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ABSTRACT.	 Streptococcus spp. cause a wide range of diseases in animals and humans.  
A Streptococcus strain (FMD1) was isolated from forest musk deer lung. To identify the bacterium at 
the species level and investigate its pathogenicity, whole genome sequencing and experimental 
infections of mice were performed. The genome had 97.63% average nucleotide identity with 
the S. equinus strain. Through virulence gene analysis, a beta-hemolysin/cytolysin genome island 
was found in the FMD1 genome, which contained 12 beta-hemolysin/cytolysin-related genes. 
Hemolytic reaction and histopathological analysis established the strain’s pathogenicity in mice. 
This is the first report of a beta-hemolytic S. equinus strain in forest musk deer identified based 
on phenotypic and genotypic analyzes; this strategy could be useful for analyzing pathogens 
affecting rare animals.
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Forest musk deer (Moschus berezovskii) is a medium-sized mammal that inhabits alpine forests. This animal has a high 
economic value because of the musk secreted by adult males, which plays an important role in traditional Asian medicine and 
the international perfume industry [23]. Because of the wild origin of the forest musk deer, it is difficult for people (including 
breeders) to approach the animal, thus, noticing the onset of diseases is also difficult. In December 2018, a 10-year-old forest musk 
deer at the Sichuan Institute of Musk Deer Breeding (Chengdu, China) suddenly fell down, showed anorexia and purulent nasal 
secretion, and died before the veterinarian’s arrival. At autopsy, it was observed that the lungs were severely swollen, covered with 
petechial hemorrhages, and surrounded by a yellow peptone-like exudate (Supplementary Fig. 1). The lung tissue was collected 
and transported on ice to the laboratory for bacterial examinations.

First, the lung was streak-inoculated onto 5% sheep blood agar plates under aerobic and anaerobic conditions and incubated 
for 20 hr at 37°C. The single colony was selected and placed on 5% sheep blood agar plates based on the morphological 
characteristics. Then, the pure culture was subjected to Gram staining and biochemical identification. After this, the total DNA 
of the isolate was used as a template for a polymerase chain reaction (PCR) to amplify the 16S rRNA region with universal 
primers 27F and 1492R. The PCR procedure was the same as that described in a previous report [24]. The sequencing results were 
compared with the reference sequences from the NCBI database via BLAST. For the phylogenetic analysis, a dataset of 16S rRNA 
gene sequences was built, and all reference sequences were extracted from GenBank with high similarity based on the results 
of NCBI BLAST. The program used for the phylogenetic analysis was the same as that used in a previous article description 
[24]. In addition, the genome sequence of the isolate was sequenced at Novogene Bioinformatics Technology Co., Ltd., Beijing, 
100000, China. The average nucleotide identity (ANI) and virulence genes of the isolate were identified using an ANI calculator 
(http://enve-omics.ce.gatech.edu/ani/index) [8] and virulence factor database (VFDB) (http://www.mgc.ac.cn/VFs/main.htm) 
[12], respectively. The names of the virulence genes were determined using NCBI BLASTn (e-value <1e-10, identity >80%, and 
coverage >90%) [21]. The complete genomes of S. equinus, S. lutetiensis, and S. infantarius were used as reference genomes for 
the ANI analysis.

Twelve BALB/c mice were divided into two groups: test and control. All experiments using mice were approved by the committee 
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for the animal experimentation of the Sichuan Agricultural University. 
The bacterial suspension was diluted to 4.3 × 108 CFU/ml, and six mice 
were intraperitoneally injected with 0.2 ml of the bacterial suspension. 
At the same time, the control group was injected with physiological 
saline. The infected and healthy mice groups were sacrificed after seven 
days, and then the lungs were immersed in 4% neutral buffered formalin 
and stained with hematoxylin and eosin for pathological observation. 
Meanwhile, the lung tissue of dead forest musk deer was processed as 
outlined above.

