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Purpose: This study was conducted in order to determine the reproducibility and
repeatability of cone-beam computed tomography (CBCT) radiomics features.

Methods: The first-, second-, and fifth-day CBCT images from 10 head and neck (H&N)
cancer patients and 10 pelvic cancer patients were retrospectively collected for this study.
Eighteen common radiomics features were extracted from the longitudinal CBCT images
using two radiomics packages. The reproducibility of CBCT-derived radiomics features
was assessed using the first-day image as input and compared across the two software
packages. The site-specific intraclass correlation coefficient (ICC) was used to
quantitatively assess the agreement between packages. The repeatability of CBCT-
based radiomics features was evaluated by comparing the following days of CBCT to
the first-day image and quantified using site-specific concordance correlation coefficient
(CCC). Furthermore, the correlation with volume for all the features was assessed with
linear regression and R2 as correlation parameters.

Results: The first-order histogram-based features such as skewness and entropy
showed good agreement computed in either software package (ICCs ≥ 0.80), while the
kurtosis measurements were consistent in H&N patients between the two software tools
but not in pelvic cases. The ICCs for GLCM-based features showed good agreement
(ICCs ≥ 0.80) between packages in both H&N and pelvic groups except for the GLCM-
correction. The GLRLM-based texture features were overall less consistent as calculated
by the two different software packages compared with the GLCM-based features. The
CCC values of all first-order and second-order GLCM features (except GLCM-energy)
were all above 0.80 from the 2-day part test–retest set, while the CCC values all dropped
below the cutoff after 5-day treatment scans. All first-order histogram-based and GLCM-
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texture-based features were not highly correlated with volume, while two GLRLM features,
in both H&N and pelvic cohorts, showed R2 ≥0.8, meaning a high correlation with volume.

Conclusion: The reproducibility and repeatability of CBCT-based radiomics features
were assessed and compared for the first time on both H&N and pelvic sites. There were
overlaps of stable features in both disease sites, yet the overall stability of radiomics
features may be disease-/protocol-specific and a function of time between scans.
Keywords: reproducibility, repeatability, longitudinal CBCT radiomics, imaging protocol, in-treatment image
INTRODUCTION

Radiomics, the high-throughput mining of image features from
routine medical images, provides a quantitative and robust
method to assess tumor heterogeneity. It can serve as a
powerful tool for precision medicine in cancer treatment.
However, the current work primarily focuses on diagnostic
metrics which neglects the treatment effect. The involvement
of in-treatment image should be investigated for a direct
estimation of treatment outcome.

Daily cone-beam computed tomography (CBCT) images
are originally developed for patient setup and have accordingly
been acquired with low imaging dose. The images have
substantially more scatter than diagnostic CT due to the flat-
panel detector design. However, in many cases, these images
are acquired at every fraction of treatment during the whole
course of radiation therapy and may function as a timely
biomarker for treatment-induced changes (1–4). Benjamin
et al. (1) reported that serial changes from CBCT images
during head and neck (H&N) radiotherapy can improve
chronic xerostomia prediction. Hebert et al. (5) revealed that
intersite heterogeneity captured from CBCT could predict
outcomes in patients with high-grade serous ovarian cancer.
Despite the promising potential of radiomics features from
longitudinal CBCT images, the stability of these features
should be addressed.

In addition, given the increasing number of radiomics-based
studies, investigators have built many in-house software packages,
and several radiomics platforms are available for public use. The
inherent variations from algorithm implementation, image
preprocessing, and mathematical definitions could cause large
differences in radiomics feature computation. Moreover, the
differences in disease-specific image settings such as mAs, kVp,
and image resolution could also contribute to computational
variations. The lack of understanding of stability has slowed the
clinical implementation of many promising radiomics-based
diagnosis or prognosis schemes. One can be guided on the use
of radiomics features derived fromCBCT images in clinical studies
only after the sources of variations are understood.

