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Abstract

A compelling need in the field of neurodegenerative diseases is the
development and validation of biomarkers for early identification and differential
diagnosis. The availability of positron emission tomography (PET)
neuroimaging tools for the assessment of molecular biology and
neuropathology has opened new venues in the diagnostic design and the
conduction of new clinical trials. PET techniques, allowing the in vivo
assessment of brain function and pathology changes, are increasingly showing
great potential in supporting clinical diagnosis also in the early and even
preclinical phases of dementia. This review will summarize the most recent
evidence on fluorine-18 fluorodeoxyglucose-, amyloid -, tau -, and
neuroinflammation - PET tools, highlighting strengths and limitations and
possible new perspectives in research and clinical applications. Appropriate
use of PET tools is crucial for a prompt diagnosis and target evaluation of new
developed drugs aimed at slowing or preventing dementia.
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Introduction

The last decades have progressively witnessed a shift from a
solely clinical diagnosis to a biomarker-supported diagnosis, and
molecular neuroimaging techniques such as positron emission
tomography (PET) have played a leading role in the demen-
tia diagnostic work-up'~*. PET techniques have provided major
advances, promoting novel approaches to support an early and
differential dementia diagnosis. An accurate quantification,
together with ad hoc PET techniques, can nowadays detect
very subtle, but significant, pathological and functional neuro-
nal changes, even before clinical symptoms arise. This is crucial
for early interventions, personalized care planning, and inclu-
sion in clinical trials’. Of note, several studies have demonstrated
that PET techniques fully show their diagnostic and prognostic
value especially when appropriate quantification methods are
applied'"". These cardinal issues include timing and protocol
of acquisition, parametric modelling and estimation, and the
critical definition of the reference region to be used for semi-
quantification.

Here, we review the most recent advances, strengths, and weak-
nesses of four of the leading or novel PET tools (or both) in
the dementia research field, namely "F-FDG (fluorine-18 fluoro-
deoxyglucose), amyloid, tau, and neuroinflammation PET imag-
ing. The progressive implementation of these techniques, together
with the standardization of appropriate methodologies, will allow
unique breakthroughs in our understanding of neurodegeneration
and will have remarkable implications for diagnostic algorithms
and therapy monitoring.

8F-fluorodeoxyglucose PET

The fundamentals of 'F-FDG PET are well established and
are based on extensively explored molecular mechanisms’.
BE-FDG PET signal reflects astrocyte/neuron coupled energy
consumption'*", and pioneering and recent studies support the
notion that astrocytes play a central role in neuronal glucose
consumption'®. Decrease of *F-FDG PET uptake is considered to
be a direct index of synaptic dysfunction, which can result from
a variety of neuropathological events, including but not limited
to altered intracellular signaling cascades and mitochondria
bioenergetics, impaired neurotransmitter release, and accumu-
lation of neurotoxic protein species”’. Of note, *F-FDG PET
has been shown to be extremely sensitive to any perturbation in
glucose metabolism, being able to capture neurodegeneration not
only due to local pathological and biochemical alterations but
also due to long-distance functional deafferentations’.

With regard to neurodegenerative diseases, a large and growing
body of research has provided convincing and consistent evidence
for highly specific patterns of *F-FDG PET hypometabolism in dis-
tinct dementia conditions””’~*, even before manifest brain atrophy
occurs’*. BF-FDG PET can provide support to differential diagno-
sis based on disease-specific hypometabolism patterns*25:20:2%30,
The ability of F-FDG PET to capture disease-specific patterns led
to the inclusion of ®F-FDG PET hypometabolism as a support-
ive feature in the clinical/research diagnostic criteria of multiple
dementia conditions'**. ®F-FDG PET is an accurate tool for early
detection and estimation of increased risk for future dementia
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conversion’! in the earliest clinical phases of disease, such as in
subjects with mild cognitive impairment (MCI), as well as in pre-
clinical cases (asymptomatic subjects at risk or asymptomatic car-
riers of pathogenetic mutations)”-*>*, providing highly relevant
prognostic information for clinical use*. Crucially, the ability of
BE-FDG PET to identify heterogeneous hypometabolism patterns
in MCI allows clinicians to predict conversion not only to Alzheim-
er’s disease (AD) dementia but also to non-AD dementia, avoiding
multiple additional examinations and unnecessary delay in proper
clinical management™-*. Given its high predictive value, *F-FDG
PET will likely play a relevant role for patient inclusion in future
clinical trials as an accurate tool to select patients at higher risk for
short-term conversion to dementia®.

