines (CXCL, CCL), growth factors

and extracellular matrix proteases, and accumulates persistently

with the increase of senescent cells in various organs (10, 11). SASP

is a universal characteristic of cell senescence. It spreads senescence

in autocrine or paracrine manner and activates signal pathways

(such as NF-kB, mTOR or p38MAPK) to affect cell

microenvironment (11, 12). SASP induces inflammation, recruits
Frontiers in Immunology 02
immune cells and affects adjacent and distant cells or tissues (13).

Actually, SASP has a close relationship with the immune system, for

example, macrophage chemokines (MCP-1) are the main

components of SASP (14). Certain SASP components are

recognized by receptors on natural killer (NK) cells, T cells and

monocytes/macrophages, and then affect other immune cells, which

further release more proinflammatory cytokines and aggravate age-

related pathology (13). SASP is a double-edged sword and different

components induce different biological activities. It is beneficial that

temporary secretion of SASP may be a danger warning to nearby

cells and promote immune clearance of impaired cells (11). For

example, SASP may attract innate and adaptive immune cells near

tumor cells and precancerous lesions to resist cancer invasion (15).

However, persistent secretion of SASP may cause chronic systemic

inflammation and tissue damage and inhibit immune cell function

in the elderly (11, 16). For instance, the SASP produced by

precancerous hepatocytes may attract immature myeloid cells to

inhibit NK cells and promote hepatocellular carcinoma progression,

which seems to contradict the previous research (17). Why the

SASP exhibits multiple and sometimes opposite effects, which

remains to be explained.
2.2 Inflammation and
immunosenescence

During aging, a state of chronic, low-grade, sterile

inflammation has been known as inflammaging, which is

essential to the aging process (18, 19). Many components
FIGURE 1

Immunosenescence and age-related diseases. Many factors lead to immunosenescence, including the accumulation of SASP, chronic inflammation,
changes of gut microbiota, shortened telomere and declined autophagic activity. The process of immunosenescence causes a series of changes in
immune cell subsets (especially T cells, B cells, NK cells, DCs, neutrophils and macrophages), thus leading to the occurrence of various age-related
diseases, such as neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and the COVID-19.
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(nucleic acids, mitochondrial DNA, cardiolipin, mitochondria and

heat shock proteins) from cell death or damage increase with age,

which may be recognized by innate immune receptors like toll-like

receptors (TLRs), NOD-Like Receptors (NLR) and cGMP-AMP

synthase (cGAS) and produce pro-inflammatory cytokines (20).

SASP secreted from senescent adaptive immune cells, including T/

B cells, may contribute to inflammation (21). Moreover, changes in

the gut microbiota of the elderly may activate macrophages to a

pro-inflammatory state and induce multiple inflammatory

pathways, which is an important source of inflammation (22,

23). Macrophages initiate the inflammatory response and activate

other immune cells by secreting inflammatory factors such as

tumor necrosis factor (TNF)-a and interferon (IFN)-g (7).
There is an imbalance between inflammatory and immune

reactions in the process of aging, which reduces the efficiency of

immune responses and creates an immunosuppressive

microenvironment (24). Inflammatory mediators promote

myelopoiesis and increase the immunosuppressive cells

compensably, especially regulatory T (Treg) cells and M2

macrophages that secrete immunosuppressive factors, such as

transforming growth factor-b (TGF-b), ROS and interleukin-10

(IL-10). IL-10 further support the proliferation and activation of

Treg cells andM2macrophages (25, 26). Interestingly, these factors

also inhibit some immune cells and promote their

immunosenescence, for example, TGF-b can inhibit the

differentiation of helper T(Th) cells, reduce the cytotoxicity of

CD8 T cells and NK cells and weaken the immune response of B

cells (27). Once the balance is broken, a persistent increase of

inflammatory response influences the activation of T/B

lymphocytes, which is called immune paralysis and considered

as one of the clinical features of immunosenescence (28). High

levels of proinflammatory cytokines such as TNF-a damage

human B cells and reduce the production of protective

antibodies significantly (29, 30). Other cells such as macrophages

and NK cells develop immune paralysis after long-term

inflammation (31). Remarkably, inflammation is closely related

to immunosenescence, but the debate continues about whether

inflammation is a cause or result of immunosenescence.
2.3 Telomere and immunosenescence

The telomere biology system containing telomeres (DNA–

protein complexes at the ends of chromosomes) and telomerases

(reverse transcriptases that add DNA repeats to the ends of

telomeres), is essential to maintaining the integrity of the genes

and cells (32). In the immune system, the average telomere length

and telomerase activity in lymphocytes decline with age (33, 34).

The progressive telomere attrition from naive to effector memory

cells shortens the telomere length, which may be resulted from

mitochondrial stress. Moreover, shortened telomere could lead to

DNA damage and cell cycle arrest, ultimately resulting in

damaged cell function and inefficient pathogen clearance (35, 36).
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Telomerase plays a vital role in immune activation,

differentiation and immunosenescence through acting on key

immunomodulatory factors such as NF-kB and b-catenin (37).

