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ABSTRACT

The HIN2 influenza virus has become one of the dominant subtypes of influenza virus circulating in poultry, wild birds,
and can occasionally cross the mammalian species barrier. Here, we report the first human A/HIN2 in Sub-Saharan Africa.
The patient was a child of 16 months’ old living in the South-West of Senegal. He had no influenza vaccination history and
no other disease history. He had symptoms of fever with an auxiliary temperature of 39.1°C. Respiratory symptoms were
an intense cough, runny nose and pulmonary crackles. All eight genome segments belonged to the A/HIN2 AlV subtype
and the strain characyerized as of low pathogenicity with a RSSR/GLF amino acids motif. Phylogenetic analysis of both
complete HA and NA gene segments showed that the A/HON2 subtype virus from Senegal belonged to the G1
lineage. This human case highlights the weakness of influenza surveillance in animals and the need for enhanced

surveillance using a one-health approach.
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In recent years, avian influenza viruses (AIVs) have
been reported to intermittently infect humans. Because
of the high morbidity and mortality of the infection,
avian influenza viruses have become a widespread pub-
lic concern. AIVs can be broadly categorized into two
groups based on molecular markers in the hemaggluti-
nin (HA) that affects their pathogenicity in chickens:
the highly pathogenic avian influenza viruses
(HPAIV) which display high pathogenicity in chickens
and contain polybasic cleavage sites in HA, and the low
pathogenicity avian influenza viruses (LPAIVs) charac-
terized by low pathogenicity in chickens and mono- di-
or occasionally tri-basic cleavage sites in haemaggluti-
nin. So far, only the H5 and H7 subtypes have shown
the HPAIV phenotype. A/HIN2, the focus of the pre-
sent study, is a LPAIV subtype. The HIN2 influenza
virus, isolated for the first time from turkeys in 1966
[1], is a prominent member of the influenza A family.
Indeed, since its discovery, HON2 avian influenza
viruses have been detected in domestic poultry and
wild birds in North America, then detected from mul-
tiple species of Europe, Africa, Asia, and the Middle
East. Now, the A/HIN2 avian influenza virus is widely
distributed in different regions of the world and has
become one of the dominant subtypes of influenza

virus circulating in poultry and wild birds [2]. In poul-
try, A/HIN2 infections cause a decline in egg pro-
duction, with occasional high mortality [3]. A/HON2
subtype can occasionally broaden its host range by
crossing the mammalian species barrier. Indeed, A/
H9N?2 virus infection in pig farms has been reported
in Hong Kong and China [4,5]. However, several
human infections with A/HIN2 have been reported
from Hong Kong and other provinces of China, exhi-
biting mild respiratory disease, potentially posing a
threat to public health [6,7].

Another disturbing facet of the virus is that prior
phylogenetic analysis showed that the influenza A/
HON?2 viruses have contributed to many recent zoono-
tic events by providing some segments to reassortment
viruses involved in zoonotic transmission [8].

The A/HIN2 LPAIV is classified into five lineages,
one of which circulates in wild birds and four in poul-
try; two of these four lineages have previously been
detected in humans [9].

A/HON2 viruses have been isolated from several
African countries; the virus appears endemic in poultry
in Egypt and has been repeatedly isolated from chick-
ens in Libya and Tunisia [10]. Additionally, since
2016 the virus has been isolated for the first time in
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Figure 1. Phylogenetic analysis by maximum likelihood of the HA and NA genes of HIN2 subtype AlVs including the isolate from
Senegal (in red colour). The representative strains of each lineage were shown in blue and representative genotype strains were
shown in different colours (green, purple, pink). Trees were generated using the Maximum Likelihood method based on the
Tamura-Nei model method in MEGA 6.0. The phylogenetic trees were rooted to the old A/turkey/Wisconsin/1/1966/ isolate. We
performed 1000 bootstrap replicates to determine the consensus tree; support for nodes present in >70% of the trees are displayed

on branches.

countries across North and West Africa including
Morocco, Burkina Faso, Ghana and Algeria as well as
in East Africa in Uganda [10]. All viruses isolated
from poultry in Africa have been of the G1 “Western”
sub-lineage, related to those circulating in the Middle
East area.

As of June 2019, there have been a total of 59 labora-
tory-confirmed human HIN?2 infections with over half
of those being recorded since 2015 [10]. The majority
confirmed infections were young children (39 of 56
cases were aged 8 years or below), the median age of
infection was 4-years-old, while the mean age was 14.
Regarding Africa, only 4 human cases were reported
between 2014 and 2015 from Egypt where the virus
is endemic in poultry.

In Senegal, no human or animal cases of AIV infec-
tion have been reported so far, despite ongoing influenza
sentinel surveillance since 1996 [11]. However, until
recently, this surveillance was only focused on humans.

Here, we report the first human A/H9N2 in Sub-
Saharan Africa in a country that has never experienced
documented A/H9N?2 infection in poultry even though
unusual poultry outbreaks associated with mortalities
are occassionally reported.