Notably, domain-specific cognitive deficits are known to be
associated with network-specific functional alterations, which
can be readily detected by "®F-FDG PET™*. The close relationship
between “F-FDG PET and cognitive dysfunctions qualifies this
tool as being relevant in the evaluation of treatment outcomes in
patients with dementia®*~"'. Considering all of the above, we
strongly recommend the introduction of F-FDG PET in future
clinical trials, also for the evaluation of therapy outcomes.

To date, a number of international workgroups and consortia
have advocated for the relevance of "®F-FDG PET in the diag-
nostic work-up of neurodegenerative diseases'****. Nevertheless,
a recent Cochrane review concluded that there is not enough
evidence supporting the routine clinical use of F-FDG PET in
the diagnosis of dementia in the prodromal phase™. This outcome
was likely the consequence of the great methodological hetero-
geneity across F-FDG PET literature, including study design,
clinical cohorts, and, crucially, data analysis procedures, which
are likely to considerably influence "F-FDG PET accuracy, as
remarked by a reply from the European Association of Nuclear
Medicine™.

The choice of appropriate and validated procedures remains a car-
dinal issue in '®F-FDG PET data analysis. As for clinical diagnostic
purposes, various quantitative and semi-quantitative approaches
have been developed for single-subject analysis (such as statisti-
cal parametric mapping (SPM)* and Neurostat*”~")'>. SPM is one
of the most diffuse methods to statistically analyze voxel-wise
BFE-FDG PET data* and its accuracy has been validated in clini-
cal research settings™****. A recently developed and validated
single-subject SPM procedure takes advantage of an optimized
spatial normalization, based on a custom 'SF-FDG-PET dementia-
specific template, and of a high statistical accuracy of the result-
ing SPM t-maps, based on a large normal dataset for comparisons
at the single-subject level’*. This *F-FDG-PET SPM procedure
allows the identification of disease-specific brain hypometabolism
patterns in single cases, and in cross-validation studies for diagnos-
tic accuracy it performs better than visual qualitative assessment
of BF-FDG-PET uptake images, clinical assessment of patients,
cerebrospinal fluid biomarkers, and amyloid PET****. This method
has been validated in clinical research settings both for differen-
tial dementia diagnosis®*****, including atypical parkinsonisms,
and for prognosis in prodromal cases”******. We strongly support
the implementation of this method not only in academic research
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but also in routine clinical settings. Other in vivo neuroimaging or
cerebrospinal fluid biomarkers may also be added in the diagnostic
work-up of cases with unclear "®F-FDG-PET hypometabolism pat-
terns, likely providing further support to dementia diagnosis.

In the last few years, neurodegenerative conditions have been pro-
gressively conceived as diseases of neural networks, which led to
the development of multiple statistical multi-variate approaches
able to capture their large-scale biological complexity'**. ®F-FDG
PET has been successfully used as a proxy to evaluate metabolic
connectivity, assuming that regions whose metabolism is corre-
lated are functionally interconnected’’. Of note, distinct patterns
of connectivity alterations are associated with different neurode-
generative conditions™. A reduced metabolic connectivity in the
hippocampi and in the dorsolateral prefrontal cortex networks
was reported in AD*, with an intermediate level of impairment
found in MCT*. In contrast, a study on dementia with Lewy bodies
(DLB) found altered metabolic connectivity in the occipital cortex,
cerebellum, thalamus, and brain stem™. In Parkinson’s disease
(PD), an extensive decrease of connectivity in frontal regions, brain
stem, and cerebellum was present®®. Though compelling, the net
majority of these findings are based on group-level analysis,
and therefore the single-subject diagnostic value of metabolic
connectivity approaches remains to be determined.