The downregulation of telomerase activity is detrimental to the

immune response and activates aging cells in the cloning process

(37). The decrease of telomerase activity is usually accompanied

by the increased intracellular ROS and the reduced CD28

expression. Senescent CD28-T cells with the shortest telomere

length and the lowest telomerase activity produce decreased

antiviral cytokines and increased pro-inflammatory cytokines

(38, 39). CD28 costimulatory signal is necessary for upregulation

of telomerase activity. A study measuring telomerase activity of

T cells suggests that only telomerase activity of CD28+T cells is

increased significantly under immune stimulation (40).
2.4 Metabolism and immunosenescence

It is clear that immune function is highly dependent on

nutritional metabolism. The interaction between immune and

metabolic process is termed as immunometabolism (41). The

metabolic disorders of main nutrients (such as glucose, lipids and

amino acids) in immune cells during aging lead to the

dysregulation of nicotinamide adenine dinucleotide (NAD+)

metabolism, activating inflammatory pathways and accelerating

immunosenescence (42). With the increase of age, the level of

glycolytic metabolism decreases and mitochondria energy

metabolism is abnormal, which impairs T and B cell activation

(43, 44). The NAD+ is a coenzyme which catalyzes cellular

metabolic functions and converts to NADH. NAD+ decreases

with age, which is resulted from reduced NAD+ biosynthesis,

caused by chronic inflammation with increased oxidative stress

and inflammatory cytokines, and increased NAD+ consumption,

caused by DNA damage (45, 46). The reduction of NAD+

metabolism activates NLRP3 inflammatory bodies during age,

which may be the key to inflammatory diseases (47). Proteostasis,

an importance process to maintain protein structure and function,

is compromised with age (48). Proteins are composed of a variety

of amino acids that have a great impact on immune response,

especially T cells (49). During aging, multiple proteins cannot be

degraded and accumulate in tissues, contributing to the

occurrence of age-related pathologies (50).
3 The contribution of immune
organs on immunosenescence

3.1 Bone marrow involution with aging

Bone marrow contains haematopoietic stem cells (HSCs)

and non-HSCs. HSCs are multifunctional immature cell

populations that possess self-renewing capacity and give rise to
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all blood cells of immune system (51, 52). HSCs are decreased

with aging and the senescent HSCs acquire increased DNA

damage, dysfunctional function and myeloid bias, affecting the

generation of naive T cells severely (53, 54).

HSCs show a more shift toward myeloid biased HSCs with

age. The lymphoid-biased HSCs loss and the ability of common

lymphoid progenitors (CLPs) to differentiate into the progenitor

B cells is compromised so that the progenitor B cells decrease,

which may be caused by changes in the different microRNAs

(such as miR-29a, miR125b, and miR-150) and transcription

factors (55–58). Other studies have shown that lymphoid-biased

HSCs could be inhibited by TGF-b (59). Besides, the capacity of

bone marrow stromal cells to release IL-7 (an important

cytokine for survival and proliferation of B-lineage precursors)

declines gradually, which is another mechanism for the

development of progenitor B cells (60). However, senescence

has no apparent effect on pro-B, pre-B and immature B

cells (61).

Although age usually leads to decreased bone marrow cell

density, the numbers of bone marrow resident NK cells (62)

and macrophages (63) tend to increase in the elderly. NK cells

are derived from bone marrow, which are characterized by

high expression of specific markers CD16, CD56 or CD57. The

HSCs are more likely to differentiate into NK cells, therefore,

the frequency and absolute value of NK cells increase in the

elderly (62). However, NK cells also display the loss of

telomeres and the decrease of telomerase activity with age,

which may lead to reduction of NK cell growth and

proliferation (64). The aged macrophages have decreased

ability to secrete inflammatory cytokines (63). Together, the

composition of bone marrow and the ability to differentiate

into functional immune cells are significantly impaired

with age.
3.2 Thymic involution with aging

The thymus is a central lymphoid organ and responsible to

produce naive T cells, playing an essential role in cellular and

humoral immunity. Resulting from the loss of trophic cytokines

such as IL-7 and decreased stem cell activity of medullary thymic

epithelial cells, which are the main thymic stromal cells producing

T cells, the thymus gradually degenerate that accompanies

senescence (65, 66). T cells undergo T cell receptor (TCR) genes

rearranging, positive and negative selection in the thymic cortex

and medulla and become single positive naive T cells (CD4 or

CD8) that are exported to the periphery (67–69). Thymic

involution reduces naive T cells and TCR repertoire (70–72).

CD8 T cells (especially cytotoxic CD8+ T cells) tend to loss much

more severe than CD4 T cells which could be maintained by

homeostasis and proliferation (73, 74). Thymic involution

interferes with the negative selection resulting in the release of

autoreactive T cells that become activated in the periphery and
Frontiers in Immunology 04
produce low-level proinflammatory cytokines (including TNF-a
and IL-6) which lead to chronic low-grade inflammation and self-

tissue damage (75). However, atrophic thymus balances the

defective negative selection by enhancing thymic Treg (tTreg)

