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A B S T R A C T

Purpose: Advanced breast cancer commonly metastasises to bone; however, the molecular mechanisms under-
lying the affinity for breast cancer cells to bone remains unclear. Thus, we developed nomograms based on a
competing endogenous RNA (ceRNA) network and analysed tumour-infiltrating immune cells to elucidate the
molecular pathways that may predict prognosis in patients with breast cancer.
Methods: We obtained the RNA expression profile of 1091 primary breast cancer samples included in The Cancer
Genome Atlas database, 58 of which were from patients with bone metastasis. We analysed the differential RNA
expression patterns between breast cancer with and without bone metastasis and developed a ceRNA network.
Cibersort was employed to differentiate between immune cell types based on tumour transcripts. Nomograms
were then established based on the ceRNA network and immune cell analysis. The value of prognostic factors
was evaluated by Kaplan-Meier survival analysis and a Cox proportional risk model.
Results: We found significant differences in long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 20
messenger RNAs (mRNAs) between breast cancer with and without bone metastasis, which were used to con-
struct a ceRNA network. We found that the protein-coding genes GJB3, CAMMV, PTPRZ1, and FBN3 were
significantly differentially expressed by Kaplan-Meier analysis. We also observed significant differences in the
abundance of plasma cell and follicular helper T cell populations between the two groups. In addition, the
proportion of mast cells, gamma delta T cells, and plasma cells differed depending on disease location and stage.
Our analysis showed that a high proportion of follicular helper T cells and a low proportion of eosinophils
promoted survival and that DLX6-AS1, Wnt6, and GABBR2 expression may be associated with bone metastasis in
breast cancer.
Conclusions: We developed a bioinformatic tool for exploring the molecular mechanisms of bone metastasis in
patients with breast cancer and identified factors that may predict the occurrence of bone metastasis.

1. Background

Breast cancer is the most prevalent of all cancer types and is leading
the cause of cancer death in women [1]. In the advanced stages, breast
cancer often metastasises to bone and studies have shown that 47–85%

of patients with breast cancer will experience bone metastasis [2]. The
lowest rate of bone metastasis has been found in tumours negative for
the estrogen receptor (ER) and human epidermal growth factor receptor
2 (HER2) [3,4]. Conversely, increased bone metastasis rates are ob-
served in patients with HER2+, ER+/HER2−/Ki67Hi, and ER
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+/HER2−/Ki67Low tumours [3,4]. Bone metastases are frequently
found in the spine, ribs, pelvis, proximal femur, and skull. Bone dete-
rioration in these areas lead to serious complications such as pain,
fractures, hypercalcaemia, spinal cord compression, and other nerve
compression events, which significantly reduce quality of life and may
be fatal [1–5]. The process of bone metastasis is complex and includes
multiple stages. Firstly, separation of breast cancer cells from the pri-
mary tumour site is required, followed by transport to the bone via
blood or lymph, resulting in survival and proliferation in target bone
tissue [6–8]. Genomics research has shown that every step of metastasis
is composed of a series of sub-events. However, the molecular me-
chanisms underlying bone metastasis in breast cancer are not fully
understood [9–11].

In this study, we developed a complete protein interaction map by
constructing a competing endogenous RNA (ceRNA) network and gene
expression profile of patients with breast cancer, with or without bone
metastasis, to examine the underlying molecular mechanisms.
Prediction of bone metastasis and subsequent prognosis of breast cancer
may be related to both the ceRNA network and the type of tumour-
infiltrating immune cells, thus we obtained the gene expression profiles
of patients with breast cancer from The Cancer Genome Atlas (TCGA)
and applied the Cibersort algorithm. This was used to establish a pre-
dictive nomogram. In addition, we evaluated the relationship between
tumour-infiltrating immune cells and ceRNA networks, which provided
insight into the molecular mechanisms and clinical predictors of breast
cancer metastasis. A flow chart explaining this process is provided in
Fig. 1.

2. Materials and methods

2.1. Data collection

Breast cancer RNA-seq raw count and fragments per kilobase per
million mapped reads (FPKM) and miRNA-seq data were downloaded
from the TCGA database. Annotation information was downloaded
from genecode. The microRNA (miRNA) expression profile included
503 genes from 1078 samples (bone metastasis: 58; non-metastasis:
1020). The messenger RNA (mRNA) expression profile included 1925
genes from 1091 samples (bone metastasis: 58; non-metastasis: 1033).
The long non-coding RNA (lncRNA) expression profile included 1925

genes from 1091 samples (bone metastasis: 58; non-metastasis: 1033).