Amyloid PET

The first developed tracer for amyloid imaging was the '*F-FDDNP,
eventually discarded for its affinity to both amyloid and tau’’.
Later, the “Pittsburgh compound B” (''C-PiB) was developed,
despite the limitation of the carbon-11 short half-life, requir-
ing an on-site cyclotron and limiting its use in clinical settings.
Since 2012, "®F-labelled amyloid radiotracers with longer half-life
entered clinical and research evaluation in AD ("*F-florbetapir,
8F_florbetaben, and '*F-flutemetamol)*®. Since cortical retention for
each "F ligand is highly correlated among tracers”, amyloid-PET
data obtained from different tracers may also be compared pro-
vided that standardized acquisition procedures® and specific meth-
ods of analysis, such as the recently proposed Centiloid method®’,
are adopted. Standardization of acquisition procedures and data
analysis will certainly improve the incorporation of amyloid-
PET biomarkers into the standard diagnostic criteria for AD**7.
Both '""C-PiB and '®F-labelled amyloid-PET tracers bind with
high affinity to fibrillar amyloid in neuritic plaques®~°. However,
diffuse plaques with low fibrillarity and cerebral amyloid
angiopathy (CAA) also contribute to part of tracer binding®.

The large amount of scientific evidence obtained by in vivo
imaging of brain amyloid burden has challenged the primary role
for amyloid in AD pathogenesis®**. Still, appropriate use crite-
ria for amyloid-PET imaging stress the high accuracy of amyloid
PET in ruling out AD® and in supporting AD dementia diagno-
sis, especially in three main clinical populations: (i) subjects with
MCI, (ii) patients with suspected AD but atypical presentation
or etiologically mixed presentation, and (iii) patients with early-
onset dementia’’'. Of note, in MCI, recent studies have shown
that risk to convert to AD is greater in amyloid-positive subjects’”
and that the time of conversion from MCI to AD dementia nega-
tively correlates with the annual increase in amyloid deposition
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rate”’. However, since amyloid deposition rate increases rapidly in
the prodromal phases of the disease’™, in some subjects it might
have already reached a plateau in the MCI stage®. For this rea-
son, it has recently been suggested that amyloid rate might not be
the best predictor of time to conversion from MCI to AD demen-
tia as compared with neuronal injury biomarkers such as '*F-FDG
PET”. It should be taken into account that the characteristics
of BF-FDG-PET hypometabolic patterns in MCI individuals can
indicate the prognostic risk of progression to different dementia
conditions (see above)”*. In addition, amyloid-PET studies
showed MCI patients presenting with wide variations in amyloid
burden load’””", sometimes showing an intermediate “gray area”
burden, challenging attempts to classify it as either positive or
negative’®.

In patients with dementia, amyloid PET is recognized as a
powertful tool to differentiate conditions characterized by a promi-
nent amyloid deposition (that is, dementia due to AD) from those
without, such as frontotemporal dementia (FTD)”. Recently, a
comprehensive meta-analysis indicated that accuracy of amyloid
PET in differential diagnosis of dementia might actually be
circumscribed to relatively young demented patients since amyloid
positivity dramatically increases with age in cognitively normal
individuals (high prevalence after 70 years of age) and in non-AD
dementia®**'. Furthermore, amyloid PET cannot distinguish
specific AD syndromes®** and other pathologies characterized
by amyloidosis, such as DLB and CAA, and most studies show a
non-specific pattern of amyloid burden diffusely distributed
throughout the entire cortex across diseases™ . Of note, in CAA,
'C-PiB was consistently shown to bind to cerebrovascular amyloid
plaques, especially in the occipital cortex"*’. As a consequence,
amyloid tracers should be regarded as a general marker of brain
amyloidosis and not of specific AD amyloidosis'*.