cell production relatively in the elderly (76). The elderly suffer

from high risk of cytomegalovirus (CMV) infection, which can

accelerate immunosenescence by decreasing naive T cell diversity

and exaggerating the cytokine storms (77). Interestingly, it is

reported that well-preserved naive T cells can be found in

centenarians (8).
3.3 Impaired peripheral lymphoid organs
with aging

The peripheral lymphoid organs, predominantly referring to

spleen and lymph nodes, provide the settled site for immune

cells to be proliferation, maturation and differentiation, and

participant in immune response. The peripheral lymphoid

organs are also of vital importance in the interaction between

T cells, B cells and antigen presenting cells (APC) (69). The aged

spleen upregulates IL-6 expression, impairs the recruitment of T

cells and inhibits phagocytosis of macrophages in the marginal

zone (78–80). The key function of lymph nodes is to coordinate

immune response. The lymphocytes in lymph nodes change

significantly with age, including increased B cells and memory

CD4 T cells, decreased gd T cells, CD8 T cells, naive CD4 T cells,

IgM-expressing B cells and follicular dendritic cells (FDCs) (81,

82). The lymph nodes show signs of aging, including

permeability changes, senescent cell aggregation and

inflammation, which may be disadvantageous for immune cell

migration and recruitment (83), leading to decreased humoral

immunity (84) and increased susceptibility to infections in the

elderly (85).

Mucosa-associated lymphoid tissue (MALT) is also a part of

peripheral immune organs, which is located on the surface of

mucosal tissue and plays an important role in immune

protection. Naive T/B cells and DCs in intestinal lymphoid

tissue are reduced with age, which may explain the increased

gastrointestinal cancers in the elderly (86). Therefore, age-

related structural disorders of peripheral lymphoid organs and

the changes of immune cells seem to be the main reasons

for immunosenescence.
4 The alterations of immune cell
subsets related to
immunosenescence

Immunosenescence reflects the regulation of innate and

acquired immune system, in which cell subsets, surface

markers, quantity and function of immune cells, such as T
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cells, B cells, NK cells, DCs, neutrophils and macrophages,

undergo a series of changes (Figure 2).
4.1 Adaptive immune cells

4.1.1 T Cells
T cells, deriving from HSCs, mature in the thymus and

migrate to peripheral lymphoid organs to expand and

differentiate into memory and effector T cells under the
Frontiers in Immunology 05
antigenic stimulus, exerting a profound effect on immune

system functions (87). T cells have specificity in recognition of

foreign antigens and can be divided into several subsets including

Th cells, cytotoxic T(Tc) cells and Treg cells, according to their

different functions of immune response (88, 89). T cells undergo

senescence with the loss of costimulatory molecules CD27 and

CD28, the decreased growth factor IL-2 and the increased pro-

inflammatory cytokine production (90–92). Senescent T cells can

activate the inflammatory processes by contacting other immune

cells, secreting pro-inflammatory cytokines or acting directly on
FIGURE 2

Changes of various cell subsets, surface markers and functional markers during immunosenescence. The subsets, phenotypes and functions of
innate immune cells, such as NK cells, DCs, neutrophils and macrophages undergo significant changes with the increase of age in the elderly.
The same is true of adaptive immune cells such as T and B cells.
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the target tissues, eventually resulting in tissue damages and

participation in the pathogenesis of aging (93). The genes

related to leukocyte activation and immunity in aged memory T

cells increase, which reduces the ability to recognize new

pathogens and the response to vaccination, and increases risks

for infection in the elderly (94).

4.1.1.1 Helper T cells

Th cells, expressing the CD4 surface marker, coordinate the

activities of the immune system by secreting cytokines or

assisting other lymphocytes. Th cells are subdivided into Th1,

Th2, Th9, Th17, Th22 and follicular helper T cells (Tfh). In aged

humans, naive CD4 T cells tend to proliferate and differentiate

into effector memory Th9 cells that secrete increased cytokines

IL-9 due to the upregulation of the TGFbR3 receptor, leading to
higher PU.1, BATF and IRF4 expression (95). The single-cell

RNA sequencing uncovers that aging promotes T cells from

naive to effector subtypes, among which Th1 and Th17 cell

subsets are dominant. These subgroups are highly correlated

with IL-6, IL-27 and IFN, which promotes chronic inflammation

and declines immunity partly (96).

Tfh cells, presenting in lymphoid organs and peripheral

blood, provide help for B cells that activate, differentiate and

produce high-affinity antibodies by signals (such as ICOS, IL-

12 and CD40L) (97). Reduced ICOS expression with aging

could limit the number of Tfh cells (98). Increased pro-

inflammatory cytokines IL‐12 with aging contribute to the

formation of Tfh cells (99) and support differentiation of other

Th cells, such as Th1 and Th17 cells (100). CD40L, highly

expressed in Tfh cells, interacts with CD40 on B cells, which is

vital for B cell immune response (101). Tfh cells express

decreased CD40L in aged people, which reduces the

assistance to B cells and contributes to decreased antibody

titers after immunization (102).