2.2. Differential gene acquisition, expression analysis and functional
annotation

We collected the RNA-seq raw count and FPKM fragments of 1091
primary breast cancer samples, of which 58 had bone metastasis (de-
tailed clinical information of all patients is summarised in Table 1). We
also retrieved demographic information and survival data from all pa-
tients. The genes that were not specific to breast cancer were filtered
out, and differential RNA expression between bone metastatic breast
cancer and non-bone metastasis breast cancer was analysed using dif-
ferentially expressed seq2 (DEseq2). Up or downregulated genes were
defined as false discovery rate (FDR)-adjusted P < 0.05 and log fold
change>1.0 or< -1.0. DEseq2 was specially designed to analyse raw
RNA-seq expression data to calculate differential gene expression be-
tween bone metastasis samples and non-bone metastasis samples
(threshold: logFC = 1, adj.P = 0.05). Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of
DEmRNAs were carried out using the database for annotation, visuali-
sation and integrated discovery (DAVID) [12]. Terms and pathways
with adj.P < 0.05 were selected.

2.3. Construction of a ceRNA network in breast cancer bone metastasis

miRNA-mRNA and lncRNA-miRNA interaction were predicted using
miRTarBase and LncBase v.2 experimental modules, respectively
[13,14]. We searched for miRNA with DElncRNA as the target in
LncBase database, and for target genes of these miRNAs in miRTarBase,
which were intersected with DEmRNA. Then, the Pearson correlation
coefficient (PCC) was calculated and the correlation between lncRNA
and mRNA was screened. We used Cytoscape v.3.5.1 [15] to select the
miRNAs that regulate lncRNAs and mRNAs, which were significant in
the hypergeometric test and correlation analysis. These were used for
visualising the ceRNA network (Sankey plot by Ggalluvial package).

2.4. Clinical significance of ceRNA network for bone metastasis in breast
cancer

Survival analysis and Cox risk regression analyses were performed

Fig. 1. A flow chart depicting the analytical process.
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for the genes in the ceRNA network to identify key genes related to
prognosis. The differences in gene expression from samples of different
TNM stage were analysed.

2.5. Model building

We randomised 1091 breast cancer samples into two groups.
Overall, 75% of the samples were used as the training set and 25% as
the test set. A Lasso regression model was constructed from the training

set, and the best lambda value and gene set were obtained. Then, the
lifetime of the test set was predicted by the constructed model, and
receiver operating characteristic (ROC) curve and calibration curves
were drawn. A Lasso regression model was then constructed using the
glmnet package. A ROC curve was drawn using the timeROC package.

The Cox risk regression model was constructed with these genes,
and the nomogram was drawn with the rms package. In order to
evaluate the prediction effect of the nomogram, a calibration curve was
developed.

2.6. Cibersort estimation

Cibersort software (http://cibersort.stanford.edu/) [16] estimated
the abundance of 22 different types of immune cells based on RNA-seq
count data. In order to explore the clinical significance of differing
proportions of immune cells, all samples were sorted according to cell
proportion, with the median used as the dividing line. The samples
were categorised as high- or low-proportion and included in the Kaplan-
Meier survival analysis.

2.7. Survival analysis and nomogram of central cells in tumour immunity

The impact of the immune cell types on the prognosis of breast
cancer patients was examined by Kaplan-Meier survival analysis and
Cox regression. The Wilcoxon rank-sum test evaluated the relationship
between immune cell subtypes, the occurrence of metastasis, and TNM
stage. In the original Cox model, immune cells showed a significant
correlation with prognosis and were selected to establish a nomogram.
We quantified the ROC and area under the curve (AUC) to evaluate the
sensitivity and specificity of our diagnostic and prognostic models. The
accuracy of the predictive capabilities of the nomogram was evaluated
using a calibration curve and consistency index. The relationship be-
tween ceRNAs and the 22 types of immune cells were investigated using
Pearson’s correlation coefficient. Statistical significance was de-
termined by a two-sided P < 0.05. R version 3.5.1 (Institute of
Statistics and Mathematics, Austria) with the following packages was
used for statistical analyses: ggplot2, rms, glmnet, survminer, and
timeROC.

