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The high energy density lithium ion batteries are being pursued because of their

extensive application in electric vehicles with a large mileage and storage energy station

with a long life. So, increasing the charge voltage becomes a strategy to improve

the energy density. But it brings some harmful to the structural stability. In order to

find the equilibrium between capacity and structure stability, the K and Cl co-doped

LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials are designed based on defect theory,

and prepared by solid state reaction. The structure is investigated by means of X-ray

diffraction (XRD), rietveld refinements, scanning electron microscope (SEM), XPS, EDS

mapping and transmission electron microscope (TEM). Electrochemical properties are

measured through electrochemical impedance spectroscopy (EIS), cyclic voltammogram

curves (CV), charge/discharge tests. The results of XRD, EDS mapping, and XPS

show that K and Cl are successfully incorporated into the lattice of NCM cathode

materials. Rietveld refinements along with TEM analysis manifest K and Cl co-doping

can effectively reduce cation mixing and make the layered structure more complete.

After 100 cycles at 1C, the K and Cl co-doped NCM retains a more integrated layered

structure compared to the pristine NCM. It indicates the co-doping can effectively

strengthen the layer structure and suppress the phase transition to some degree

during repeated charge and discharge process. Through CV curves, it can be found

that K and Cl co-doping can weaken the electrode polarization and improve the

electrochemical performance. Electrochemical tests show that the discharge capacity of

Li0.99K0.01(Ni0.5Co0.3Mn0.2)O1.99Cl0.01 (KCl-NCM) are far higher than NCM at 5C, and

capacity retention reaches 78.1% after 100 cycles at 1C. EIS measurement indicates

that doping K and Cl contributes to the better lithium ion diffusion and the lower charge

transfer resistance.
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INTRODUCTION

Nowadays, the vigorous development of lithium-ion batteries
(LiBs) (Chen et al., 2017; Zhang et al., 2018a) has accelerated the
production of energy storage devices (Zhang et al., 2018b; Zheng
et al., 2018), electric vehicles (EVs), and hybrid electric vehicles
(HEVs) (Terada et al., 2001; Goodenough and Park, 2013;
Xiong et al., 2013, 2014b; Xu et al., 2015b; Choi and Aurbach,
2016; Liu et al., 2018b; Su et al., 2018). However, unsuitable
performance limits the application of LiBs cathode materials,
such as low energy density of LiCO2 and LiFeO4, and lithium-
rich layered oxide (LRLO) cathode materials with low coulombic
efficiency and voltage attenuation. Under these circumstances,
researchers turn their attention to cathode materials with high
energy density and low prices, therefore, lithium transition metal
oxides (LiNixCoyMn1−x−yO2) due to its high capacity, low price
(Chen et al., 2003; Shin et al., 2005; Li et al., 2009; Martha
et al., 2009; Sun et al., 2009; Kim, 2013; Yue et al., 2013b; Xiong
et al., 2014a) and its properties adjusted by the relative ratio of
different TM ions (Kim et al., 2016) according to the requirement
are diffusely researched, in particular, LiNi0.5Co0.2Mn0.3O2

(NCM) cathode materials has been attracting much more
attentions.

It is all well-known that the Ni element plays a vital role
in providing capacity for NCM. Unfortunately, the presence
of Ni element also causes Ni to escape from the 3b sites into
the 3a sites of the lithium layer during the preparation and
charging because the radius of Ni2+ and Li+ is similar. And these
defects are intensified during high-voltage cycling because of the
increasing number of Li vacant sites. This Ni migration trigger
cation mixing and phase transformation from layered (R-3m)
to spinel (Fd-3m) and rock salt (Fm-3m) phase at some micro
areas (Kojima et al., 2011; Boulineau et al., 2013; Jung et al., 2014;
Lin et al., 2014), which results in structural degradation, poor
cycle stability and slow lithium ion diffusion coefficient of NCM
cathode material.

