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Objective: Famine exposure and higher serum calcium levels are related with

increased risk of many disorders, including Alzheimer’s disease, atherosclerosis,

diabetes, and osteoporosis. Whether famine exposure has any effect on serum

calcium level is unclear. Besides, the normal reference range of serum calcium

is variable among different populations. Our aims are 1) determining the

reference interval of calcium in Chinese adults; 2) exploring its relationship

with famine exposure.

Methods: Data in this study was from a cross-sectional study of the

epidemiologic investigation carried out during March-August 2010 in Jiading

district, Shanghai, China. Nine thousand and two hundred eleven participants

with estimated glomerular filtration rate (eGFR) ≥60ml/min/1.73m2 were

involved to calculate reference interval of total calcium from 10569

participants aged 40 years or older. The analysis of famine exposure was

conducted in 9315 participants with complete serum biochemical data and

birth year information.

Results: After rejecting outliers, the 95% reference interval of total serum

calcium was 2.122~2.518 mmol/L. The equation of albumin-adjusted calcium

was: Total calcium + 0.019* (49-Albumin), with a 95% reference interval of

2.151~2.500 mmol/L. Compared to the age-balanced control group, there was

an increased risk of being at the upper quartile of total serum calcium

(OR=1.350, 95%CI=1.199-1.521) and albumin-adjusted calcium (OR=1.381,

95%CI=1.234-1.544) in subjects experienced famine exposure in childhood.

Females were more vulnerable to this impact (OR= 1.621, 95%CI= 1.396-1.883

for total serum calcium; OR=1.722, 95%CI= 1.497-1.980 for albumin-adjusted

calcium).

Conclusions: Famine exposure is an important environmental factor

associated with the changes in circulating calcium concentrations, the newly
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established serum calcium normal range and albumin-adjusted calcium

equation, together with the history of childhood famine exposure, might be

useful in identifying subjects with abnormal calcium homeostasis and related

diseases, especially in females.
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Introduction

Famine experience, especially during early life, has gathered

increasing attention worldwide. Studies from the Dutch famine

as well as the Great China’s Famine showed that experiencing

food shortage during early life is associated with a higher risk of

osteoporosis, vertebral fracture, type 2 diabetes, obesity,

coronary artery disease, cognition decline, and schizophrenia

(1–10). However, the underlying mechanism, especially the

common causes or factors responsible for or related to these

varieties of diseases, is poorly understood.

During the past two decades, mounts of evidence have

revealed the interaction between skeleton metabolism and the

functionalities of organs and systems (11–14). It is reported that

bone resorption, with its consequence of motivating skeletal

calcium into circulation, is one of the major mediating factors

for such a connection (15–17). In fact, among those diseases

related to famine exposure, many of them are also associated

with higher serum calcium levels (18–23). For example,

individuals having higher serum calcium, although still in the

normal range, are at higher risk of intracranial atherosclerosis

(18) and presence of calcified coronary atherosclerotic plaque

(24), cognition decline, and clinical progression of Alzheimer’s

disease (20), prevalence of adult overweight or obesity (25),

incident type 2 diabetes (21), and lower bone mineral densities

(BMDs) (22, 23). These studies indicated that elevated serum

calcium level is not only an indicator but also the causal factor of

the pathological processes. Thus, it makes establishing an

adequate reference interval of serum calcium and finding its

influencing factors essential to distinguish these pathological

conditions at an early stage.

Serum calcium is closely regulated within an exquisitely

narrow range. However, variation exists among different

ethnics. A study regarding US civilian population showed that

Mexican-Americans have lower serum calcium levels than

Hispanics, while non-Hispanic blacks have higher serum

calcium concentrations than non-Hispanic whites (26). On the

other hand, in disease conditions like chronic kidney disease

(CKD), black patients had lower serum calcium concentrations

compared with white patients (27). Likely, the equation used to
02
calculate albumin-adjusted calcium varies among different

countries and regions (28, 29), and the use of population-

specific equations improved the diagnostic accuracy of the

adjusted calcium than the commonly used equation described

by Payne et al. in 1973 (30, 31). These findings indicate that

serum calcium levels may be influenced by ethnicity and it is

necessary to determine adequate reference intervals as well as

albumin-adjusted calcium equation regarding specific races,

geographic regions and populations.