3. Results

3.1. Identification and expression analysis of genes with significant
differences

We identified differentially expressed genes with a log fold change
of> 1.0 or< -1.0 and a FDR of< 0.05. The differential expression of
lncRNAs, miRNAs and mRNAs (Fig. 2A–C) in breast cancer samples
with and without bone metastasis was calculated using DESeq2
package. Overall, there were 183 upregulated lncRNAs, 13 down-
regulated lncRNAs; 17 upregulated miRNAs, 0 downregulated miRNAs;
520 up-regulated mRNAs and 26 down regulated mRNAs (Fig. 2D).

3.2. Functional enrichment analysis

Fig. 3 shows the enrichment of the top 10 GO terms and pathways of
differentially expressed mRNA (DEmRNA). We found that the main
functional areas of gene enrichment were: go: 0007267 ~ cell signal-
ling, go: 0070098 ~ chemokine mediated signalling, go:
0010628 ~ position regulation of gene expression, go: 0010942 ~ po-
sition regulation of cell death, go: 0010737 ~ protein kinase A sig-
nalling, and go: 0008284 ~ position regulation of cell promotion. The
main pathways of gene enrichment were: hsa04080: neuroactive living
receptor interaction, hsa04062: chemokine signalling, hsa05204: che-
mical carcinogenesis, hsa00982: drug metabolism – cytochrome P450,
and hsa00350: tyrosine metabolism and other tumour related signalling
pathways.

Table 1
Characteristics and distribution of breast cancer patients in the TCGA-BRCA
cohort.

Variables mRNA
(n = 1091)

miRNA
(n = 1078)

Bone metastasis
(n = 58)

Age (y)
>60 490 485 25
≤60 600 592 33
NA 1 1 0

Pathologic stage, n
Stage I 181 181 4
Stage II 620 609 18
Stage III 248 245 23
Stage IV 20 20 11
NA 22 23 2

T
T1 279 279 7
T2 631 620 29
T3 137 135 16
T4 40 40 6
NA 4 4 0

M
M0 907 893 39
M1 22 21 12
NA 162 164 7

N
N0 514 508 10
N1 360 356 28
N2 120 118 7
N3 76 75 11
NA 21 21 2

ER status, n
positive 803 795 41
negative 237 232 11
NA 51 51 6

PR status, n
positive 694 689 33
negative 343 335 20
NA 54 54 5

HER2 status, n
Positive 164 159 4
Negative 559 554 18
Equivocal 178 177 9
NA 190 188 27

Histological type
Infiltrating ductal

carcinoma
779 768 32

Infiltrating lobular
carcinoma

203 200 14

Infiltrating carcinoma of
no special type
(NOS)

1 1 0

Medullary carcinoma 6 6 0
Metaplastic carcinoma 9 9 1
Mucinous carcinoma 17 17 3
Mixed histology 29 29 4
Other 45 46 4
NA 2 2 0

TCGA: The Cancer Genome Atlas; BRCA: Breast cancer; ER: estrogen receptor;
PR: progesterone receptor; HER2: human epidermal growth factor receptor 2;
NA: not available.
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3.3. Construction of a protein interaction network based on differentially
expressed genes

We input the DEmRNA into the STRING protein database with a
score threshold of 0.9 (the highest confidence). The final protein in-
teraction network had 183 nodes, 491 edges, and protein-protein in-
teraction (PPI) enrichment of P < 1.0e−16. See Fig. 4 for details. The
average degree of each node was 5.37. This suggests that there is a
complex regulatory relationship between the different genes involved
in breast cancer with bone metastasis.

3.4. Construction and survival analysis of ceRNA network

The shared miRNAs of differentially expressed mRNA and lncRNA
were obtained from the LncBase and miRTarBase databases, the

Pearson’s correlation coefficient of lncRNA-mRNA pairs with shared
miRNA was calculated, and the positive expressed lncRNA-mRNA pairs
were screened (Table 2). Using Cytoscape software (Fig. 5A), we con-
structed a ceRNA network related to breast cancer with bone metas-
tasis, including 20 mRNAs, 18 miRNAs, 2 lncRNAs, and 48 edges. We
analysed gene batch survival in the ceRNA network and the results
showed that JGB3, CAMGV, PTPRZ1, FBN3 mRNA were all related to
prognosis (Fig. 5B–E).