In the past few decades, extensive studies have been confirmed
that ion substitution such as Na+ (Chen et al., 2013; Hua
et al., 2014), Mg2+ (Luo et al., 2016), Fe3+ (Liu et al., 2006),
Ti4+ (Seungtaek et al., 2005), V5+ (Zhu et al., 2014), F− (Shin
et al., 2006; Yue et al., 2013a) and so on is considered as
an efficacious strategy to decrease the cation mixing degree,
ameliorate the microstructure in stability and improve rate
performance. Among them, Na+ substitution is regard as
a typically dopant to ameliorate the performance of NCM.
Li1.1−xNaxNi0.2Co0.3Mn0.4O2 (Park et al., 2006) are prepared
by sol-gel method with better rate performance, and lower
cation mixing are exhibited when x was 0.05 and 0.1. But
he cycle stability and structural stability of the material have
not been apparently improved. In addition, many researchers
further improve the stability of the material during cycling and
enhance the electrochemical performance of the material by
anionic doping. For instance, G-H. Kim et al. (Kim et al., 2005)
synthesized LiNi1/3Co1/3Mn1/3O2−zFz by partially replacing O
with F, and improves structural stability of materials. However,
it did not solve the cation mixing and improve the rate
performance.

As far as we know most of these attainable studies are limited
to a single replacement and do not synchronously improve the
cycle stability, lithium ion diffusion coefficient and cationmixing.
Therefore, in this study, aiming to improving the structure
stability and rate performance under 4.6V, we designed K and
Cl co-doped Li0.99K0.01Ni0.5Co0.2Mn0.3O1.99Cl0.01 (KCl-NCM)
cathode material and prepared it using solid-state reaction.
Because of the tangible that the radius of K+ (r+K = 1.33 Å)
is much larger than that of Li+ (r+Li = 0.76 Å), we partially
replace Li with K into the structure of NCM to reduce the
mixing of the cations and improve the lithium ion diffusion
coefficient. Simultaneously, we also partially replace O with Cl
into the crystal structure because of the covalent radii and
the electronegativity of Cl much than O (Singh et al., 2017),
moreover, Cl doping is associated with the reinforcement of
MnO6 octahedral in the framework by the strong ionic Mn-Cl,
Ni-Cl, and Co-Cl bonds (Kim et al., 2014), which makes the
structure more stable and improves cyclic performance. Through
the co-doping, cycle performance and rate performance of NCM
are markedly improved. Moreover, the content of Ni occupies
Li sites (2.77%) for the KCl-NCM is lower than NCM (3.3%)
identified by Rietveld refinements, which effectively reduces the
cation mixing.

EXPERIMENTAL

Preparation of the Samples
Li0.99K0.01Ni0.5Co0.3Mn0.2O1.99Cl0.01 (KCl-NCM) layered
cathode materials were prepared via solid-state reaction using
stoichiometric of KCl, commercial transition-metal hydroxide
precursors Ni0.5Co0.2Mn0.3(OH)2 and LiOH·H2O as raw
materials, wherein the ratio of Li to the transition metal is 1:1, K
and Cl were added to the mass fraction of 1%. The raw materials
were mixed at an agate mortar, and grind time was 1 h to make it
fully mixed, then which was heated at 480◦C for 2 h and calcined
at 880◦C for 12 h at a heating rate of 5◦Cmin−1 in air. Finally, the
sample was cooled slowly in the furnace to room temperature.
Meanwhile, synthesis conditions of LiNi0.5Co0.3Mn0.2O2 are
consistent with KCl-NCM except that a certain stoichiometric
ratio of KCl is added, which is regard as reference sample.

Materials Characterization
X-ray diffraction (XRD, Rigaku D/Max 200PC, Japan) analysis
was carried out on a Rigaku/Max-RAX powder diffractometer
with Cu Kα-radiation. The scanning speed is 5◦ min−1

and scanning range is 10◦ < 2θ < 90◦. The morphologies
and microstructures of all samples were determined by
scanning electron microscopy (SEM, Nova NanoSEM-230), and
energy dispersive X-ray spectroscopy (EDS) is carried out on
OXFORD7426 as the attachment of SEM, with the acceleration
voltage of 20 kV. Transmission electron micrographs (TEM)
were recorded by a JEOL JEM-2010 transmission electron
microscope.