As such, in this work, we evaluated the reproducibility and
repeatability of radiomics features derived from longitudinal
CBCT images for two distinct clinical sites. The agreement of
these features across two commercially available platforms was
also analyzed.
2

METHODS AND MATERIALS

Medical Imaging Data
Ten H&N cancer patients and 10 pelvic cancer patients were
randomly selected retrospectively. The study was approved by
the institutional review board. All CBCT patient images were
acquired on Varian Truebeam On-Board Imager (OBI). The
images for selected cases were obtained using the exact same
imaging protocol for that particular disease site and the same
machine to minimize variations from the imaging settings. The
imaging system was maintained by qualified medical physicists
and service engineers at least on a monthly basis in terms of
image contrast, resolution, distortion, and Hounsfield unit (HU)
consistency. The treatment machine along with the imaging
system has been credentialed for clinical trials (including head
and neck and pelvis) with IROC phantoms. For each patient, the
first-, second-, and fifth-day CBCT images were collected. All
CBCT patient images were acquired on the Varian Truebeam
OBI. The H&N images were taken with a peak tube voltage of
100 kVp and tube current of 150 mAs. Images were
reconstructed with 512 × 512 grid and pixel dimensions of
0.511 × 0.511 × 2 mm slice thickness. The pelvic images were
taken under the protocol of 125 kVp and 100 mAs and
reconstructed to 512 × 512 grid size with a pixel resolution of
0.908 × 0.908 × 2 mm slice thickness.

For each of the patients, the contours from the treatment
planning CT were transformed to the CBCT image sets using
Velocity (Varian, Palo Alto, USA) with multipass deformable
registration. For each CBCT image set, the clinical target
volumes (CTVs), three for H&N and two for pelvic as shown
in Figure 1, were selected for radiomics analysis.

Radiomics Feature Extraction
Two widely used open-source radiomics packages—IBEX v1.0
beta (The University of Texas MD Anderson Cancer Center) and
LIFEx v5.10 (https://www.lifexsoft.org/)—were used for
comparison (6–11). Each radiomics package was capable of
calculating various types of radiomics features including first-
order histogram features, second-order gray-level co-occurrence
matrix (GLCM) features, and gray-level run length matrix
(GLRLM) features. In this study, only those features with the
same mathematical definitions were selected. The common
features are shown in Table 1. All the features were calculated
for each CTV from every CBCT fraction with both software
November 2021 | Volume 11 | Article 773512
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tools, respectively. To eliminate variation from image
preprocessing, no additional and only the default preprocessing
was applied. CBCT image parameters such as pixel size and gray
levels number were set at the same value, and differences in
algorithm implementation were reduced to allow for the greatest
possible consistency check between packages.

Reproducibility and Repeatability of
Radiomics Features
The reproducibility was assessed using the first-day CBCT images
(with 30 H&N CTVs and 20 pelvic CTVs) as input for each of the
two radiomics packages. A total of 18 common features, consisting
of 3 first-order histogram-based features and 15 second-order
texture-based features (4 from GLCM and 11 from GLRLM),
were compared. The agreements between software packages were
examined by qualitatively comparing distribution through boxplots.
The intraclass correlation coefficient (ICC) was further used to
quantitatively assess the agreements between packages. It compares
the variability across software packages vs. the variability across
patients. The two clinical sites have different CBCT imaging
protocols as the H&N images have less scatter, smaller field of
view, and higher image resolution compared with pelvic cases. The
robust features found in the H&N protocol may not be extendable
to images with the pelvic protocol. The reproducibility of radiomics
features in terms of different imaging protocols was evaluated with
site-specific ICCs. The ICC values were stratified to indicate “good”
Frontiers in Oncology | www.frontiersin.org 3
(ICC ≥ 0.8), “moderate” (0.8 > ICC ≥ 0.5), or “poor” (ICC < 0.5)
agreement (12–15).