3.5. Lasso regression analysis and nomogram construction

LncRNA and mRNA in the ceRNA network of bone metastasis were
used to calculate the optimal lambda value (Fig. 6A, B), which was
0.0133. Six genes (CAMGV, ALKAL2, GABBR2, BARX1, FBN3, and
Wnt6) were used to construct a multiple Cox risk regression model

Fig. 2. (A–C) Volcano map of differential expression of lncRNA, miRNA and mRNA. Red dots indicate genes significantly upregulated in bone metastasis samples,
green indicates genes significantly downregulated, and black dots indicate genes without a significant difference. (D) The composition of differentially expressed
genes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Liu, et al. Journal of Bone Oncology 24 (2020) 100304

4



(Fig. 6C). The six genes were used to construct a graph based on Cox
regression (Fig. 6D), which predicted the 1-, 3-, and 5-year survival
status. To evaluate the prediction effect of the nomogram model, the 1-,
3-, and 5-year calibration curves (Fig. 6E) were drawn, and the results
showed that the nomogram performed well. The ROC curve (Fig. 6F)
showed that the average ROC of the nomogram was 0.686, which re-
presents a high prediction accuracy. Lasso regression results also
showed that the six genes were necessary for modelling. In addition,
ROC and calibration curves showed acceptable accuracy as demon-
strated by AUC values of 0.746, 0.686, and 0.642 for 1-, 3-, and 5-year
survival, respectively.

3.6. Relationship between gene expression and TNM (Tumor, Node,
Metastases) stage

The relationship between mRNA and different TNM stages were
analysed by t-test. We found that the expression level of genes in the
ceRNA network decreased in later TNM stages. We observed that the
average expression levels of FBN3 in T1 and N1 stages were 0.270 and
0.228, respectively, while those in T4 and N3 stages were significantly
decreased (average expression values 0.116 and 0.186, respectively; T
stage, P = 0.006; N stage, P = 0.005, Fig. 7A, B). The average ex-
pression levels of GABBR2 in T1 and N1 stages were 0.226 and 0.211
respectively, while those in T4 and N3 stages were significantly de-
creased (average expression values were 0.072 and 0.140, respectively;
T stage, P = 0.0004; N stage, P = 0.0006, Fig. 7D, E). Fig. 7C shows
that the average expression level of ALKAL2 in T1 stage was 0.228,

while in T4 stage was 0.186. Fig. 7F shows that the average CAMKV
expression level in N1 stage was 0.057, while that in N3 stage was
reduced to 0.048).

3.7. Distribution of tumour-infiltrating immune cells in breast cancer with
bone metastasis

Fig. 8A shows the immune cell components of 58 bone metastasis
samples. The split violin diagram reveals the different immune cell
proportions between breast cancer with and without bone metastasis
(Fig. 8B). Among them, the abundance of plasma cell and follicular
helper T cells were significantly different between the two samples.

3.8. Clinical significance of immune cell components

We analysed the clinical correlation and prognosis of 22 types of
immune cell. The results showed that there were significantly more
mast cells present between M1 and M0 (Fig. 9A, P = 0.002), stage IV
and stage I (Fig. 9B, P = 0.002), T4 and T1 samples (Fig. 9C,
P = 0.008). Similarly, gamma delta T cells were significantly over-
represented in M1 samples compared with M0 samples (Fig. 9D,
P = 0.035), and stage IV samples compared with stage I samples
(Fig. 9E, P = 0.05). Survival analysis revealed that the samples with a
low proportion of eosinophils had better survival status (Fig. 9F, log-
rank test, P = 0.01); the samples with a high proportion of follicular
helper T cells had better survival status (Fig. 9G, log-rank test,
P = 0.025).

Fig. 3. (A) Gene ontology function enrichment circle; (B) Pathway enrichment cycle. On the left side of each circle is the gene, which is sorted according to the
multiple of expression difference between bone metastasis and non-bone metastasis.
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3.9. Clinical correlation of immune cells and nomogram multiple Cox risk
regression analysis

We performed multivariate Cox regression analysis for the 22 dif-
ferent types of immune cells, and showed that the model composed of
activated mast cells, gamma delta T cells, activated dendritic cells,
follicular helper T cells, eosinophils and neutrophils had the smallest
Akaike information criterion (AIC) (Fig. 10A). According to the above

clinical correlation analysis, six types of immune cells were selected to
construct the multiple Cox risk regression model and calculate the risk
ratio. Then, the nomogram (Fig. 10B) for 1-, 3- and 5-year survival was
developed. The calibration curve (Fig. 10C) shows that our nomograms
had an adequate predictive capacity and the product under the average
ROC curve was 0.616 (Fig. 10D). Selection of the best threshold for 5-
year survival status and division of the samples into a high-risk group
and low-risk group showed a significant difference in survival status