4.1.1.2 Cytotoxic T cells

Tc cells (also known as killer T cells), expressing the CD8

surface marker, are crucial in immune defense against harmful

pathogens by secreting cytotoxic substances such as granzyme

and perforin (103). As people get older, Tc cell proliferation is

impaired along with the decreased naive cell marker (CD45RA

and CD27), the lymphocyte adhesion molecule SELL (CD62L)

and the lymphoid tissue homing chemokine receptor (CCR7),

while the expression of memory cell marker CD45RO and the

senescent marker CD57 increase (104). Cytotoxicity of Tc cells is

reduced with aging, which decreases the killing effect on virus

and increases disease risk in the elderly (61). Furthermore,

cellular senescence is usually considered as the main

mechanism of aging-related T-cell dysfunction (105). Tc cells

also show cellular senescence characteristics, such as high levels

of SA-bGal activity, p16INK4a, macroH2A and dysfunctional

telomeres (106). Interestingly, aging might endow Tc cells with
Frontiers in Immunology 06
apoptosis resistance, for example, the antiapoptotic genes such

as Serpina3g Id2 and S1pr5 are upregulated (94).

Some studies have confirmed a special kind of cells that

express CD8 molecules and acquire memory phenotypes in the

absence of antigen-specific immune responses, and are often

termed virtual memory CD8 T (TVM) cells (107–110). These

cells could patrol and monitor at the early stage, and disposal of

pathogens during the effect-period, so they have been a bridge

between innate and acquired immunity. TVM cells accumulate

with age by cytokine stimulation (such as IL-4 and IL-15) but

not by antigenic stimulation and exhibit characteristics

consistent with senescence (111).

4.1.1.3 Regulatory T cells

Treg cells, expressing inhibitory receptors such as

programmed death 1 (PD-1) and cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4), make much difference to

maintaining immune balance and limiting immunopathology

by negatively regulating immune responses and secreting

immunosuppressive cytokines TGF-b and IL-10 (112, 113).

Treg cells are separated into natural Treg cells (nTregs) and

induced Treg cells (iTregs or aTregs) (114). Despite thymic

involution, the number and proportion of Treg cells increase in

the elderly (115, 116), because Treg cells are derived from not

only the thymus but also the differentiation of peripheral CD4+T

cells and the proliferation of CD45RO+Treg cells (117), but their

clonal diversity is reduced (118). A few studies have shown that

Treg cell function decreases in the elderly, however, the overall

data suggest that Treg function remains the same or even

increases during aging, which is consistent with the fact that

older individuals are more susceptible to infection and

malignant tumors, while they are likely to develop

autoimmune diseases due to Treg cell dysfunction (119).

The enhanced Treg cell function is related to increased

expression level of forkhead box protein 3 (Foxp3) and

hypomethylation of Foxp3 that is a master regulator of Treg cell

function (120). Treg cells are more likely to be influenced by age-

dependent autophagy inhibition due to more dependence on

oxidative phosphorylation (121). Treg and Th17 cells are the key

regulators of immune homeostasis. In the process of aging, the

Th17/Treg imbalance that is driven driven by antigens or cytokines

may result in abnormal immune response and the occurrence of

various diseases (122, 123). The accumulation of CD8+Treg cells

that mainly come from CD8+CD28-T cells, contributes to immune

deficiency and declined adaptive responses with increasing age

(124). Although a great progress has been made in the role of

Treg cells related to immunosenescence, there are still many

problems remaining to be resolved.

4.1.2 B cells
B cells, a subset of adaptive immune cells, are crucially

important in both cellular immunity and humoral immunity
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through secretion of antibodies, presentation of antigens and

regulation of T cell functions (125). In addition to alterations in

HSCs, intermediate and mature stages of B cell development also

show a series of aging-associated changes. With increasing age,

the proportion of peripheral B cells decreases (126). However,

the number and frequency of pro-inflammatory B cells are

expanded, which is largely because of increased pro-

inflammatory signals CD40L, IFN-g and IL-21 (127). Older

adults display decreased repertoire diversity and increased

BCR clonality (128). Aging also downregulates the expression

of molecules with regard to immunoglobulin class-switch

recombination (CSR) and somatic hypermutation (SHM) and

reduces high-affinity antibody production (61). Neutralizing

antibody responses and secretion of switched IgG play an

important role during infection and vaccine efficacy. These

shifts might increase the risk of bacteria and viruses in the

elderly, such as the high hospitalization and mortality resulted

from COVID-19 (129).

It is reported that there is a novel B cell subset in human

peripheral blood that accumulates with age, which is called the

aging-associated B cells (ABCs) (130, 131). ABCs are generated

by Follicular (FO) B cells via interactions between MHC class II

and CD40/CD40L and distinguished from other B cells by their

markers such as CD11b, CD11c and T-bet and signal

transduction pathway such as TLR7 (132). ABCs displaying

significant SHM and secreting autoantibodies, are closely related

to autoimmune diseases (58, 131, 133). ABCs are reported to

increase in elderly humans, especially in senile women with

autoimmune diseases of lupus and rheumatoid arthritis (RA)

(130) (Figure 3).
4.2 Innate immune cells

4.2.1 NK cells
NK cells, as important components of human immunity, are

a population of large granular lymphocytes with cytotoxic and

immunomodulatory functions. Aging redistributes NK cells in

numbers, phenotypes and functions (134).