As for amyloid positivity in normal aging, it is currently debated
whether cognitively normal subjects with a positive amyloid-PET
scan represent prodromal AD cases who will eventually develop
AD dementia or rather will remain stable”"’**. Since variations
in amyloid deposition rate in normal individuals are subtle (that is,
2-5%)%, a long follow-up might be necessary to observe develop-
ment of dementia, and up to 19 years might be needed to reach
the mean value of amyloid observed in AD”. However, the view
that amyloid positivity equals AD dementia diagnosis has been
challenged by the high prevalence of amyloid positivity in the
elderly (about 44% in nonagenarians) despite normal cognitive
function®. Of note, the classification of amyloid-positive or
-negative is dependent on the cutoff selected for positivity”,
which varies according to the quantification method adopted for
tracer binding estimation. In this regard, different quantification
methods for amyloid PET have been proposed, including either
compartmental model binding tools or reference tissue model-
based tools, and various regions of interests are suggested for
the latter (for instance,”). A critical issue in amyloid-PET data
analysis relates to the definition of the optimal reference region
for semi-quantification. Most of the amyloid-PET studies tend to
consider the cerebellum, as either a whole or gray matter only,
as an optimal reference region, but the pons has been suggested
as well””. Particular caution is needed in the case of longitudinal
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evaluation of amyloid-PET changes, where a direct standardized
uptake value ratio (SUVR) semi-quantification could be sensitive
to flow changes and produce biased results’’. In longitudinal
studies, the inclusion of a supratentorial white matter region
should be considered for a robust reference”. It is generally accepted
that compartmental models provide the most accurate results, and,
for routine scans, a simplified reference tissue can be used™”.
Still, no specific guidelines for amyloid PET have been established
yet’'. Identification of an optimal normal versus abnormal cutoff
with amyloid PET is also crucial in patient selection and inclusion
in clinical trials.

Currently, amyloid PET imaging is a crucial requirement for
inclusion/exclusion in clinical trials. The majority of clinical
trials in AD have focused on amyloid therapies (for example,
see references 96-98), also including serial amyloid-PET scans
to evaluate decreases in cerebral amyloid burden’”. An open
question remains as to which amyloid-PET tracers are the most
adequate to evaluate the efficacy of therapeutic interventions.
Crucially, the adoption of amyloid-PET imaging for clinical
trials has been criticized because currently available amyloid
PET tracers measure fibrillary insoluble amyloid burden and are
insensitive to toxic soluble amyloid oligomers”, which are much
more clinically relevant'”. From the methodological standpoint,
clinical trials may suffer from the lack of appropriate quantifica-
tion, usually limited to SUVR semi-quantification (for example,
see references 96-98). Furthermore, the lack of a strong
association between amyloid burden and measures of cognition
and neurodegeneration®, as shown by several multi-tracer PET
studies®#+1V1-1% " guggests that clinical trials should include other
pathological and topographical neurodegeneration biomarkers.

Tau PET

One of the most recent advances for in vivo PET imaging is the
evaluation of cerebral tau burden'®-'%, Tau protein is physiologi-
cally associated with the stabilization, assembly, and functional
integrity of microtubules, critical structures for cytoskeletal
support and intracellular molecular transport'*''’. Its hyperphos-
phorylation and accumulation are key pathogenic events in a
number of neurodegenerative conditions (that is, tauopathies) and
can potentially trigger remarkably different clinical phenotypes
and disease courses'”!'!!. Tau protein can present in six different
isoforms, which are grouped on the basis of the number
of microtubule-binding domain repeats (that is, three or four
(3R/4R))''°. In a normal brain, the ratio of 3R/4R tau is 1:1, but it
can change across the different pathologies, such as in the case of
progressive supranuclear palsy (PSP) and corticobasal degeneration
(CBD), which are 4R-dominant, or in the case of Pick’s disease,
which is 3R-dominant'*'"”. When agglomerating, hyperphospho-
rylated tau can additionally assume different conformations, such
as paired helical filaments (PHFs), straight filaments, and irregu-
lar filaments'”. This biological complexity implies a considerably
heterogeneous pathological picture which historically hampered
the development of selective tau radioligands suitable for in vivo
PET imaging'*.