Electrochemical Measurement
The positive electrode (about 4.30mg cm−2) consists of 80
wt.% as-prepared composites, 15 wt.% acetylene black and 5
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FIGURE 1 | (A) XRD patterns of NCM and KCl-NCM samples, (B) and (C) are partial enlarged views of (A); Refinements patterns for samples: (D) NCM (E) KCl-NCM;

well-ordered R-3m structure of samples: (F) NCM (G) KCl-NCM; partially cation mixed phase with TM ions in Li slab at highly charged state: (H) NCM (I) KCl-NCM.

wt.% polyvinylidene fluoride (PVDF) as a binder, and metal
Al foil is used as collector. Celgard 2,400 is used as separator
which is soaked in 1.0mol L−1 LiPF6/EC+DMC (EC:DMC
= 1:1 in volume ratio) electrolyte. Lithium metal foil is used
as the counter electrode during electrochemical measurements.
All the cells are assembled in an argon-filled glove box. The
charge/discharge test is carried out by using a Land BT2001A
automatic battery test system in the voltage range of 2.7∼4.6V,
and the density of current is measured by 1C (1C means
150 mAh g−1). The electrochemical impedance is measured
in the frequency range from 10−3 to 105 Hz on a CHI660B
electrochemical working station (Chenhua, Shanghai, China),
and the perturbation amplitude is controlled at±5mV.

RESULTS AND DISCUSSION

Structural Characterization
Figure 1A displays the XRD patterns of NCM and KCl-NCM.
From XRD patterns, we can observe that all the samples
are indexed to a R-3m structure of hexagonal, and no other
impurities is detected. From the Figures 1B,C, we can clearly
observe that the peaks of (006)/(102) and (108)/(110) are
separated, indicating that the material have a good layered phase
structure (Lee et al., 2013; Zhu et al., 2014; Xu et al., 2015a). The
lattice constants c/a and R(I003/I104) of all samples are shown in
Table 1. When K and Cl are co-doped into the NCM crystals, the
lattice constants increase obviously, indicating that K and Cl are
successfully incorporated into the crystal lattice. It was reported
that the R value of the samples is >1.2, and also increases
after doping, which indicates the cation mixing is reduced to a
certain degree. It will be beneficial to the improvement of the
electrochemical properties of the material.

TABLE 1 | Lattice constants of NCM and KCl-NCM samples.

Sample a (Å) c (Å) c/a R(I003/I104) V (Å3)

NCM 2.86735 14.21039 4.956 1.319 101.18

KCl-NCM 2.87407 14.26912 4.965 1.497 101.58

TABLE 2 | The results of Rietveld refinements for NCM and KCl-NCM samples.

Atom site x y z NCM KCl-NCM

Li1 3a 0 0 0 0.9663 0.9619

Ni2 3a 0 0 0 0.0337 0.0277

Ni1 3b 0 0 0.5 0.4663 0.4723

Co1 3b 0 0 0.5 0.2 0.2

Mn1 3b 0 0 0.5 0.3 0.3

K1 3a 0 0 0 0 0.0104

O1 6c 0 0 0.2411 (1) 2 1.99

Cl1 6c 0 0 0.2411 (1) 0 0.01

Rwp – – – – 4.36% 4.33%

To further explain the role of K substitution for Li in the Li
layers, rietveld refinements is used to further analyze the XRD
pattern of the samples (Li et al., 2012b). It is assumed that Li,
TM, and O occupy the 3a, 3b, and 6c sites, respectively (Chen
et al., 2013). In this work, we assume that K completely occupies
the Li site, which leads to the highest reliability factors. And
the pictures of Rietveld refinements are shown in Figures 1D,E.
Table 2 is occupancies of atoms for all samples. Obviously, it can
be seen that the Ni/Li mixing degree is decreased prominently by
K substitution. Furthermore, compared with NCM (3.3%), the Ni
content in the Li layer (2.77%) of KCl-NCM is lower. The result
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FIGURE 2 | SEM images of NCM (a,c) and KCl-NCM (b,d); EDS mappings of KCl-NCM (e).