Serum calcium is regulated mainly by three systems: intestinal

resorption, kidney reabsorption, and bone resorption. Low serum

calcium or some pathological conditions can trigger a series of

pathophysiological processes to increase calcium absorption by the

intestines and reabsorption in the kidney (32, 33). More

importantly, the release of calcium from the skeleton through

bone resorption contributed significantly to an elevation of serum

calcium level (34). In addition, recent studies reported that nutrition

status may influence serum calcium level (35, 36) and famine

exposure is also associated with metabolic bone abnormalities (7,

37). Thus, it is of interest and necessary to investigate whether

serum calcium levels are affected by famine exposure.

In this study, we aimed to establish a reference interval of

serum calcium level and equation for albumin-adjusted calcium

in Chinese adults; and to explore the relationship between serum

calcium level and famine exposure.
Materials and methods

Participants

Data in this study were from a cross-sectional study of the

epidemiologic investigation carried out during March-August 2010

in Jiading district, Shanghai, China (38). The study population was

sampled using cluster sampling method. Ten thousand and five

hundred sixty-nine men and women aged 40 years or older were

invited by telephone or door-to-door visit to participate in this study.

Among them, 10375 (98.2%) agreed to participate. 9211 participants

with an estimated glomerular filtration rate (eGFR) ≥60ml/min/

1.73m2 were involved to calculate reference intervals of total calcium.
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8172 participants with normal hepatic and renal function

(20≤albumin<55g/L, alanine transaminase (ALT)< 41U/L, alkaline

phosphatase alkaline phosphatase (ALP) < 130U/L, blood urea

nitrogen (BUN) <15mmol/L, creatinine (Cr) < 200umol/L) were

included to calculate albumin-adjusted calcium equation according

to the previously described protocol (39). And 9315 participants with

complete serum biochemical parameters data and birth year

information were included for the analysis of the association

between famine exposure and serum calcium levels (Figure 1).

The study protocol was approved by the Institutional Review

Board of the Rui-jin Hospital, Shanghai Jiao Tong University

School of Medicine, and informed consent was obtained from

all participants.
Data collection

Anthropometric measurements were performed by the

trained staff according to the standardized protocol. Height

was measured to the nearest 0.1 cm, and weight was recorded

to the nearest 0.1 kg with light clothing and no shoes. Body mass

index (BMI) was calculated as body weight in kilograms divided

by height squared in meters.

Venous blood samples were collected after an overnight fast.

Serum Ca, P, ALT, AST, gGT, ALP, albumin, uric acid (UA),

BUN, and Cr were measured using the autoanalyzer (Modular

E170; Roche). CKD-EPI Creatinine Equation (2009) was used to

calculate eGFR.
Definition of famine exposure

The Great China’s Famine occurred from 1959 to 1962.

According to the birth year, participants were divided into
Frontiers in Endocrinology 03
four groups: non-exposed (born after 1 Jan 1963), fetal

exposure (born between 1 Jan 1959 to 31 Dec 1962),

childhood exposure (born between 1 Jan 1949 to 31 Dec

1958), adolescent exposure (born between 1 Jan 1941 to 31

Dec 1948), and adulthood exposure (born before 31

Dec 1940).

Because there are no overlaps in the birth years among the 5

famine exposed groups, to limit the effect of age difference on the

results, we combined the non-exposed (post-famine) group and

adolescent exposure (pre-famine) group as the age-balanced

control group of childhood exposure group (mean age: 55.94

vs 56.48 years) (40–42).
Statistical analysis

To establish the total calcium reference interval, first, we

excluded outliers that lay more than 3 quartiles above or below

the interquartile range. The 95% reference interval was defined

by mean ± 1.96*SD with 95% confidence intervals (95% CI).