NK cells contain two subpopulations, CD56bright

immunoregulatory cells and CD56dim cytotoxic cells, which

are differentially influenced by aging (135). While CD56bright

cells are decreased in old individuals, CD56dim cells are

expanded, suggesting the increase of NK cells with age results

mainly from the expansion of CD56dim cells. Therefore, aging

induces NK cells from immature but robust cytokine producers

CD56bright NK cells to experienced and terminally differentiated

CD56dimCD57+NK cells (136, 137). CD56dimCD57+cells are

highly differentiated NK cell subpopulations, which have

higher cytotoxic capacity, lower cytokine responsiveness and

proliferation ability (138). During the aging process,

CD56dimNK cells continue to differentiate and the expression

of activated receptors natural-killer group 2 member D
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(NKG2D), immunoglobulin-like killer receptors (KIR), CD57

and CD16 increases, while the expression of activated receptors

NKG2C and inhibitory receptors NKG2A decreases (139).

Therefore, the cytotoxic function of NK cells is determined by

the balance of activatory and inhibitory membrane

receptor signals.

It has been shown that NK cell-activating cytokines (such as

IL-2, IFN-a and IFN-g) in old individuals are reduced, especially

aged 75 to 85. IL-2 is an intermediary between innate and

adaptive immunity and contributes to T cell and NK cell

proliferation. Decreased cytokines (especially IL-2) may

damage the immune response, leading to an increased

incidence of infections among the elderly (140, 141).

Moreover, aging may amplify sex difference in NK cells.

Immature CD56brightNK cells and mature CD56dimNK cells in

old women account for higher ratio. NK cells in female show

stronger cytotoxicity, IFN-a responses to NKp46 crosslinking

and MIP-1b production against external threats (142).

4.2.2 Other cells
DCs, as central orchestrators of the immune response, are a

bridge between innate and adaptive immunity. There is no

significant effect on DC numbers and phenotypes in old

humans, nevertheless, NK cells in skin and plasma cells (also

called langerhans cells) are found to decrease. Besides,

senescence could compromise the functions of DCs with

regard to antigen uptake, phagocytic activity, chemotaxis and

migration and cytokine secretion (143–145).

Neutrophils are a critical component of innate immunity

(146). In aged individuals, a low-grade inflammatory state could

lead to epigenetic changes in neutrophils which causes specific

abnormalities in metabolism and function, such as diminished

phagocytic ability (147), abnormal adhesion and chemotaxis

(148), increased apoptosis (149), reduced NETs release (150)

and TLR dysfunction (151).

Macrophages, as potent immunoregulatory innate immune

cells, have a crucial effect on immune defense and regulation of

inflammation (152). It has been highlighted that aging could

disrupt circadian gene regulation and function of macrophages

(153). Meanwhile, aging could be reversed by reprogramming

glucose metabolism of macrophages and re-establishing

youthful immune homeostasis (154).
5 The impact of immunosenescence
on age-related diseases

5.1 Immunosenescence and
neurodegenerative diseases

Alzheimer’s disease (AD), one of the most severe

neurodegenerative diseases in the elderly, is characterized by
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elevated amyloid-b (Ab) plaque deposition, neuroinflammation

and brain-resident immune cells (microglia) (155–157). Elevated

Ab deposition can be captured by local APCs in the brain, which

causes the activation and expansion of Ab-reactive T cells,

ultimately resulting in brain inflammation (158). AD patients
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have lower naive cells, higher memory cells and a significant

telomere shortening of T cells (159, 160). The analysis of flow

cytometry on peripheral blood of AD patients shows that CD8

+T effector memory CD45RA+ (TEMRA) cells increase and

TCR signaling is enhanced (161). Growing evidence indicates
FIGURE 3

Effects of immunosenescence on B cells and age-related diseases. The reduced lymphoid output and impaired ability of bone marrow stromal
cells to release IL-7 influence the production of progenitor B cells with age to some extent. Moreover, immunosenescence affects the intrinsic
defects of B cells, including decreased BCR repertoire diversity, CSR, SHM, high-affinity antibody production and increased BCR clonality. The
ABCs increase autoantibodies and pro-inflammatory cytokines. These age-related changes together increase the risk of infection and
autoimmune diseases in the elderly.
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immunosurveillant CD8 T cells in the human brain, which

represents central nervous system aging. Senescent T cells

participate in enhancing proinflammatory effects of microglia,

such as elevated proinflammatory cytokines, increased reactive

oxygen species, dysfunctional lysosomal deposits, and eventually

promote neuroinflammation (162, 163). Accumulated Treg cells

in the peripheral immune system can impair the inflammation

resolving immune cells’ infiltration into the central nervous

system to suppress AD neuroinflammation, so targeting Treg

cells has been an effective strategy to alleviate AD (157). These

findings suggest immunity is involved in the development of

neurodegenerative diseases, but further researches are necessary

to study the interaction between senescent cell subsets and AD.
5.2 Immunosenescence and cancers

The declined immunity in older humans may increase the risk

of cancers, which may be mediated by multiple cells (164, 165). In

elderly people, immune function is obviously suppressed, which

leads to increased tumor-infiltrating Treg cells, promoting tumor

growth and metastasis (166, 167). For example, patients with

breast cancer are found to exhibit immunosenescence, especially

CD8+T cells (168). Macrophages contain two basic polarized

states, proinflammatory classical activated (M1) and anti-

inflammatory alternatively activated macrophages (M2). Tumor-

associated macrophages (TAMs) usually display M2-like

phenotypes to inhibit T cell activation and promote tumor

metastasis, but macrophages can be polarized to kill tumor cells.