Fig. 4. Protein interaction network of different genes. In the network, point represents proteins, edges represent interactions, and a wider edge indicated a stronger
interaction.
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(P < 0.001, Fig. 10E, F) ROC curve and calibration curve analysis
showed that the nomogram was consistent and had good accuracy with
1-, 3-, and 5-year survival AUC values of 0.549, 0.616, and 0.644, re-
spectively. Multiple Cox regression analysis showed that the high-risk
group differed significantly from the low-risk group.

3.10. Co-expression analysis of immune cells and key genes

Pearson’s correlation coefficient indicated the correlation between
the thermogram of RNAs (Fig. 11A) and 22 types of lymphocytes in
breast cancer samples (Fig. 11B). Here, we specifically analyzed the
correlation between T-regulatory cells and Wnt6/BARX1, and found
that T-regulatory cells and Wnt6 (Fig. 11C, R = 0.11, P = 0.0027), and
T-regulatory cells and BARX1 (Fig. 11D, R = 0.072, P = 0.0017) were
positively correlated. We found that Wnt6 was positively correlated
with KLK6 and GJB3. Wnt6 was positively correlated with FBN3 and
GABBR2, and DLX6 and DLX6-AS1 were positively correlated. Naïve
CD4+ T cells and gamma delta T cells were also positively correlated.
Memory B cells negatively correlated with naïve B cells and plasma
cells, and CD8+ T cells positively correlated with monocytes. We also
showed that M1 macrophages positively correlated with M2 macro-
phages.

4. Discussion

Breast cancer is one of the most common malignant tumors in

women globally [1]. With continuing improvements in the prognosis of
breast cancer, the incidence of bone metastasis has also increased.
Epidemiological data showed that the incidence of bone metastasis in
advanced breast cancer was 65–75%, and the initial symptoms of bone
metastasis accounted for 27–50% in advanced breast cancer [1–3].
Patients with advanced breast cancer often develop distant metastasis
in locations such as bone. However, the underlying molecular me-
chanisms are still unknown. There are several determining factors re-
lated to molecular and cellular features that are often used in the clinic
to determine prognosis. Bone metastasis is detrimental to quality of life
and survival in patients with breast cancer, and causes serious com-
plications including pain, fracture, spinal cord compression, and ma-
lignant hypercalcemia [1–4]. Due to the frequent occurrence of bone
metastasis in patients with advanced breast cancer, the understanding
of pathogenesis and clinical management of bone metastasis are im-
portant and challenging topics in basic research and clinical practice.
The ceRNA network, including mRNA, miRNA, and lncRNA, and in-
filtrating immune cells may be critical to further understand this phe-
nomenon [17–20]. We observed that tumour samples with bone me-
tastasis had significantly altered proportions of infiltrating cells
compared with breast cancer without bone metastasis. We then devel-
oped two models to predict the prognosis of breast cancer patients with
bone metastasis. The resulting AUC of the two nomograms demon-
strated their value in a clinical setting.

LncRNA is a type of ncRNA with over 200 nucleotides, which is not
related to protein-coding [17–21]. New evidence suggests that lncRNA
imbalance occurs frequently in many malignant tumours, which is a key
factor for carcinogenesis through post-transcriptional regulation and
epigenetic modification [22,23]. Here, we bioinformatically analysed
the ceRNA network regulating bone metastasis in breast cancer with 20
protein encoded mRNAs, 2 lncRNAs and 18 miRNAs. We found a sig-
nificant correlation between four protein-coding genes (GJB3, CAMGV,
PTPRZ1, FBN3) and their associated miRNAs and lncRNAs and survival
in patients with breast cancer patients and bone metastasis. The AUC
values for 1-, 3-, and 5-year survival were 0.746, 0.686, and 0.642,
respectively. Using a hypergeometric test and correlation analysis, we
found a significant correlation between GJB3 (DLX6-AS1, hsa-mir-1-
3p), FBN3 (DLX6-AS1, hsa-mir-132-3p), CAMKV (DLX6-AS1, hsa-mir-
16-5p), PTPRZ1 (DLX6-AS1, hsa-mir-181a-5p), and survival rate in
breast cancer patients with bone metastasis. These results indicated that
DLX6-AS1 may be a key contributor to bone metastasis in patients with
advanced breast cancer. We speculate that DLX6-AS1 may regulate the
occurrence and progression of metastasis by interacting with Wnt/β-
catenin signalling.