The albumin-adjusted calcium equation was derived from the

linear regression analysis using serum albumin as the dependent

variable and serum calcium as the independent variable.

All continuous variables were presented as medians

(interquartile ranges), and categorical variables were presented

as proportions. Odds ratio (ORs) and 95% CIs were calculated

using a multivariable-adjusted logistic regression model to

analyze the association of famine exposure with serum total

calcium and albumin-adjusted calcium. Mann–Whitney U-test

was performed to compare serum total calcium levels and

albumin-adjusted calcium between genders. A p-value less

than 0.05 was considered statistically significant. The statistical

analysis was performed using SPSS 23.0 (SPSS, Inc.)
FIGURE 1

Flow chart of the participants selection of this study.
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Results

Reference interval for total calcium

Clinical characteristics of participants with consent forms

and complete serum biochemical parameters were shown in

Table 1. A total of 9211 participants with eGFR≥60ml/min/

1.73m2 were involved to calculate reference intervals of total

calcium. After rejecting outliers (n=1), the calculated results

were shown in Table 2. The mean calcium level in the total

cohort was 2.320mmol/L and females had higher mean total

serum calcium levels than males (2.325 mmol/L vs 2.313 mmol/

L, P=0.000).
Albumin-adjusted calcium equation

To derive the albumin-adjusted calcium, first, we established

the albumin-adjusted calcium equation based on 8172

participants selected according to the previously protocol (39).

The y-intercept was 1.389 and the slope was 0.019 (Figure 2)

which made the equation:

Total calcium (mmol/L) = 0.019*albumin(g/L) + 1.389.

It is established that albumin-adjusted calcium=total

calcium-(slope*albumin) + (mean normal total calcium-

intercept calcium) (39), which is:

Albumin-adjusted calcium = Total calcium + 0.019 ×

(albumin) (mean total calcium–1.389)
Frontiers in Endocrinology 04
Albumin-adjusted calcium = Total calcium + 0.019 ×

(albumin) (2.320- 1.389)

Albumin-adjusted calcium = Total calcium + 0.019 ×

(albumin) 0.931

Albumin-adjusted calcium = Total calcium + 0.019 ×

(49-Albumin)
Reference interval for albumin-adjusted
calcium

We calculated the albumin-adjusted calcium according to

the above equation for 9211 participants with eGFR≥60ml/min/

1.73m2. After rejecting outliers (11 outliers, 0.12%) by the

method mentioned above, 9200 participants were included for

the calculation of the reference interval of albumin-adjusted

calcium, and the results were shown in Table 2. The mean

albumin-adjusted calcium level in the total cohort was

2.325mmol/L and females had higher mean albumin-adjusted

serum calcium levels than males (2.332 mmol/L vs 2.314 mmol/

L, P=0.000).
Clinical characteristics of participants
according to famine exposure

We further studied whether exposure to famine at different

stages of life had any effect on the serum calcium level in

adulthood. The characteristics of 9315 participants were listed
TABLE 1 Clinical characteristics of participants according to famine exposure.

Famine exposure

Non-exposed Fetal Childhood Adolescent Adult

n 1455 1097 3592 1911 1260

Age (year) 44.05 (42-46) 49.72 (49-51) 56.48 (54-59) 65.00 (63-67) 74.88 (72-77)

Male (%) 563 (38.69%) 408 (37.19%) 1253 (34.88%) 784 (41.03%) 553 (43.89%)

BMI (kg/m2) 24.53 (22.17-26.51) 25.02 (22.64-27.22) 25.20 (23.08-27.19) 25.39 (23.17-27.47) 24.93 (22.56-27.2)