Repeatability was assessed using longitudinal CBCT images as
test–retest datasets. The radiomics features derived from first-day
CBCT images were used as the baselines, and the second- and the
fifth-day images were compared with the baseline. The
concordance correlation coefficient (CCC) was used to examine
agreement between radiomics features derived from the test–retest
scans. Site-specific CCCs were evaluated specifically. The cutoff
value was chosen based on the recommended criteria by McBride
et al. (16) that a correlation of 0.8 reflects good strength-of-
agreement; otherwise, it is poor. Furthermore, the correlation
with volume for all the features was assessed with linear
regression and R2 as correlation parameters. Statistical analysis
was performed using the package psych in R (version 3.2.3).
RESULTS

Figure 2 gives an example of a H&N case and a pelvic case with
different-day CBCT images. The values of first-order feature
such as histogram_skewness and of second-order feature
such as GLCM_energy from LIFEx package are shown.
Histogram_skewness which focused on total intensity
distribution was very similar across days, but GLCM_energy
which focused on internal heterogeneity showed variations.

Reproducibility of CBCT-Based
Radiomics Features
Boxplots depicting the distributions of all features between the two
software packages are shown in Figure 3. It can be seen that the
features analyzed by the two different packages were not identical
and had large variations especially for second-order texture features.

The site-specific ICCs for differences between packages are
shown in Table 2. The first-order histogram-based features such
as skewness and entropy showed good agreement computed in
either of the software packages (ICCs ≥ 0.80). Interestingly, the
kurtosis measurements were consistent in H&N patients between
the two software tools but not in pelvic cases. Kurtosis is a
measure of whether the gray-level intensity histogram is heavy-/
TABLE 1 | First- and second-order radiomics features shared the same
definition in the two packages.

First-order
histogram
features

Skewness, kurtosis, entropy

Second-
order
GLCM
features

Energy, jointEntropy, dissimilarity, correction

Second-
order
GLRLM
features

Short-run emphasis (SRE), long-run emphasis (LRE), gray-level non-
uniformity (GLN), run length non-uniformity (RLN), low gray-level run
emphasis (LGLRE), high gray-level run emphasis (HGLRE), short-run
low gray-level emphasis (SRLGLE), short-run high gray-level
emphasis (SRHGLE), long-run low gray-level emphasis (LRLGLE),
long-run high gray-level emphasis (LRHGLE), run percentage (RP)
FIGURE 1 | The regions-of-interest (ROIs) included in the analysis: (A) a head and neck case with three volumes designated as CTV1, CTV2, and CTV3; (B) a pelvic
case with two volumes designated as CTV-primary and CTV-lymphonodus.
November 2021 | Volume 11 | Article 773512
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light-tailed relative to a normal distribution. The feature itself is
sensitive to noise as larger scatter results in greater extremity of
deviations (or outliers), thus a higher value of kurtosis. It can be
seen that IBEX was more sensitive to scatter-induced kurtosis
Frontiers in Oncology | www.frontiersin.org 4
measurements compared with LIFEx as in pelvic cases. The
second-order texture features such as GLCM and GLRLM
showed larger distribution variations between software
packages compared with first-order histogram-based features.
A

B

FIGURE 3 | The boxplots showing all values of the features analyzed by the two different softwares for (A) H&N and (B) pelvic sites, respectively.
FIGURE 2 | Different days of CBCT images and the corresponding radiomics/volume values from one H&N ROI and one pelvic ROI.
November 2021 | Volume 11 | Article 773512
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However, the ICCs for GLCM-based features showed good
agreement (ICCs ≥ 0.80). This indicated that while systematic
biases were introduced due to differences in each of the packages
resulting in absolute value differences, the magnitude of these
biases was small relative to the feature values themselves.
Therefore, the ICCs still reflected good agreement between
packages. The GLCM-correction showed poor agreement
between packages in both H&N and pelvic groups. The
GLRLM-based texture features were overall less consistent
computed by the two different software packages compared
with GLCM-based features, only showing poor–moderate
agreement. However, H&N features tended to show slightly
higher ICC values; again, this might be due to less scatter and
noise with inherent image setting compared with the
pelvic protocol.