FIGURE 3 | XPS images of NCM and NCM-KCl. (A) Ni2p3/2; (B) Co2p3/2; (C) Mn2p3/2; (D) O1s; (E) Cl2p; (F) K2P3/2.
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FIGURE 4 | HRTEM images and the corresponding Fast Fourier Transform (FFT) patterns of (a) NCM, (b) KCl-NCM before cycling, and (c) NCM, (d) KCl-NCM after

100 cycles.

can be attributed to the incorporation of K+ into the Li layer,
which would generate a big driving force to separate Li+ ions
from the transition metal layer and thus avoid the Li/Ni disorder
of the KCl-NCM. Hence, the substitution of Li+ by K+ leads
to a more ordered layered structure, a larger Li layer distance,
and a lower cation mixing degree in KCl-NCM. In order to
make the results of Rietveld refinements and XRD more specific,
we simulate the cation disorder with R-3m structure for NCM
and KCl-NCM. Figures 1F,H present a perfect R-3m structure of
Li-oxygen-TM-oxygen-Li, which clearly separates TM sites (3b)
and lithium sites (3a). But Ni ions are easy to enter into the Li
layers because the similar to the ionic radius of Ni2+ and Li+

during the highly charged state, as shown Figure 1G. Figure 1I
shows TM ions in Li slab at highly charged state for KCl-NCM,
since the K+ radius is much larger than the radius of Ni2+,
which reduces the number of Ni2+ migration to the Li site. As
a result, K+ doping can bring down the cation mixing to some
extent, and it is also consistent with the results of the Rietveld
refinements.

The SEM images of NCM, KCl-NCM and the corresponding
EDS mappings are illustrated in Figure 2. A uniform near-
spherical microstructure of about 5 microns can be observed,
which are agglomerated by uniform size of a particle. The
corresponding EDS mappings of KCl-NCM display all elements
including K and Cl are uniformly distributed, which reveals K
and Cl are successfully incorporated into the NCM.

To further determine the signal of K and Cl, XPS is performed.
Figure 3 shows the XPS patterns of transition metal elements
Ni, Co, Mn, K, Cl and O in LiNi0.5Co0.3Mn0.2O2 samples before
and after KCl doping, as shown, the electron binding energies
of Ni2p, Co2p, and Mn2p in LiNi0.5Co0.3Mn0.2O2 samples
obtained by doping with KCl have not change significantly,
which are 855.3 eV, 780.4 eV and 642.8 eV, respectively, the
observed binding energies for Ni 2p3/2, Co 2p3/2 and
Mn2p3/2 of oxidation state coincide well. The binding kinetics
peaks of K and Cl are shown in samples doped with
KCl, indicating that the dopant elements are present in the
sample.

To provide the detailed information and investigate local
structural changes of the samples, high-resolution transmission
electron microscopy (HRTEM) and fast fourier transformation
(FFT) are conducted on NCM and KCl-NCM. Various regions
in the sample are examined to avoid any confusion. Figures 4a,b
exhibit a good layered structure and no any trace of a secondary
phase regardless of near the surface or the inner region before
electrochemical testing, which reveals that K and Cl co-doping
have not destroy the layered structure of NCM. Moreover,
from the insets in Figures 4a,b, we can clearly see that the
interplanar spacing of the sample doped with K+ and Cl− is
larger than NCM sample, indicating that the doping of K+

enlarges the spacing of Li layers, which is consistent with the
result that the c value of the KCl-NCM sample is larger than
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the c value of the NCM sample in the XRD. As a result, it will
also contribute to improve the rate performance. However, the
local structure has change dramatically after cycling 100 times
at 4.6 V for NCM (Figure 4c). The additional crystal planes
can be indexed as (400)S and (531)S in Figure 4c compared
with Figure 4a, corresponding to a spinel structure. It indicates
that NCM undergoes a transition from hexagonal phase to
spinel phase in cyclic testing. In general, Ni ions occupying Li
sites will lead to Li deficiency, and it can give rise to phase
transformation at some micro areas. And it triggers the collapse
of the layered structure. In contrast, we find that the structure