Ca (mmol/L) 2.30 (2.24-2.36) 2.31 (2.25-2.38) 2.33 (2.27-2.4) 2.32 (2.25-2.38) 2.31 (2.25-2.38)

ALB-adjusted Ca (mmol/L) 2.30 (2.25-2.35) 2.32 (2.26-2.37) 2.33 (2.27-2.39) 2.33 (2.27-2.38) 2.34 (2.28-2.39)

P (mmol/L) 1.23 (1.09-1.36) 1.24 (1.09-1.39) 1.26 (1.13-1.4) 1.26 (1.11-1.41) 1.24 (1.11-1.38)

ALB (g/L) 48.90 (47.30-50.80) 48.86 (47.30-50.50) 49.02 (47.60-50.60) 48.53 (47.00-50.10) 47.52 (45.80-49.38)

ALT (IU/L) 23.65 (12.10-26.10) 21.97 (13.20-25.80) 22.55 (14.30-25.80) 21.76 (14.20-24.60) 19.59 (13.03-22.58)

AST (IU/L) 21.98 (16.30-23.20) 22.15 (17.30-23.95) 23.36 (18.50-25.40) 24.11 (19.10-26.30) 24.82 (19.63-27.20)

gGT (IU/L) 29.62 (13.00-31.00) 32.13 (14.00-35.00) 31.24 (15.00-33.00) 32.43 (16.00-36.00) 34.81 (16.00-38.00)

ALP (IU/L) 68.99 (56.00-79.00) 75.03 (60.00-86.00) 82.54 (67.00-95.00) 83.71 (69.00-96.00) 85.28 (68.00-99.00)

UA (umol/L) 279.82 (208.80-338.80) 286.17 (225.45-337.80) 298.60 (235.65-350.68) 311.23 (244.80-366.50) 322.89 (257.65-381.25)

BUN (mmol/L) 4.84 (4.00-5.50) 5.14 (4.20-5.90) 5.34 (4.40-6.10) 5.56 (4.60-6.30) 5.78 (4.60-6.60)

Cr (umol/L) 59.28 (49.40-67.50) 59.87 (50.60-66.90) 60.39 (51.40-67.40) 64.22 (53.50-71.10) 68.30 (56.03-77.20)

eGFR (ml/min/1.73m2) 110.29 (107.11-115.09) 105.52 (102.79-109.86) 99.64 (96.76-104.55) 91.71 (88.83-97.60) 82.70 (77.97-90.32)
Data were present as median (interquartile range) or proportions.
BMI, body mass index; ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase; gGT, Gamma Glutamyl Transpeptidase; ALP, alkaline phosphatase; UA, serum uric acid;
BUN, blood urea nitrogen; Cr, serum creatin; eGFR, estimated glomerular filtration rate.
frontiersin.org

https://doi.org/10.3389/fendo.2022.937380
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.937380
according to different life stages of exposure to famine. As shown

in Table 1, participants who experienced famine had higher total

calcium levels as well as albumin-adjusted calcium levels

compared to non-exposed participants. Those exposed in

childhood had the highest total calcium level and those

exposed in adulthood had the highest albumin-adjusted

calcium level.
The association between famine
exposure and serum calcium levels

To further evaluate the association between famine exposure

and calcium level. We assorted the participant according to the

quartiles of total calcium and analyzed the relationship between

famine exposure and being at the upper quartile of total calcium.

The ORs (95% CI) of being at the upper quartile of total calcium

levels were 1.28(1.06-1.55), 1.67(1.44-1.94), 1.25(1.05-1.48), and
Frontiers in Endocrinology 05
1.27(1.05-1.52) for fetal, childhood, adolescent and adulthood

exposure to famine, respectively. After adjusting for age, sex,

eGFR, and albumin, only participants who experienced famine in

childhood had a significantly higher risk (OR=1.87, 95%CI=1.31-

2.67) of being at the upper quartile of serum calcium (Table 3).