Recently, an increasing number of studies show that aberrant
lncRNA expression leads to the development of many kinds of malig-
nant tumours, including breast cancer [17–23]. DLX6-AS1 is a lncRNA
believed to be carcinogenic by regulating the progression of renal cell
carcinoma, liver cell carcinoma, glioma, pancreatic cancer and lung
adenocarcinoma [24–31]. Normal brain tissue expresses a high level of
DLX6-AS1, which is involved in development regulation [29–31]. In
recent years, it has been found that DLX6-AS1 is abnormally expressed
in a variety of tumour tissues and is closely related to poor clinical
outcomes [24–31]. However, the molecular mechanisms of DLX6-AS1
and how it contributes to the pathogenesis of breast cancer are still
unclear. Zhao et al. demonstrated significant upregulation of DLX6-AS1
in breast cancer tissues and cell lines [32]. Furthermore, high DLX6-AS1
expression is linked to poor outcomes with regards to tumour size,
lymph node metastasis, TNM stage, and survival of breast cancer

Table 2
lncRNA-miRNA-mRNA pairs.

miRNA lncRNA mRNA P value PCC

hsa-let-7b-5p DLX6-AS1 IGF2BP2 3.62E-32 0.347
hsa-let-7b-5p DLX6-AS1 IGF2BP3 2.00E-61 0.471
hsa-let-7f-5p DLX6-AS1 KLK6 2.52E-27 0.32
hsa-mir-1-3p DLX6-AS1 GJB3 7.91E-41 0.389
hsa-mir-1-3p DLX6-AS1 SOX6 1.75E-85 0.545
hsa-mir-124-3p DLX6-AS1 OCA2 1.92E-46 0.414
hsa-mir-124-3p DLX6-AS1 GABBR2 3.18E-52 0.437
hsa-mir-124-3p DLX6-AS1 BARX1 1.49E-26 0.315
hsa-mir-124-3p DLX6-AS1 PRDM13 4.99E-29 0.329
hsa-mir-124-3p DLX6-AS1 PTPRZ1 1.09E-31 0.344
hsa-mir-132-3p DLX6-AS1 FBN3 7.32E-56 0.451
hsa-mir-148b-3p DLX6-AS1 CCKBR 1.28E-31 0.344
hsa-mir-148b-3p DLX6-AS1 DLX6 0 0.884
hsa-mir-155-5p AFAP1-AS1 SOX6 2.52E-25 0.308
hsa-mir-16-5p DLX6-AS1 ALKAL2 7.95E-44 0.403
hsa-mir-16-5p DLX6-AS1 SOX6 1.75E-85 0.545
hsa-mir-16-5p DLX6-AS1 KLHL34 2.04E-28 0.326
hsa-mir-16-5p DLX6-AS1 CAMKV 4.92E-25 0.306
hsa-mir-181a-5p DLX6-AS1 PTPRZ1 1.09E-31 0.344
hsa-mir-181a-5p DLX6-AS1 OCA2 1.92E-46 0.414
hsa-mir-195-5p DLX6-AS1 CAMKV 4.92E-25 0.306
hsa-mir-221-3p DLX6-AS1 FBN3 7.32E-56 0.451
hsa-mir-26a-5p DLX6-AS1 CAMKV 4.92E-25 0.306
hsa-mir-27a-3p DLX6-AS1 RNF182 2.35E-44 0.405
hsa-mir-30b-5p DLX6-AS1 CAMKV 4.92E-25 0.306
hsa-mir-30c-5p DLX6-AS1 CAMKV 4.92E-25 0.306
hsa-mir-320a DLX6-AS1 POLR2F 2.15E-47 0.418
hsa-mir-320a DLX6-AS1 IGF2BP3 2.00E-61 0.471
hsa-mir-7-5p DLX6-AS1 IL12RB2 6.13E-50 0.428
hsa-mir-9-5p DLX6-AS1 WNT6 2.16E-32 0.348