Notwithstanding tau biological complexity, the synthesis of
some radioligands is now available and is rapidly entering into
extensive research use and possibly for a potential validation in
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clinical practice'”. To date, three broad groups of radioligands are
under extensive evaluation: the F-THK5351, 'F-THK5117, or
BE-THK5105'">'"*; the "F-T807 (also known as 'F-AV1451 or
E-Flortaucipir)'*; and the '"C-PBB3'"°.

The first tau PET imaging results in the AD spectrum have provided
compelling evidence for a tight relationship between tau burden
and synaptic dysfunction, gray matter atrophy, and cognitive
deficits'"'*", confirming previous post-mortem evidence'’"!*.
Early reports additionally suggested that tau PET was able to
recapitulate the neuropathological Braak staging, suggesting that
it could be a valuable tool for the in vivo staging of AD pathology
progression'*'>*. Multiple reports showed a cross-sectional asso-
ciation between worsening of cognitive impairment and increas-
ing cortical tau-PET binding, from normal cognition to MCI and
AD dementia stages''”!'*!?", Of note, the correspondence between
tau accumulation, neurodegeneration, and clinical manifesta-
tions stands in stark contrast with amyloid-PET evidence, which
is not associated with specific patterns of neurodegeneration or
cognitive impairment (see “Amyloid PET” section above). The
topographical specificity of tau-PET uptake distribution especially
emerged for the AD variants, such as posterior cortical atrophy
and the logopenic variant of primary progressive aphasia, which
are known to be associated with phenotype-specific patterns of
neurodegeneration and cognitive deficits'**. These studies showed
a consistent spatial correspondence between in vivo tau burden,
neurodegeneration, and clinical syndromes, at group and single-
subject levels®!1%125-127,

The introduction of tau-PET techniques is reshaping the AD
research field, allowing a more targeted evaluation of the origi-
nal amyloid cascade hypothesis, which remains highly contro-
versial (see “Amyloid PET” section above and”'**). Several
studies specifically focused on the relationships between tau and
amyloid accumulation in AD and in healthy aging''®"20129-153,
The most consistent and compelling observation regards the
variable patterns of tau deposition in subjects with or without a
considerable cerebral amyloid burden'”. Medial temporal lobe
(MTL) tau accumulation has been associated with an age-related
process independent from amyloid burden'”, whereas tau
spreading outside the MTL is almost invariantly associated with
an amyloid-positive status'#~'%.

While providing a wealth of evidence with critical implications
for disease tracking and monitoring of AD interventions, the
above-mentioned studies have also highlighted several areas of
criticisms which are in need of further consideration'**. Of note,
the selectivity of the current tau-PET radioligands for non-AD
tauopathies is not well understood. Previous autoradiographical
studies on the most commonly adopted tau-PET compounds, such
as the F-AV1451, have shown high affinity for the AD tauopa-
thy (that is, for intracellular neurofibrillary tangles composed
of PHFs, with an equal 3R/4R tau ratio)'*"'**. The same, however,
was not observed for the 4R tau aggregates typical of primary
tauopathies, such as PSP or CBD, where post-mortem results are
more heterogeneous and overall present less robust staining'*’~'*.
Another area of concern regards consistent non-specific tau-PET
binding in subcortical structures, especially in the striatum and
in the choroid plexus, in healthy controls, suggesting that the
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currently available tau tracers could present off-target binding,
such as to neuromelanin'*”'**, The possibility that tau-PET lig-
ands present non-specific binding is supported by a recent study
showing that selegiline, a monoamine oxidase-B (MAO-B)
inhibitor, significantly reduces brain "F-THK5351 uptake'*.
Additionally, it has been suggested that AV1451 could present
non-specific binding to MAO-A as well'”, even if there are
opposite results'®. Another issue in tau-PET quantification
is represented by the time window adopted for SUVR semi-
quantification. As for ®F-AV1451, the 80- to 100-minute SUVR,
commonly adopted in previous research studies'*®, might be
not optimal given the evidence for a further 30% increase of
SUVR values up to 180 minutes from injection'**. The longer
uptake time window of this tracer should be taken into account
when such semi-quantifications are adopted'’®. Given these
premises, tau-PET diagnostic value in AD, and especially in
non-AD tauopathies, is in need of further evaluation.