It was reported that females are more vulnerable to famine-

associated metabolic dysregulation (43–46). We wondered whether

there was bias in the influence of famine exposure on serum calcium

levels between males and females. As demonstrated in Table 3, after

multivariable adjustment, female participants, not males, who

experienced famine in childhood were more likely to have higher

calcium levels. Similar results were derived in the analysis of famine

exposure and being upper quartile of albumin-adjusted calcium.

Female participants who experienced famine in both fetal and

childhood were more likely to have higher albumin-adjusted

calcium levels after multivariable adjustment (Table 4).

To control the effect of age on the outcomes of famine, we

compared the childhood exposure group with the age-balanced
TABLE 2 Calculated reference intervals of serum total calcium and albumin-adjusted calcium.

The lower limit of 95% reference interval (mmol/L)
(95% confidence intervals)

The upper limit of 95% reference interval (mmol/L)
(95% confidence intervals)

Serum total calcium (mmol/L)

Total cohort 2.122 (2.120-2.124) 2.518 (2.516-2.520)

Male 2.113 (2.110-2.117) 2.512 (2.509-2.515)

Female 2.128 (2.125-2.130) 2.521 (2.519-2.524)

Albumin-adjusted calcium (mmol/L)

Total cohort 2.151 (2.149-2.153) 2.500 (2.498-2.501)

Male 2.141 (2.138-2.144) 2.488 (2.485-2.491)

Female 2.159 (2.157-2.161) 2.505 (2.503-2.508)
FIGURE 2

Scatter plot of total calcium (y-axis) and albumin (x-axis).
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control group. The results showed that exposure to famine in

childhood was related to higher total serum calcium (OR=1.350,

95%CI=1.199-1.521) and albumin-adjusted calcium (OR=1.381,

95%CI=1.234-1.544) in their adulthood. Subgroup analysis

showed that this effect only existed in females (Tables 5, 6).
Frontiers in Endocrinology 06
Discussion

In this study, we provided the reference interval of serum

calcium and established a new albumin-adjusted calcium

equation for Chinese adults, and further found that
TABLE 4 ORs (95% CI) for being at the upper quartile of serum albumin-adjusted calcium of exposed to famine at different life stages.

Famine exposure

Non-exposed Fetal Childhood Adolescent Adult

Whole cohort

Case/total 234/1455 248/1097 984/3592 486/1911 376/1260

Model 1 1.00(ref) 1.52(1.25-1.86) 1.97(1.68-2.31) 1.78(1.50-2.12) 2.22(1.85-2.67)

Model 2 1.00(ref) 1.23(0.87-1.75) 2.13(1.52-2.99) 1.24(0.59-2.63) 1.99(0.84-4.73)

Model 3 1.00(ref) 1.24(0.87-1.76) 2.15(1.53-3.02) 1.28(0.60-2.72) 2.00(0.84-4.78)

Male

Case/total 119/563 69/408 237/1253 161/784 137/553

Model 1 1.00(ref) 0.76(0.55-1.06) 0.87(0.68-1.11) 0.96(0.74-1.26) 1.23(0.93-1.63)

Model 2 1.00(ref) 0.61(0.35-1.03) 0.94(0.53-1.69) 0.68(0.21-2.27) 1.28(0.33-4.88)

Model 3 1.00(ref) 0.64(0.37-1.10) 0.98(0.55-1.75) 0.73(0.22-2.44) 1.20(0.31-4.62)

Female

Case/total 115/892 179/689 747/2339 325/1127 239/707

Model 1 1.00(ref) 2.37(1.83-3.07) 3.17(2.56-3.93) 2.74(2.17-3.46) 3.45(2.69-4.43)

Model 2 1.00(ref) 2.06(1.28-3.32) 3.59(2.35-5.49) 2.17(0.82-5.75) 2.88(0.92-9.04)

Model 3 1.00(ref) 2.05(1.27-3.30) 3.59(2.34-5.50) 2.19(0.82-5.82) 3.11(0.98-9.89)
Model 1: unadjusted.
Model 2: adjusted for age and sex.
Model 3: adjusted for age, sex and eGFR.
Bold values are ORs reached statistical significance.
TABLE 3 | ORs (95% CI) for being at the upper quartile of serum total calcium of exposure to famine at different life stages.