miRNA: microRNA; lncRNA: long non-coding RNA; mRNA: messenger RNA;
PCC: Pearson correlation coefficient.
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Fig. 5. Construction of ceRNA network and prognosis analysis. (A) Sankey plot of ceRNA network. Each square represents a gene. The larger the square, the larger the
degree of the gene node. (B–E) Significant survival curve in the ceRNA network of (B) JGB3, (C) CAMGV, (D) PTPRZ1, (E) FBN3.
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Fig. 6. Lasso regression analysis and nomogram construction. (A, B) Selection of important coefficient lambda in lasso regression. (C) Forest map of multiple Cox
regression results. (D) Nomogram based on multiple Cox regression. (E) Calibration curve for 1-, 3-, and 5-year survival. The closer to the diagonal, the better the
prediction effect. (F) ROC curve analysis for 1-3-, and 5-year survival.
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patients [24–32]. SiRNA knockout of DLX6-AS1 showed a reduction in
proliferation, apoptosis, invasion, migration, and the epithelial-me-
senchymal transition (EMT) of breast cancer cells [30–32]. These
findings suggest that the progression of breast cancer could be partly
due to overexpression of DLX6-AS1. Studies have indicated that mRNA
expression may be regulated by lncRNAs through competitive com-
munication between ceRNAs and miRNAs [33,34]. For example, DLX6-
AS1 silencing inhibits cell proliferation, migration, and invasion in non-
small cell lung cancer by interacting with mir-144. In addition, DLX6-
AS1 is important in the carcinogenesis of glioma by competing with
mir-197-5p. In pancreatic cancer, knocking out the DLX6-AS1 gene led
to inhibition of proliferation and metastasis of cancer cells through
enhancement of mir-181b’s endogenous effects. The results of our study
suggest that DLX6-AS1 may be important for the expression and reg-
ulation of miRNAs in breast cancer bone metastasis. Zhao et al. eval-
uated the expression of DLX6-AS1 in breast cancer and analysed the
correlation between DLX6-AS1 expression and clinicopathological
parameters. They identified increased DLX6-AS1 expression in tumour
tissue compared with normal tissue, which was linked to poor prognosis
[32]. Similar to pancreatic cancer, DLX6-AS1 gene knockout reduces
the proliferation, invasion, and migration capacity of breast cancer cells
and promotes apoptosis [32]. Furthermore, luciferase analysis con-
firmed that DLX6-AS1 is an endogenous mediator of mir-505-3p and

negatively regulates its expression. In addition, mir-505-3p inhibits
runt related transcription factor 2 (Runx2) expression by binding di-
rectly to the 3′ untranslated region. Partial reversal of the carcinogenic
effects of mir-505-3p can be achieved by overexpressing Runx2. Wang
et al. showed that DLX6-AS1 exerts its downstream effects on breast
cancer cells by downregulating Fus [28]. These findings indicate that
DLX6-AS1 promotes breast cancer progression, which is consistent with
our results. Accordingly, targeting DLX6-AS1 may be beneficial for the
treatment of breast cancer.

The regulatory mechanisms between lncRNAs and miRNAs are ex-
traordinarily complex. Among them, lncRNA can be used as the com-
bination of ceRNA and miRNA to compete and share mRNA, thus
forming a complex lncRNA-miRNA-mRNA network [35]. Wnt/β-ca-
tenin signalling is critical in numerous cellular processes such as pro-
liferation, invasion, and migration [36]. The involvement of Wnt/β-
catenin signalling has been demonstrated in several malignant tumours
including breast cancer, and Wnt/β-catenin activation promotes tu-
mour cell growth and metastasis [36,37]. Previous studies have shown
that Wnt activation inhibits memory T cells by reducing key tran-
scription factors produced by these cells [38]. In our study, we found
that the activation of mast cells was correlated with Wnt6 expression.
Zhang et al proved that Wnt signal is often activated under the action of
DLX6-AS1 [39]. Therefore, we speculate that the Wnt pathway may be

Fig. 7. Relationship between gene expression level and TNM stage. (A) Expression of FBN3 in different T stages. (B) Expression of FBN3 in different N stages. (C)
Expression of ALKALL2 in different T stages. (D) Expression of GABBR2 in different T stages. (E) Expression of GABBR2 in different N stages. (F) Expression of
CNMKV in different N stages.
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important for the impact of DLX6-AS1 on the composition of immune
cells. However, the molecular mechanisms of DLX6-AS1-induced Wnt
activation remain to be elucidated.