Neuroinflammation PET

In vivo imaging of neuroinflammation responses has recently
gained particular interest in clinical neuroscience research'*’'*,
and neuroinflammation has been recognized as a key player in
the course of neurodegeneration'®. The currently available PET
molecular imaging techniques allow the measurement of neu-
roinflammation through imaging of both astrocytes and micro-
glia activation'’. Astrocytosis can be uniquely measured through
PET and the ""C-deuterium-L-deprenyl ligand ("'C-DED), which
is an irreversible inhibitor of the MAO-B enzyme, over-expressed
during astrocyte activation'*.

The great majority of research has otherwise focused on PET
imaging of microglia activation, and many radioligands have
been synthetized, the great majority of which target the over-
expression of the 18-kDa translocator protein (TSPO). TSPO is
an outer mitochondrial membrane protein, expressed mostly by
microglia and, to a lesser extent, by astrocytes'”''*”. Tts levels in
the central nervous system in healthy conditions are generally
low, whereas their over-expression in the disease state has been
well documented' .

Among the others, "C-(R)-PK11195 is the first and prototypi-
cal TSPO radioligand'** and has been widely adopted in multiple
neurodegenerative conditions'*'**. A second generation of radio-
ligands has been subsequently introduced, mainly to overcome
some of the "C-(R)-PK11195 limitations, such as limited
availability of "C ligands in clinical settings and low signal-
to-noise ratio'”. These second-generation ligands come with
both ''C or "®F isotopes, such as '"C-PBR28 and "SF-DPA714, and
overall display higher binding affinities'”. A few years ago,
however, it was shown that a single-nucleotide polymorphism
(that is, rs6971) in the TSPO gene can considerably influence the
uptake of the second-generation tracers, making genetic testing
mandatory>®">’, While a third generation of fluorinated radiolig-
ands is currently under evaluation'**, the ''C-(R)-PK11195 remains
the best validated and diffusely adopted in human studies, not
requiring TSPO genotype evaluation.
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Of note, quantification of TSPO PET can be particularly
challenging™® given the intrinsic characteristics of the TSPO
protein'”’. For instance, TSPO can be remarkably expressed in
the endothelium, and it is heterogeneously distributed across the
brain, hindering the definition of an anatomically defined reference
region'”. To overcome the latter limit, several advanced cluster-
ing algorithms have been developed to iteratively select groups
of voxels sharing specific time activity curves (that is, resembling
temporal delivery of the tracer in gray matter without specific
binding)'**'*>. The complexity of TSPO-PET quantification and
the use of radioligands with different properties, together with
the characteristics of TSPO distribution, likely contributed to the
pronounced heterogeneity of the reported findings in the litera-
ture. A representative example comes from TSPO-PET imaging
of AD'"*1531% Previous studies have shown significant micro-
glia activation in key AD signature regions, such as entorhinal
and temporo-parietal areas, whereas some have reported negative
results'™. As for relation to disease phase, some studies described
more significant microgliosis'® and astrogliosis'® in prodromal/
preclinical rather than AD dementia phases whereas others showed
the opposite'®. Of note, previous ""C-DED-PET studies have
accordingly shown more significant astrocytosis in prodromal and
preclinical genetic AD subjects when compared with subjects in
later disease phases'®'*’. Diverging evidence also exists regard-
ing the association between microglia activation and amyloid
burden'**'". Several recent studies have provided novel evi-
dence for longitudinal associations between neuroinflammation,
neurodegeneration, and pathology accumulation in AD'*!/7h172,
An increase of microglia activation in AD was longitudinally
associated with amyloid accumulation and reductions of brain
glucose metabolism'’'. Another recent study introduced a possible
“two-peaks” model of microglia activation in AD'”* with microglio-
sis first peaking at the prodromal MCI stage, afterwards declining
approaching AD dementia transition, and then increasing again
during the final disease stages'’”. As for '"C-DED PET, a recent
longitudinal study on carriers of autosomal dominant AD muta-
tions also indicated that the highest detected astrocyte activations
were present at the asymptomatic stage, progressively decreasing
approaching clinical onset'”. Of note, amyloid accumulation
followed an opposite trend'®.