Famine exposure

Non-exposed Fetal Childhood Adolescent Adult
Whole cohort
Case/total 279/1455 256/1097 1021/3592 436/1911 291/1260

Model 1 1.00(ref) 1.28(1.06-1.55) 1.67(1.44-1.94) 1.25(1.05-1.48) 1.27(1.05-1.52)

Model 2 1.00(ref) 1.33(0.95-1.86) 1.99(1.44-2.76) 1.72(0.82-3.63) 4.295(1.72-10.75)

Model 3 1.00(ref) 1.21(0.84-1.74) 1.87(1.31-2.67) 1.30(0.59-2.88) 2.08(0.76-5.67)

Male

Case/total 151/563 87/408 274/1253 153/784 108/553

Model 1 1.00(ref) 0.739(0.55-1.00) 0.764(0.61-0.96) 0.662(0.51-0.86) 0.662(0.50-0.88)

Model 2 1.00(ref) 0.879(0.54-1.44) 1.046(0.61-1.80) 1.068(0.33-3.41) 3.744(0.91-15.49)

Model 3 1.00(ref) 0.86 (0.50-1.46) 0.855(0.50-1.46) 0.855(0.25-2.97) 2.305(0.49-10.84)

Female

Case/total 128/892 169/689 747/2339 283/1127 183/707

Model 1 1.00(ref) 1.94(1.50-2.50) 2.801(2.28-3.44) 2.001(1.59-2.52) 2.085(1.62-2.68)

Model 2 1.00(ref) 1.854(1.17-2.95) 3.238(2.13-4.92) 2.991(1.12-8.02) 5.348(1.58-18.06)

Model 3 1.00(ref) 1.623(0.99-2.67) 2.915(1.85-4.60) 1.974(0.69-5.62) 2.197(0.58-8.27)
frontiersin.or
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participants who experienced famine in early life (fetal and

childhood) have higher total and albumin-adjusted serum

calcium levels, especially in females.

In a most recent study, more than 170 thousand European

residents were investigated to derive reference interval of serum

calcium (29). In our study, we also used a large population cohort

to derive the Chinses-specific reference intervals of both total and

albumin-adjusted serum calcium. The intervals were relatively

narrow in our cohort, indicating that the cohort we used had

relatively adequate homogeneity and representativeness. In

addition, due to the variation among populations and

methodology used for the measurement of total calcium and

albumin levels, the use of a locally derived albumin-adjusted

calcium equation is recommended by the Association for

Clinical Biochemistry and Laboratory Medicine (ACB) (28).

Our study provided a new equation for calculating albumin-

adjusted calcium, which derived a higher value than commonly

used equation (adjusted-calcium(mmol/L) = total calcium(mmol/

L) + 0.02(40-albumin)) and the equation reported by the

European study (adjusted-calcium(mmol/L) = total calcium

(mmol/L) + 0.0177(45.2-albumin)) (29). It is noteworthy that

compared to the European study, the average total and albumin-

adjusted calcium concentrations were lower in our cohort. It is

reported that the corrected serum calcium level of African-

Americans is higher than Caucasians and Hispanics (47). More

evidence is needed to confirm that the difference of circulating

calcium between Asians and Europeans is caused by race.