Therefore, regulating the polarization of macrophages has been

the potential effective strategies for anti-tumor therapy (169, 170).

However, NK and B cells are less documented compared to T cells

and macrophages of the tumor microenvironment, so extensive

elucidations are expected in future.
5.3 Immunosenescence and
cardiovascular diseases

Cardiovascular disease, which is associated with

immunosenescence, has a high prevalence in the elderly

population and is the leading cause of death among the

elderly. T cells accelerate aging in patients with coronary heart

disease and acute myocardial infarction, including telomere

shortening and decreased expression of CD28 (171). Senescent

T cells secrete pro-inflammatory cytokines, which activate

macrophages and release metalloproteinases to degrade

extracellular matrix (172). Senescent T cells also release

cytotoxic components, such as perforin and granzymes, which

damage endothelial cells and vascular smooth muscle cells

directly (173). These results suggest senescent T cells may be

involved in the pathophysiological process of cardiovascular

diseases through inflammatory response and cytotoxicity.
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Uncontrolled activation of the immune system has been

resulted from the pathogenesis of hypertension, especially

increased cytotoxic T cells (CD28- and CD57+) (174) and

senescent NK cells that promote vascular remodeling and

angiogenesis (175), which amplify the hypertensive action by

releasing proinflammatory cytokines and cytotoxic mediators.

With the increase of age, the accumulation of proinflammatory

cytokines might increase monocyte specific TLR signaling,

which is associated with the development of chronic heart

failure (176, 177). Furthermore, senescent T cells are related to

cardiovascular disease-related risk factors. For example, CD8

+CD28-T cells accumulate in individuals with CMV infections

that increase vascular inflammation and arterial blood pressure,

promoting the occurrence of cardiovascular diseases (6, 178). In

future, it needs to explore the impact of T cell senescence on

cardiovascular diseases and determine whether senescent T cells

are drivers or results of cardiovascular diseases.
5.4 Immunosenescence and
autoimmune diseases

Immunosenescence is also associated with autoimmune

diseases, especially RA. Immunosenescence is often accompanied

by increased level of inflammation and both of them are the major

contributors to age-related diseases. High levels of the pro-

inflammatory cytokines, such as TNF and IL-6, lead to chronic

inflammatory states for long time, which cause Th17/Treg

imbalance and amplified immune response in the development

of RA (179, 180). Nowadays, many studies have confirmed that RA

patients exhibit premature immunosenescence, including thymus

degeneration, clonal expansion of peripheral T cells and the loss of

costimulatory receptor CD28 (181). Immunesenescence also

deteriorates both articular and extra-articular manifestations, for

example, CD4+CD28-T cells are especially marked in RA patients

who have extra-articular inflammations or atherosclerotic diseases,

and CD28-T cells are associated with poor cognitive functions of

RA patients (181, 182). At present, the effects of T cell senescence

on the occurrence and development of RA have been widely

concerned, and other immune cells (such as Treg cells on RA, T/

B cells on lupus or Sjogren Syndrome) have been reported,

suggesting immunosenescence has an adverse effect on

autoimmune diseases.
5.5 Immunosenescence and COVID-19

Due to aging-related immune changes, the pulmonary and

systemic inflammatory responses are intensified, causing an

increased risk of respiratory bacterial and viral infection such

as influenza and the COVID-19 in the elderly (183, 184). The

numbers of monocytes increase in the elderly, especially CD14

monocytes, which have high inflammatory gene expression and
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activate inflammatory signaling pathways, leading to the

reduced ability of immune response (185). During the new

crown epidemic, the relationship between immunosenescence

and infections has received unprecedented attention. The

COVID-19 has resulted in many deaths in the globe, which is

characterized by hyperinflammation and cytokine storm

severely involved in the lung, heart, kidneys and other

multiple organs and systems (186). The elderly with COVID-

19 show rapid clinical progress, high incidence and mortality

(187–189), accompanying with heavy systemic inflammation

and t i s sue damages , wh ich wou ld be re l a t ed to

immunosenescence, such as the decrease of plasmacytoid DCs

(pDCs), alveolar macrophages and NK cells (183) and the

increase of IGSF21+ DCs (187), neutrophils and CD14

monocytes (185). The immune cell sequencing shows that

SARS-CoV-2 promotes immune cell polarization, mainly from

naive T cells to memory/effector T cells, and gene expression

associated with inflammation and cell aging (128). The COVID-

19 can activate CD4+T lymphocytes to differentiate into

pathogenic Th1 cells and produce cytokines (GM-CSF, etc),

triggering cytokine storm (190). Severe SARS-CoV-2 patients

show lessened number of CD4+ and CD8+T cells that express

higher inhibitory receptors such as PD-1 and Tim-3, suggesting

an exhausted status in T cells (185). Besides, the SARS-CoV-2

virus causes CD8+T cell senescence via TCR signaling and

expressing CTLA-4 and TIGIT, and makes senescent CD8+T

cells unable to release perforin and granzymes, which may

explain susceptibility among the elderly (191). Actually, the

decrease of adaptive immune response plays little role in

COVID-19 mortality. Multiple organ failure and death are

more associated with hyperfunctional natural immunity, high

inflammation level and cytokine storm (186). To sum up,

compromised immune function of the elderly is easier for the

virus to spread and damage the tissues, which reinforces the

necessity to resist immunosenescence and improve the immune

function (such as the vaccine) to protect the body from the

COVID-19.