After 20 hr of incubation, smooth, grayish, and neat-edged colonies 
were found with a small zone of clear beta-hemolysis on the 5% sheep 
blood agar plates under both aerobic and anaerobic conditions (Fig. 1). 
Gram staining results showed that the isolate was a Gram-positive, 
round-shaped bacterium. Moreover, the isolate was negative in mannite, 
sorbitol, aesculin, inulin, catalase, and trehalose, positive in glucose, 
lactose, raffinose, and salicylic acid, and could not grow in Trypticase 
Soy Broth supplemented with 6.5% (w/v) NaCl. Electrophoresis 
indicated that the size of the PCR product of the 16S rRNA gene was 
1,452 bp (Accession No. MK652875), which was highly similar (Ident 
>99.45%, Query cover=99%) to the 16S rRNA sequences of S. equinus, 
S. lutetiensis, and S. infantarius. In addition, the FMD1 strain was alone 
in a clade in the phylogenetic tree based on the 16S rRNA sequences 
of 60 Streptococci species (Fig. 2). Based on the above-mentioned 
characteristics, the FMD1 strain was difficult to identify at the species 
level based on conventional methods and 16S rRNA sequence analysis.

Streptococcus is a diverse genus, encompassing approximately 77 
species of bacteria, which infect a host of different animals [9]. Many 
Streptococci species are well-known pathogens in humans and animals, 
including S. pneumoniae, S. suis, and S. equinus [9, 11], and cause a broad range of diseases [5]. In contrast, S. gallolyticus and S. 
infantarius play important roles in traditional fermented food products across the world [18]. Hence, there is a potential public health 
risk if Streptococci species are not accurately identified.

To better understand the species level and pathogenicity of the isolated Streptococcus strain, the genome sequence was used for ANI and 
virulence gene analysis. The whole genome sequence of FMD1 was submitted to GenBank under the accession number SPDR00000000. 
The FMD1 genome was aligned with the S. equinus NCTC8140 strain assemblies at 97.63% ANI, while the highest ANI with S. lutetiensis 
and S. infantarius was 87.15% and 86.95%, respectively. The ANI analysis results identified the FMD1 strain as S. equinus.

Conventional methods and PCR analyzes have been developed to improve the species identification of bacteria [2]. However, 
some studies have encountered challenges in identifying the bacterial species isolated from patients, such as Clostridium, Yersinia, 
Klebsiella and Streptococcus [10, 13, 15, 16]. The accurate identification of bacteria at the species level has become increasingly 
more important [6]. Thus, many reviews highly recommended whole genome sequencing and analysis to increase the confidence in 
the species identification accuracy [4]. ANI is a useful tool, used to improve the accuracy of bacterial identification, and has been 
proposed as the best option for determining species [4, 22].

Notably, in the FMD1 genome Scaffold 2, a beta-hemolysin/cytolysin genome island (SPDR01000002: 58,344–69,620) was 
found, which contains 12 beta-hemolysin/cytolysin related genes (Table 1), including cylX, cylD, cylG, acpC, cylZ, cylA, cylB, 
cylE, cylF, cylI, cylJ, and cylK. The gene structure agreed with the beta-hemolytic genome island, which was found in group B 
Streptococci and contributed to disease pathogenesis [3]. To the best of our knowledge, a beta-hemolysin S. equinus strain has been 
isolated from bovine milk by Babu [1]. Previous studies [14, 17] have reported that hemolytic reaction is a strong evidence of the 
pathogenic potential of microorganisms, and beta-hemolysin may direct tissue injury or the activation of the host inflammatory 
response. As an important intestinal bacterium, S. equinus was first isolated in 1906, was frequently detected in feces, and thought 
to be a nonpathogenic bacterium for a long time [19]. In recent years, some diseases caused by S. equinus have been reported [7]. 
This study is the first report of a beta-hemolytic S. equinus strain in the forest musk deer.

Forest musk deer is a first-class protected animal in China, and therefore animal experimentation using this species is forbidden. 
We have successfully established a mouse challenge model of the Escherichia coli O78 strain and established a foundation for 
future research on the pathogenesis of pathogens isolated from forest musk deer [20]. To better understand the pathogenesis of S. 
equinus FMD1, mice are an excellent experimental animal for replacing forest musk deer. The pathological features of the lungs 
of mice and forest musk deer showed different degrees of histopathological changes (Fig. 3). The histological lesions in the lung 
tissues of mice and forest musk deer showed infiltration of numerous erythrocytes and inflammatory cells in the alveolar lumen. 
The alveolar epithelial cells of mice proliferated, but there was no standard for the alveolar walls of healthy forest musk deer. Lung 
histological lesions and hemolytic reactions confirmed that the S. equinus FMD1 strain is a pathogenic bacterium affecting mice 
and forest musk deer.