The patient was a child of 16 months’ old living in
Ziguinchor, a region in the South-West of Senegal.
He had no influenza vaccination history and no other
disease history. He had symptoms of fever with an

auxiliary temperature of 39.1°C. Respiratory symptoms
were an intense cough, runny nose and pulmonary
crackles.

Following extraction of total viral RNA, the clinical
sample was tested by one-step real time reverse tran-
scription-polymerase chain reaction (rRT-PCR),
using the ABI 7500 device, according to the CDC pro-
tocol for the identification of influenza A and B viruses
(courtesy of the Centers for Disease Control, Atlanta,
GA). The sample was confirmed as influenza A (Ct
Value of 26.3). A second real-time RT-PCR round
was performed for the subtyping of influenza A viruses
with primers targeting hemagglutinin genes of seasonal
(HI and H3) viruses and A(HIN1)pdm09. The sample
was negative for all subtypes, and was therefore charac-
terized as unsubtypable.

Before going through full genome sequencing, 200
ul of the swab sample were inoculated in specific-
pathogen-free (SPF) embryonated chicken eggs
(ECEs). After 72 h of incubation at 37°C, the allantoic
fluids were collected, and screened for influenza virus
by hemagglutination (HA) activity titration. HA
activity was measured up to the 1/16 dilution. The
presence of influenza virus was also verified by qRT-
PCR for the MP gene. The isolation process was per-
formed in a Biosafety Level 3 laboratory.

Whole genome amplification was conducted by
modifying a protocol previously described by Zhou
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et al. [12]. After amplification, PCR products were
quantified with the Qubit Fluorometer (Invitrogen
life technologies). The Illumina sequencing and library
construction were performed by the P2M platform at
Institut Pasteur Paris. In brief, Nextera XT DNA
Library Preparation kit (Illumina) was used for library
construction. Finally, the pooled librairies were
sequenced 150 bp paired end reads on an Illumina
NextSeq 500 instrument. The fastq files were generated
and demultiplexed with the bcl2fastq Conversion Soft-
ware v2.20 (Illumina). The contigs obtained in Fasta
format were cleaned with the GeneStudio software
(GeneStudio ™ Pro, version: 2.2.0.0, 8/11/2011) and
Basic Local Alignment Search (BLAST) homology
search programme was used to measure sequence
matching of each segment. We retrieved all eight seg-
ments of the genome with high quality sequences.
The sequence alignment and phylogeny were per-
formed using the MEGA 7.0 MUSCLE and maximum
likelihood, respectively. The robustness of the ML tree
was assessed by bootstrap analyses of 1,000 replicates.
The evolutionary distances were derived using the
Tamura 3 parameter method. Bootstrap replicates
with values >70 are shown on the trees. All genome
segments sequence of A/Senegal/0243/2019 (HIN2)
has been deposited in the Global Initiative on Sharing
All Influenza Data (GISAID) EpiFlu database under
the accession numbers EP11671016 to EP11671035.

The BLAST results confirmed all eight segments as
belonging to the A/HIN2 AIV subtype. The Senegalese
A/HON2 strain had low pathogenicity with a RSSR/
GLF amino acids motif at the cleavage site of HA (335-
341 [H9 numbering]) [13]. It also harboured Q226L
and 1155 T mutations in the HA gene, which promote
preferential binding to human-like a2-6-linked sialic
acid (SA a2-6) receptors. The human-to-human trans-
mission mutations markers T105V and A661 T [14]
were also identified in the PB2 gene as well as the mam-
malian host-specific mutation marker M 1851 [15]. How-
ever the PB2 protein also had glutamin and asparagin at
position 627 and 701 respectively, which is characteristic
of viruses of avian origin [13]. H274Y substitution was
not detected in the NA protein, suggesting sensitivity
to neuraminidase (N'A) inhibitors such as oseltamivir.

The maximum likelihood phylogenetic analysis of
both complete HA and NA gene segments showed
that the A/HIN2 subtype virus from Senegal belonged
to the G1 lineage (Figure 1), and clustered with viruses
identified in North and West African chickens and wild
birds between 2016 and 2018 (nucleotide similarity
ranging between 97.3% and 98.3% for the HA and
97.6% and 98.5% for the NA).

Although the first human case of A/HIN2 infection
was detected in 1997, the present study documents the
first human case of infection in sub-Saharan Africa,
despite numerous outbreaks in poultry reported in
many countries (Burkina Faso, Ghana, and Uganda).

Senegal has never experienced a large AIV outbreak in
poultry even if unusual mortalities are regularly reported
by farmers in many areas in the country. This human case
highlights the weakness of influenza surveillance in ani-
mals (poultry, pigs, wild birds etc...) and the need for
enhanced surveillance using a one-health approach.
Therefore, monitoring markets that contain wild birds,
live poultry, pigs and analyzing virus evolution and
gene mutations in a timely manner are essential.
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