Older people have a reduced response to vaccination

because of immunosenescence, so it is important to

strengthen the research on the safety and effectiveness of

COVID-19 vaccine among the elderly population. However,

the current studies on immune response in the elderly after

COVID-19 vaccination have drawn different conclusions. The

mRNA-1273 vaccine induces similar neutralizing antibody

levels in different age groups (192). BNT162b1 and

BNT162b2 vaccine induce similar neutralizing antibody titers

between young and old people (193). ChAdOx1 nCoV-19

vaccine induces strong neutralizing antibody responses and

cellular immune response against the spike glycoprotein at all

ages, and the vaccine causes fewer side effects in the elderly

(194). Despite the low neutralizing antibody level of the elderly,

the mRNA vaccine produces similar immune response rates

between old and young adults, which is opposite to other
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traditional vaccines. The mRNA vaccine, as a new type of

vaccine, plays a much larger role in germinal center response,

neutralizing antibody production, Tfh cell response and

specific memory B cell response than traditional vaccine

(195). Remarkably, mRNA vaccine enhances neutralizing

antibody production after the second immunization, while

traditional vaccine enhances non-specific antibodies (195).

Furthermore, other studies have shown that the serum

neutralizing antibody level of the elderly is still low after the

first dose of BNT162b2 vaccine, but antibody immune

response is improved significantly against variants of concern

(VOC) after the second dose (196). The new crown inactivated

vaccine booster makes SARS-CoV-2-specific memory B

lymphocytes (about 7%) carry broad-spectrum neutralizing

antibodies to provide effective protection against Omicron

variant (197). Therefore, the elderly should not only be

vaccinated actively, but also vaccinated with booster shots to

resist diminished vaccine potency. Nowadays, mRNA vaccine

has gradually replaced the traditional vaccine as the most

popular vaccine for vaccinators of different ages (especially

the elderly). However, vaccine induced protective mechanism

of old vaccinators are still unclear, and more researches remain

to be done.
6 Immunosenescence and
successful aging

For a long time, immunosenescence has been considered

harmful. However, it is noteworthy that immunosenescence is

a remodeling and retuning process with increase in some new

functions rather than complete decline of immune function

(9). Serum levels of lgG and lgA are increased with age, which is

conducive to protecting against viral and bacterial infections

effectively in older people (198). Although the generation of

naive T/B cells continues to decline, the adaptive immune

system adjusts to age-related changes and protects the body

from most pathogens. Only later in life does the immune

function decline gradually, which increases morbidity and

mortality in the elderly (199). But not all older people suffer

from age-related diseases, centenarians can delay the aging

process and live up to the limits of human life. Centenarians

have a large quantity of anti-inflammatory molecules, such as

TGF-b1, IL-10 and IL-1 receptor antagonist (IL-1RA), to

counterbalance increased inflammatory molecules, such as

IL-1b, IL-6, TNF-a, IL-8, C-reactive protein (CRP) and

CXCL9, achieving a dynamic balance between pro-

inflammatory and anti-inflammatory levels (8). In addition,

telomere length and telomerase activity are higher in

centenarians (200).

In centenarians, the degradation of immune function is not

obvious. Interestingly, the expansion of cytotoxic CD4+ T cells

has been found in supercentenarians and makes them resistant
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to diseases (201). CD8+T cells of centenarians are highly

differentiated with decreased CD28 expression (which are also

called CD8+CD28−, CD8+KIR+, NK-like CD8+ or innate CD8

+T cells) (202) and higher CD45RA expression (203). In

centenarian offspring, the number of B cells decreases

significantly, but naive B cells and IgM increase, which might

be one of the reasons for resisting infection and prolonging the

lives (204). The cytotoxic capability of NK cells in centenarians

(up to about 55%), which is very similar to the young groups

(about 63%), is higher than that in middle-aged groups (about

33%) (205). NK T cells bearing gd TCR show higher cytotoxicity

and IFN-g production in centenarians, which is beneficial to

fighting diseases and successful aging (141). Moreover,

neutrophil chemotaxis and microbicidal capacity and

lymphoproliferation are higher in centenarians, while

neutrophil and lymphocyte adherence are lower (206).