Scatter plots of selected features calculated from the ROIs of all
patients are shown in Figure 4, which demonstrated good and poor
agreement between packages, respectively (skewness, 0.947; and
GLCM-correction, 0.483). In the scatter plot depicting the feature
distribution for skewness, the differences in feature values between
packages were small relative to the variations in feature values
among patients resulting in an ICC value close to 1, reflecting good
agreement. In contrast, in GLCM-correction, the differences in
feature values for each patient across packages were large,
resulting in significant differences and an ICC value less than 0.5,
reflecting poor agreement.

Repeatability of CBCT-Based
Radiomics Features
For each feature group, CCC values were computed by
comparing the first vs. second and first vs. fifth scans for all
Frontiers in Oncology | www.frontiersin.org 5
patients using the IBEX software with results shown in Figure 5.
As expected, the CCC values computed from the first- vs. fifth-
day scans were lower than those comparing between the first- vs.
second-day scans. For example, the CCC of skewness was 0.94
using 2-day apart scans but dropped to 0.82 when comparing the
5-day apart scans. When using a cutoff CCC of 0.80, 15/18
features were reproducible using 2-day apart test–retest dataset,
while 11/18 features were reproducible using 5-day apart test–
retest dataset. The CCC values of all first-order and second-order
GLCM features (except GLCM-energy) were all above 0.80 from
the 2-day part test–retest set, indicating they were relatively
robust in data extraction. Yet, the CCC values all dropped below
the cutoff after 5-day treatment scans, indicating that they might
be sensitive in detecting the therapy-induced changes. The
GLCM-energy showed the lowest CCC value regardless of
which test–retest dataset was used, indicating its non-
robustness in radiomics features.

We further separated the analysis between H&N and pelvic data
using the 2-day apart test–retest scans as shown in Figure 6. In total,
for 15/18 features, the data points are on the right side of the
diagonal, meaning that they have a higher CCC in the H&N dataset
than in the pelvic dataset. These were 3/3 in the first-order
histogram-based features, 4/4 in the GLCM-texture-based
features, and 8/11 in the GLRLM-based features, which indicate
that the stability of these features may be disease- or image protocol-
specific. There were overlaps of stable features in both H&N and
pelvic datasets (CCCs ≥ 0.8) for both sites. There were 3/3 first-
order histogram-based features (skewness, kurtosis, entropy), 3/4 in
GLCM-texture-based features (GLCM-energy, GLCM-
jointEntropy, and GLCM-correlation), and 7/11 in GLRLM-based
features (SRE, LRE, RLN, HGLRE, SRHGLE, LRHGLE, and RP).
TABLE 2 | The site-specific ICC values of all features analyzed by the two software packages.

Features ICCs

H&N Pelvic

First-order histogram-based features
Skewness 0.949 0.940
Kurtosis 0.969 0.298*
Entropy 0.927 0.990

Second-order GLCM-based features
GLCM-energy 0.966 0.884
GLCM-jointEntropy 0.919 0.983
GLCM-dissimilarity 0.929 0.849
GLCM-correction 0.264 0.561