In subgroup analysis, we found that the mean total and

albumin-adjusted calcium concentrations were higher in females,

which is in line with the European study. The reason behind such a
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phenomenon is multi-faceted: females go through a rapid estrogen

decline during menopause, which augments the bone resorption

rate. Thus, postmenopausal women have higher serum calcium

than premenopausal women (48). In the meantime, males undergo

a relatively moderate transition and serum calcium falls with aging,

thus, in the aged population, females have higher serum calcium

level than males (48). In our study, almost 80% of the participants

were over 50 years old and this may be responsible for the higher

serum calcium level in females of the total cohort. When we

analyzed the participants under 50 years old, the results showed

that serum calcium level was higher in males (data not shown),

which is also in line with the previous reports (48, 49). All these

findings suggest that it might be necessary to use country-specific or

ethnic specific and even gender-specific reference intervals of serum

calcium as well as albumin-adjusted calcium equation.

Despite serum calcium concentration being strictly regulated

within an exquisitely narrow range, our study found that it is

influenced by famine exposure during early life. Malnutrition is a

predominant result caused by edible food deprivation during

famine exposure (50). A study reported that thin children (16%

of BMI lower than normal control) have a higher level of bone

resorption marker C-terminal telopeptide of collagen type I (CTX)

than normal-weight peers (51). Similar results are found in anorexia

nervosa (AN) patients. In AN, although serum calcium

concentration remains in the normal range, urinary calcium

excretion is elevated while intestinal calcium absorption is

unchanged (35, 36), indicating the loss of calcium from the

skeleton due to increased bone resorption. Thus, increased serum

calcium in individuals exposed to famine may be caused by

enhanced bone resorption triggered by a nutrition deficiency.
TABLE 5 The risk of being at the upper quartile of serum total calcium in later life following exposure to famine during childhood using age-
balanced control group.

Age-balanced control Childhood exposure

Whole cohort

Case/total 715/3366 1021/3592

Model 1 1.00(ref) 1.472(1.319-1.643)

Model 2 1.00(ref) 1.454(1.302-1.623)

Model 3 1.00(ref) 1.350(1.199-1.521)

Male

Case/total 304/1347 274/1253

Model 1 1.00(ref) 0.960(0.798-1.155)

Model 2 1.00(ref) 0.976(0.811-1.176)

Model 3 1.00(ref) 1.008(0.825-1.231)

Female

Case/total 411/2019 747/2339

Model 1 1.00(ref) 1.836(1.598-2.109)

Model 2 1.00(ref) 1.842(1.601-2.118)

Model 3s 1.00(ref) 1.621(1.396-1.883)
Model 1: unadjusted.
Model 2: adjusted for age and sex.
Model 3: adjusted for age, sex, eGFR, and ALB.
Bold values are ORs reached statistical significance.
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Measuring serum total as well as albumin-adjusted calcium

level and establishing their normal reference range is not only

indispensable for diagnosing diseases with overt disturbed calcium

metabolism such as hyperparathyroidism and hypoparathyroidism

but its variations, even within the normal range, are also associated

with other extra-skeleton disorders. It was reported that subjects in

the upper three quartiles of corrected serum calcium concentration

had a significantly increased risk for intracranial atherosclerosis

compared with the lowest quartile (18). The prevalence of

overweight/obesity almost doubled in the upper total serum

calcium level quartile compared to the lowest quartile (25). In

two longitudinal studies, participants who had higher serum

calcium were 1.6-2.3 times risky to develop diabetes and AD

during 2-8 years of follow-up (20, 21). More importantly, the

causal effect of high calcium level on lower BMDs at lumber-

spine and whole-body is confirmed by two recent Mendelian-

randomization (MR) studies, this effect is even independent of

the most three important calcium-modulating hormones:

parathyroid hormone (PTH), vitamin D, and phosphate

concentrations. Similarly, clinical trials demonstrated that high-

dose (10000IU daily) vitamin D supplementation (with 9% of study

participants experiencing hypercalcemia at the end of the trial) leads

to accelerated bone loss compared to low-dose(400IU daily and

none of hypercalcemia) (52, 53). The results derived from our study

that early-life famine exposure has an impact on serum calcium

concentrations in adulthood emphasized that for those with famine

exposure in early life, it is necessary to evaluate their serum calcium

level. This might be important to screen subjects at high risk of the

above-mentioned calcium-related and famine-related diseases. In

addition, whether there is a need to re-evaluate the reference
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interval of serum calcium and albumin-adjusted calcium equation

when the nutrition status is greatly changed (improved) in the

future is another interesting topic.