Therefore, anti-inflammatory molecules, cytotoxic CD4+ T

cells, naive B cells and well-preserved NK cells would be the

hallmark of successful aging (Figure 4).
7 Therapeutic strategies for
successful aging

There are currently several strategies to deal with senescence

and senescent cells. First of all, rejuvenation of old HSCs may be

an effective therapeutic strategy to restore the balance between

myeloid and lymphatic systems and the numbers of T and B cells

(207). The involution of the thymus is one of the main features

of aging, which might lead to the decrease of T cells, so restoring

the structure and function of the aging thymus could reverse

immunosenescence (208). Thymo-stimulatory property of IL-

10, leptin, keratinocyte growth factor (KGF) and thymic stromal

lymphopoiet in (TSLP) may contr ibute to immune

reconstitution of the elderly (69). IL-7 is a crucial cytokine for

T cell development, so IL-7 treatment promotes the expansion of

peripheral T cells and the diversity of TCR (209, 210).

Telomerase is a significant component for T cell development,

so upregulation of telomerase expression enhances T cell

immune response and prolongs lifespan (211, 212).

Senescent cells cause immune cells dysfunction by

recruiting SASP, which is connected with many chronic

diseases, so clearing senescent cells is of great importance.

Senotherapeutic strategies contain two types: senolytics

(removing senescent cells selectively) and senomophics

(changing senescence phenotypes) (213). A novel senolytic

agent ABT-263 causes apoptosis in senescent cells by targeting

Bcl-2 family members (a negative regulator of apoptosis)

(214). A FOXO4 peptide induces apoptosis of senescent cells

by interfering the FOXO4-p53 interaction (215). A

component of grape seed extract procyanidin C1 (PCC1) is

a natural senolytic agent and extends lifespan in mice (216).

Nowadays immunotherapy is a promising therapeutic strategy
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against senescent cells (217). Modified T cells that express a

chimeric antigen receptor (CAR) have been applied in cancer

treatments successfully (218), based on which, engineering

CAR T-cells with NKG2D receptors contributes to

recognizing and eliminating senescent cells with NKG2D

ligands (219). Chemotherapeutic agents (doxorubicin,

melphalan and bortezomib) enhance the killing effect of NK

cells to clear senescent cells by upregulating the expression of

NKG2D receptors on tumor cells (220). The main culprit of

senescent cells is the SASP, therefore, the way to prevent cell

senescence is to control or neutralize SASP by blocking main

upstream regulators (such as GATA4, NF-kB and BRD4) or

using targeting drugs (221). Rapamycin, a common inhibitor

of mTOR, prevents senescence through decreasing markers of

senescence in peripheral T cells and inhibiting SASP

regulators (222–224). Metformin has been known to reduce

SASP by modulating NF-kB signaling and delay the aging

process (213).

Immune checkpoint blockade (ICB) therapy has been

applied in cancers, for example, PD-L1 and IDO may

restrain T cells immunity (225, 226). However, data on the

safety and toxicity of ICB therapy are limited, so further

researches are required to evaluate the therapeutic effects of

ICB especially on the elderly. Treg targeted therapy is vital for

cancer therapy and the treatment of autoimmunity, but

sometimes has some risks. For example, Treg targeted

therapy treats autoimmune diseases through inhibiting

autoreactive immune components, but increases tumor

immune escape and the risk of cancer, which results in the

complexity of Treg targeted therapy (227). Growth

differentiation factor 15 (GDF15) is a stress response gene

caused by mitochondrial dysfunction and maintains the

immunosuppress ive funct ion of Treg cel ls , so the

intervention of GDF15 may improve the immune function of

the elderly (228). Notably, rituximab is an anti-CD20

monoclonal antibody, which may inhibit pro-inflammatory B

cell subsets such as ABCs, combating age-related autoimmune

diseases. Fruit and vegetables, richen in carotenoids, increase

the number of NK cells and the function of Th cells, ultimately

enhancing the immune function (229). Vitamin E

supplementation strengthens the function of T cells by

reducing PGE2 production in macrophages, having a

beneficial effect on healthy elderly (230, 231). It has also been

shown that exercise decreases the number of Th17 cells and

inflammatory markers and increases the level of IL-7, thymic

function and autophagy activity (36, 232), suggesting the

contribution of diet and exercise for the plasticity of aging.

The more we understand the cellular and molecular

mechanisms of aging, the more opportunities we create to

intervene aging and age-related diseases. In conclusion, the

evidence suggests that targeting drugs and a good lifestyle

together help to boost the immune system and enable the

elderly to live longer and heathier.
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8 Conclusion

Immunosenescence is a complex and varied process of immune

system, which participates in many age-related diseases, with the
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alteration of immune cell subsets, cytokine secretion and the defect

in cell function and quantity (176, 233, 234). It is of significant

importance to explore the molecular and cellular mechanisms of

immunosenescence with single-cell techniques to dissect some
FIGURE 4

The differences in immune cells of published researches between the elderly and centenarians. Compared with the elderly, centenarians have
more anti-inflammatory molecules, cytotoxic CD4+T cells, highly differentiated CD8+T cells, naive B cells and well-preserved NK cells, which
would be the hallmark of successful aging.
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phenomena deeply and systematically (235). Moreover, it is

necessary to distinguish markers of immunosenescence, quantify

the immunity and establish normal reference range of immune cells

among individuals at different age, which contributes to screening,

preventing and intervening diseases even at subclinical stage.

Therefore, it is obviously necessary to find novel targets and

therapy for immunosenescence, for example, vaccines and

microbiome regulation, to decline the negative effects of

immunosenescence and promote successful aging.
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