As for other neurodegenerative conditions, TSPO PET has been
successfully applied in synucleinopathies, such as in DLB, PD,
and PD with dementia'”*"'”; in FTD'”; in atypical parkinsonisms
such as multiple system atrophy (MSA), CBD, and PSP'7~'"’; and
in prion diseases, such as Creutzfeldt-Jakob disease'*’.

Crucially, it remains to be understood whether this local immune
response is thoroughly beneficial or rather can promote neuro-
degeneration'*. This is particularly true in relation to micro-
glia activation, which is a complex and dynamic process'®'.
Understanding whether and how microglia is reacting within
a disease course may provide important insights into disease
pathogenesis and have remarkable implications for future clini-
cal trials. PET imaging of neuroinflammation provides the unique
chance of evaluating, in vivo, the reactivity of microglia cells, but
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also astrocytes by means of '"C-deprenyl PET, to either neuronal
damage or pathology accumulation, with remarkable implications
for research and possibly future clinical settings'>*'*.

Further validation of TSPO-PET imaging is needed to translate
its application to clinical practice. Notwithstanding the broad
efforts, the greatest challenge is still represented by the lack of a
standardized methodology, which hampers the reproducibility
and the biological interpretation of the findings. Additionally, the
debate on the actual physiological role of the TSPO protein is
yet to be solved'®*'®*. One of the most remarkable future appli-
cations of neuroinflammation PET is the outcome evaluation of
pharmacological interventions. Some studies have already used
TSPO PET to monitor the anti-inflammatory or immunomodula-
tory therapies in PD'®!, MSA'®, and multiple sclerosis'®*'*’,

Several non-TSPO new targets to measure microglia activation
with PET-based techniques, including but not limited to puriner-
gic and cannabinoid receptors, are currently under evaluation'**.
The development of these new radioligands not only is linked
to the attempt of overcoming TSPO intrinsic limits (see above)
but also aims at the detection of specific microglial functional
phenotypes'®. In neurodegenerative conditions, microglia can
acquire very diverse functional phenotypes based upon several
factors'®’; in this direction, the development of PET radioligands
with particular affinity for specific microglial polarizations (for
instance, homeostatic versus neurotoxic) would be of utmost
importance. Preliminary data are available for PET imaging of the
cannabinoid receptor type 2 (CB2R), which is over-expressed by
microglial cells during activation and has been shown to promote
neuroprotection'”. The CB2R PET radioligand, '"C-NE40, has
been recently used in patients with AD''. The development of
PET tracers addressing phenotype-specific microglia activation
will hopefully allow novel insights into how neuroinflammation
responses could be contributing to neurodegeneration.

Conclusions

Recent studies have progressively highlighted how the same
pathology can trigger very diverse functional phenotypes. Given
the recent advances in neuroimaging techniques, it is likely
that the multi-modal integration of pathological and functional
biomarkers will be the key proxy to the most accurate identifi-
cation of both underlying pathology and phenotypic syndrome,
leading to the tailoring of the most appropriate care plan and
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prognosis. The increasing availability of PET in vivo pathol-
ogy markers will likely favor the implementation of a spectrum-
based research framework.

Although the clinical usefulness of amyloid PET is recognized, it
is particularly recommended to specific clinical sub-populations,
such as early and atypical clinical presentations. The novel
tau tracers are promising, given their tight relationship with
neurodegeneration, but the lack of affinity for different tau
isoforms and the evidence for non-specific bindings shown by
several of these radioligands call for the development of novel
compounds overcoming these limitations. In this context, *F-FDG
PET provides a well-validated key value to dementia diagnosis
and prognosis and should be considered as one of the most
valuable tools for monitoring neurodegenerative disease status
and progression and also for selecting candidates for clinical trials
and evaluating treatment response in both AD and non-AD
pathologies.
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