Guo et al. demonstrated DLX6-AS1 upregulation in cell lines and
tissues from bladder cancer patients, which augmented the prolifera-
tion, invasion, and migration of these cells by regulating the EMT
process and the activity of Wnt/β-catenin signalling [40]. The impact of
DLX6-AS1 on the characteristics of cancer stem cells in osteosarcoma
has also been investigated and was found to positively correlate with
more advanced disease and poorer survival [39]. Similar findings have
been demonstrated in prostate cancer patients. Recently, several studies
have shown the participation of Wnt6, BARX1, PTPRZ1, and other
genes in the regulation of Wnt/β-catenin signalling and their involve-
ment in the development of malignant tumours [36–45]. These findings
support our hypothesis that DLX6-AS1 may affect the mRNA expression
of Wnt6, BARX1, PTPRZ1 and other genes through the ceRNA network
to regulate Wnt/β-catenin signalling and participate in the distant bone
metastasis of breast cancer.

In this study, we incorporated six genes (CAMGV, ALKAL2,
GABBR2, BARX1, FBN3, and Wnt6) into a multiple Cox risk regression
model in the process of Lasso regression. We constructed a nomogram
using these six genes to predict the 1-, 3- and 5-year survival status in
patients with breast cancer and bone metastases, showing that the
prediction effect of the model was satisfactory.

In the study of immune cell infiltration in breast cancer bone me-
tastasis, we found that plasma cells and follicular helper T cells were
significantly different in two different samples. We also observed that
the proportion of mast cells, gamma delta T cells, plasma cells, folli-
cular helper T cells, and eosinophils varied depending on disease stage
and progression. These results suggest that plasma cells, follicular
helper T cells, mast cells and gamma delta T cells have potential value
for predicting bone metastasis, disease grading and staging of breast
cancer, which is expected to be further verified and applied in clinical
diagnosis and treatment. Subsequently, our correlation analysis showed
that Wnt6 and GABBR2 positively correlated with mast cell activation.

Our research inevitably has several limitations. The data included in
our study are from Western countries and may not be directly extra-
polated to patients in Asian countries. We were unable to comprehen-
sively analyse the clinical and pathological parameters due to limited
public information; therefore, we minimised bias by investigating the
gene and protein expression of key biomarkers at the cell and tissue
level. The uneven distribution of clinical samples in different TNM
stages in Cibersort and the application off Cibersort to the TCGA data
may also have an impact on the conclusions drawn in this study, and
this issue must be addressed in future research. However, these research
models have been widely accepted and adopted by international
scholars and still need to be further explored [46,47]. In this study, we
included as many clinicopathological types and samples as possible.

Fig. 8. Component analysis of immune cells. (A) Proportion of lymphocytes in 58 bone metastasis samples. (B) Difference in the proportions of 22 types of immune
cell in bone metastasis and non-bone metastasis samples.
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One reason is that breast cancer bone metastasis samples represent
numerous pathological types and clinical stages, thus the inclusion of
these data can help to obtain a larger, and more representative sample
size. Secondly, the inclusion of all breast cancer pathological types is

more conducive to explore the common characteristics of bone metas-
tasis in different breast cancer subtypes.

The tumour microenvironment often affects the process of tumour
invasion and migration [30,31,48]. Invasion of tumour cells is largely

Fig. 9. (A–E) Different cell contents at different stages. (F) Differences between the survival states of samples with high eosinophilic content and those with low
eosinophilic content. (G) Differences in survival status between the high-content follicular helper T cell samples and the low-content samples.
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dependent on the composition of the extracellular matrix as well as
growth factors that are secreted by surrounding cells [30,31]. Fur-
thermore, metastasis of the tumour may have occurred in the early
stages of development and is not directly related to proliferation.
Therefore, it is necessary to determine the molecular mechanisms
leading to aggressive breast cancer with bone metastasis. We developed
a ceRNA network based on breast cancer samples, and our nomogram of
tumour-infiltrating immune cells predicted prognosis in breast cancer
patients with and without bone metastasis with high accuracy. The
predictive nomogram can provide more comprehensive clinical data for

the individualised treatment of breast cancer with bone metastasis.
Further studies should be performed to show the interactions and
communications between cancer cells and immune cells. In particular,
the exosomes secreted by tumour cells contain ceRNAs and may also
play a role mediating breast cancer metastasis.
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