of K and Cl co-coped sample (Figure 4d) is distinctly different
from that of the NCM sample after 100 cycles at 4.6 V. A well-
layered structure is still maintained after high-voltage cycling,
corresponding to the (104)R of the FFT images. This enhanced
structural stability is attributed to the K substitution, which
reduces the mixing of Li and Ni, suppressing it from the severe
structural degradation induced during charge and discharge
process. As a result, this suppression of phase transition intensely
ameliorates the deterioration of electrochemical performance of
Ni-rich cathode materials during high-voltage cycling (Yang and
Xia, 2015).

FIGURE 5 | Electrochemical performance: (A) First charge/discharge profile for the NCM and KCl-NCM at a rate of 0.1C; discharge profile of (B) NCM, (C) KCl-NCM
at different rate; (D) cycle performance at 1C for NCM and KCl-NCM.

FIGURE 6 | (A) EIS plots of NCM and KCl-NCM; (B) corresponding to the relationships between Z′re and ω
−1/2.
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Electrochemical Performance
Figure 5 describes electrochemical performance of NCM and
KCl-NCM. Figure 5A illustrates atypical initial charge-discharge
curve of the NCM. The initial discharge capacity for the NCM
andKCl-NCM is 203.9 and 210.3mAh/g. In contrast, it is obvious
that the coulombic efficiency and initial discharge capacity
of KCl-NCM sample is superior to those of NCM. The rate
capacity of NCM and KCl-NCM is evaluated in Figures 5B,C, the
discharge capacity of NCM samples drops dramatically with the
current density increasing, and the discharge capacities of NCM
are from 203.9 mAh g−1 at 0.1C to 152.74 and 116.0 mAh g−1

at 3 C and 5C, which are only 74.9 and 56.9% of the discharge
capacity at 0.1 C. However, the discharge capacities of the sample
doped with K and Cl at 3 C and 5C is, respectively, 175 and
162.5 mAh/g, corresponding to 83.7 and 77.7% of its capacity
of 209.1 mAh/g at 0.1 C. Apparently, the rate performance of K
and Cl substituted sample is remarkably enhanced compare with
NCM, which may be due to the fact that K replaces the Li site
and increases the diffusion channel of lithium ions because the
radius of K+ (r+K = 1.33 Å) is higher than that of Li+ (r+Li = 0.76
Å), in addition, according to the literature (Singh et al., 2017),
the doping of Cl plays a role in the improvement of the rate
performance because the radius of Cl is larger than the radius
of O. Figure 5D demonstrates the cycle performance of two
samples at 1 C rate. The remaining discharge capacity for NCM
after 100 cycles is 124.8 mAh/g, and the capacity retention is
73.2%.With regard to KCl-NCM, the discharge capacity is 155.54
mAh/g after 100 cycles, and the capacity retention is improved to
83.0%. The cycle performance of sample co-doped with K and
Cl is significantly improved. The possible reason is the fact that
K substitution reduces the mixing of Li and Ni. On the other
hand, Cl substitution can reduce the reactivity of the cathode
toward electrolyte oxidation and associate with the reinforcement
of MnO6 octahedral in the framework by the strong ionic Mn-Cl,

TABLE 3 | The values of Rs + Rct and DLi + for NCM and KCl-NCM.

Samples Rs + Rct (ohm) DLi+ (cm2s−1)

NCM 134.8 2.62 × 10−10

KCl-NCM 46.4 2.37 × 10−9

Ni-Cl, and Co-Cl bonds (Kim et al., 2014). Therefore, K and Cl
substitution synergistically improved the rate performances and
the structure stability during cycling.