Our results indicate that whole genome analysis is a useful strategy for improving the accuracy of bacterial identification and 

Fig. 1.	 Hemolytic phenotype analyses of the Streptococcus 
equinus FMD1 strain on 5% sheep blood agar plates.
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mining genetic information. To the best of our knowledge, this report is the first to describe the beta-hemolytic S. equinus strain in 
forest musk deer. However, additional laboratory research investigating the beta-hemolytic genome island of the FMD1 strain is 
warranted.

Fig. 2.	 Phylogenetic comparisons of 60 Streptococci strains using 16S rRNA gene sequencing. This phylogenetic tree includes 7 Streptococcus 
bovis 16S rRNA gene sequences, 23 Streptococcus equinus 16S rRNA gene sequences, 3 Streptococcus infantarius 16S rRNA gene sequences, 
and 26 Streptococcus lutetiensis 16S rRNA gene sequences, along with the FMD1 16S rRNA gene sequence. Multiple sequence alignments were 
performed using Clustal X 2.1. The phylogenetic tree was constructed using the neighbor-joining method with the MEGA 6.0 program. Genetic 
distances were determined using Kimura’s 2-parameter model. The robustness of individual branches was estimated using bootstrapping with 
1,000 replications. The scale bar corresponds to 0.001 estimated nucleotide substitutions per site.
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Fig. 3.	 Photomicrographs of lung tissues from mice and forest musk deer. (a) The histological structure of the lung of forest musk deer (H&E. 
400×, Bar=50 μm). (b) The histological structure of the lung in the control group mice (H&E. 400×, Bar=50 μm). (c) The histological structure 
of the lung in the test group mice (H&E. 200×, Bar=200 μm). (d) The histological structure of the lung in the test group mice with high-
expansion (H&E. 400×, Bar=50 μm). Histopathological observations showed infiltration of numerous erythrocytes, neutrophils, and monocyte 
in the alveolar lumen of forest musk deer and test group mice. In addition, an area of thickened alveolar wall was observed in the test group 
mice. There were no histopathological changes in the control group.

Table 1.	 Genetic constitution of the beta-hemolysin/cytolysin genome island in the Streptococcus. equinus FMD1 strain

Orf ID Name Identity (%) CDS region in nucleotide VFDB_ID Product
Orf01544 cylX 96.44 SPDR01000002:58344–58652 VFG005761 Acetyl coenzyme A CoA carboxylase CylX
Orf01545 cylD 98.22 SPDR01000002:58649–59494 VFG005764 Malonyl-CoA-ACP transacylase CylD
Orf01546 cylG 97.65 SPDR01000002:59491–60213 VFG005766 CylG protein
Orf01547 acpC 99.34 SPDR01000002:60206–60508 VFG005770 AcpC acyl carrier protein AcpC
Orf01548 cylZ 97.69 SPDR01000002:60495–60971 VFG005773 3R-hydroxymyristoyl ACP dehydratase CylZ
Orf01549 cylA 98.28 SPDR01000002:60961–61890 VFG005776 ABC ATP-binding cassette transporter CylA
Orf01550 cylB 98.63 SPDR01000002:61883–62761 VFG005779 ABC ATP-binding cassette transporter CylB
Orf01551 cylE 97.96 SPDR01000002:62758–64725 VFG005780 CylE protein
Orf01552 cylF 98.32 SPDR01000002:64728–65678 VFG005785 Aminomethyltransferase CylF
Orf01553 cylI 97.67 SPDR01000002:65678–67870 VFG005788 Putative 3-ketoacyl-ACP synthase CylI
Orf01554 cylJ 97.08 SPDR01000002:67880–69106 VFG005790 CylJ protein
Orf01555 cylK 97.44 SPDR01000002: 69114–69620 VFG005793 CylK protein

Orf, open reading frame; CDS: coding sequence; VFDB: virulence factors database.
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