In subgroup analysis, we found that after multivariable

adjustment, the relationship between famine and serum

calcium only exists in female participants. One explanation is

that during evolution, mammalian females have been exposed to

more severe selection pressure than males during food shortages

(54). Besides, in Chinese traditional culture, parents were

intended to provide better nutrition to boys than girls when

facing food shortages (55), thus there might be a severity

difference in famine exposure between females and males.

The mechanism underlying elevated serum calcium and famine

in early life is unclear; it might be related to enhanced bone

resorption during famine exposure. In rodents, food restriction

reduces cortical bone mass and cortical thickness while trabecular

percent bone volume (BV/TV) was significantly lower in the food

restriction group (56–58). Moreover, there is an increase in

osteoclasts number and bone resorption in caloric restriction

mice (59, 60), which is in line with the previous hypothesis that

bone resorption activity was enhanced during famine exposure.

Further studies revealed that serum leptin, which inhibits osteoclast

generation (61), is decreased in food restriction mice (57, 59, 60),

which may lead to the activation of osteoclastogenesis. On the other

hand, dietary energy restriction elevates glucocorticoid hormone

levels (62), and methylprednisolone treatment will increase

osteoclast activity (63). However, more evidence is needed to

support the hypothesis that famine exposure may result in

increased bone resorptive activity and thus higher serum

calcium levels.
TABLE 6 The risk of being at the upper quartile of serum albumin-adjusted calcium in later life following exposure to famine during childhood
using age-balanced control group.

Age-balanced control Childhood exposure

Whole cohort

Case/total 720/3366 984/3592

Model 1 1.00(ref) 1.387(1.242-1.548)

Model 2 1.00(ref) 1.367(1.223-1.527)

Model 3 1.00(ref) 1.381(1.234-1.544)

Male

Case/total 280/1347 237/1253

Model 1 1.00(ref) 0.889(0.733-1.078)

Model 2 1.00(ref) 0.890(0.733-1.079)

Model 3 1.00(ref) 0.912(0.751-1.108)

Female

Case/total 440/2019 747/2339

Model 1 1.00(ref) 1.684(1.469-1.931)

Model 2 1.00(ref) 1.718(1.495-1.974)

Model 3 1.00(ref) 1.722(1.497-1.980)
Model 1: unadjusted.
Model 2: adjusted for age and sex.
Model 3: adjusted for age, sex and eGFR.
Bold values are ORs reached statistical significance.
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There are some limitations in this study. Firstly, serum

concentrations of PTH and 25OHD were not measured, which

have critical roles in maintaining calcium homeostasis. However,

vitamin D metabolism has been shown to behave normally in

malnourished children (64) and serum calcium doesn’t relate to

PTH levels in AN patients (35). It indicates that there are other

mechanisms to regulate serumcalcium inundernutrition conditions.

Secondly, the serum concentrations of bone resorption and bone

formation markers were not evaluated in our study. Thirdly, the

severity and precise duration of famine exposure, confounding

including place of birth and residence, and familial socioeconomic

status (SES) at the timeof the famine areunknown, thus the potential

dose-response relationship between famine and serum calcium has

not been studied in our research. A recent review addressed some

recommendations that might help improve future Chinese famine

studies (65). Besides, further studies regarding themediation effect of

calcium in famine-related health outcomes are needed.
Conclusion

Our results suggest famine exposure is an important

environmental factor responsible for the changes in circulating

calcium concentrations, the newly established normal range of

serum calcium and albumin adjusted calcium equation, together

with the history of famine exposure in childhood, might be

helpful in early identifying subjects with abnormal calcium

homeostasis and related diseases, especially in females.
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