To further understand the effect of K and Cl doping
on the lithium ion transport of NCM cathode materials,
the electrochemical impedance spectroscopy (EIS) and
corresponding relationships between Z′

re and ω
−1/2 conducted

are shown in Figure 6. The diffusion coefficient of lithium
ion (DLi+) can be calculated via the equation as described in
references (Li et al., 2012a; Mai et al., 2013; Zheng et al., 2014,
2019; Choi et al., 2015; Liu et al., 2018a). From the Figure 6 and
Table 3, we can see that the impedance of NCM and KCl-NCM
samples are 134.8 and 46.4�, and it is clear that the doping K
and Cl reduces the electrode resistance of the sample. Compared
to the undoped sample, the diffusion coefficients of lithium
ions doped with K and Cl increases from 2.62 × 10−10 to 2.37
× 10−9cm2 s−1. Generally, the DLi+ is known as an intrinsic
property for a given positive electrode, which depends only on
the structure of active material in the charge state. It has been
proven that the activity energy for the Li-ion transport in solid
could be reduced effectively for the reason of increasing Li layer
distance and reducing cation mixing (Hua et al., 2014). So, the
doped samples can offer a large amount of lithium ion in the
intercalation and deintercalation reaction at large charge and
discharge current. Therefore, KCl-NCM have a faster Li diffusion
probably due to the larger Li layer spacing and the lower Li/Ni
disorder. The decrease of the impedance and the increase of the
diffusion coefficient of the lithium ion show that the KCl-NCM

TABLE 4 | The results of cyclic voltammogram for NCM and NCM-KCl.

Samples Oxidation peaks (V) Reduction peaks(V) Difference value (V)

NCM

1st cycle 3.8873 3.6827 0.2046

2nd cycle 3.8115 3.6954 0.1161

3rd cycle 3.7871 3.6907 0.0964

NCM-KCl

1st cycle 3.8598 3.7137 0.1461

2nd cycle 3.8076 3.7145 0.0931

3rd cycle 3.7854 3.7164 0.069

FIGURE 7 | Cyclic voltammogram of samples cells at the scan rate of 0.1mV s−1: (A) NCM; (B) NCM-KCl.
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reduce the polarization of the electrode, and improves the cycle
performance, which is consistent with the electrochemical test
result.

Figure 7 presents the cyclic voltammogram of two
samples. As can be seen from Figure 7, these CVs
demonstrate quite reversible electrochemical behavior with
well resolved oxidation/reduction peaks related to the Li-
extraction/insertion accompanied with the Ni2+/Ni4+ and
Co3+/Co4+ oxidation/reduction, respectively. From the Table 4,
the oxidation peaks for NCM and NCM-KCl of the first
cycle centerat 3.8873V and 3.8598V, corresponding to the
reduction peaks centerat 3.6827V and 3.7131V, respectively,
it is obviously that the difference value between the oxidation
peaks and reduction peaks for the KCl-NCM (0.1461V) is
smaller compared to NCM (0.2046V), and the same pattern is
presented in the second and third cycle. It is well-known that the
bigger the potential difference between lithium ions intercalating
and deintercalating, the stronger the electrode polarization is.
This smaller difference between oxidation and reduction peaks
positions indicates the better reversibility of Li+ ions during
intercalating/deintercalating in the KCl-NCM materials, which
is consistent with the result of initial charge-discharge curves for
the NCM and KCl-NCM.Meanwhile, it ensures reduced capacity
fade during cycling. Therefore, K and Cl co-doped can weaken
the electrode polarization and improve the electrochemical
performance.

CONCLUSION

In a word, we have researched out an effectual method to
improve the structural stability and electrochemical performance

of the Ni-rich layered oxide cathode during high-voltage
cycling. By XRD and TEM analysis, it is found that the
dopant materials have a higher cation ordering degree and
complete layered structure. Rietveld refinements prove K and
Cl substitutes can effectively reduce cation mixing. Through
electrochemical performance analysis, KCl-NCM has a better
comprehensive performance compared to NCM. The initial
capacity is improved, at the same time the rate performance has
also been greatly improved because of reducing the electrode
impedance and improving lithium ion diffusion coefficient.
Especially, doping K and Cl into the layered structure of
NCM could effectually inhibit the phase transition to some
degree during high-voltage cycling, leading that layered structure
of KCl-NCM remains more complete than NCM after 100
cycles.
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