Second-order GLRLM-based features
jointEntropyGLRLM-SRE 0.730 0.623
jointEntropyGLRLM-LRE 0.606 0.530
GLRLM-GLN 0.977 0.973
GLRLM-RLN 0.921 0.859
GLRLM-LGLRE 0.832 0.606
GLRLM-HGLRE 0.664 0.705
GLRLM-SRLGLE 0.681 0.727
GLRLM-SRHGLE 0.645 0.577
GLRLM-LRLGLE 0.628 0.437
GLRLM-LRHGLE 0.842 0.834
GLRLM-RP 0.581 0.552
November 2021 | Volume 11 | Article 7
Bold values: Measurements consistence in H&N patients between the two software tools were different from that in pelvic cases.
*IBEX was more sensitive to scatter-induced kurtosis measurements compared with LIFEx as in pelvic cases.
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For all features of the clinical dataset, we assessed the
correlation with volume using the coefficient of determination
(R2) of a simple linear regression. Features extracted from the
first- vs. second-day scan were used for this analysis. Results are
shown in Figure 7. The y-axis represents the site-specific
repeatability for all features, and the x-axis represents the R2 of
the correlation of volume. All first-order histogram-based and
GLCM-texture-based features were not highly correlated with
volume. However, there were two features, in both H&N and
pelvic cohorts, which showed R2 ≥0.8, meaning a high
correlation with volume. Both of them were GLRLM features—
GLRLM-GLN (R2 = 0.87 and 0.91 in H&N and pelvic cases
specifically) and GLRLM-RLN (R2 = 0.88 and 0.91, respectively).
DISCUSSION

In many cases of radiotherapy, CBCT is acquired throughout the
patient radiation treatment and, thus, is a feasible image
modality to detect sequential changes during treatment (1–5).
However, before extending its role as an effective biomarker, the
stability as well as the reproducibility and repeatability of CBCT-
based radiomics features should be assessed. In this study, the
reproducibility of CBCT-based radiomics features was assessed
Frontiers in Oncology | www.frontiersin.org 6
using two different softwares on two clinical sites with different
acquisition settings, while repeatability was evaluated by
comparing scans acquired at different days.

Recently, the stability of radiomics features has gained great
attention from the society, and there have been over dozens of
studies on related topics (17–22). However, previous works
primarily focused on pretreatment diagnostic-level CT or PET
images. Fave et al. (22) were one of the very few who tried to
investigate the stability of CBCT-related radiomics features. They
focused specifically on a test–retest dataset with 10 lung patients
scanned twice for 15 min apart. They found that feature
repeatability using CBCT was adversely affected by motion.
However, there are many other questions that have not been
answered, e.g., whether the finding in lung CBCT can be
generalized to other disease sites such as H&N and pelvis,
where motion is not commonly seen; and whether findings on
other modalities, such as CT, can be extended to CBCT. To our
best knowledge, limited work has been done to understand the
roles of CBCT-based radiomics features. In this study, we
assumed the tumor had minimal changes especially during the
first 2 days of treatment; in this way, we can evaluate the stability
of CBCT-based radiomics features. Our results revealed that
most first-order histogram-based parameters on CBCT were
reproducible for both disease sites compared with second-
FIGURE 4 | Scatter plots of two selected features showing good and poor agreement among all patients using the two softwares.
FIGURE 5 | The CCC values of each feature by comparing the first- vs. second-day and first- vs. fifth-day CBCT.
November 2021 | Volume 11 | Article 773512
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order features, with similar results confirmed by previous studies
but on other modalities (12, 22–25). Notably, the robust features
identified in H&N imaging protocol were not always extendable
to pelvic imaging protocol. This might be due to the position of
the tumor which is sometimes affected by the filling status of the
bladder or rectum. The inherent differences of the image
acquisition settings such as larger scatters, higher noise, and
Frontiers in Oncology | www.frontiersin.org 7
larger image resolution also contributed to larger variations as
seen in pelvic protocols. Thus, the stability of radiomics features
could be disease-/imaging protocol-specific and should be
evaluated respectively and carefully.

The agreement of CBCT radiomics features across the two
widely used software packages was demonstrated in this study,
and variations were observed between the packages for both clinical
FIGURE 6 | Site-specific CCC values of all analyzed features using 2-day apart test–retest scans.
FIGURE 7 | Dependence of feature repeatability on volume separate in H&N and pelvic cases.
November 2021 | Volume 11 | Article 773512
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sites. These sources of variations among packages included
differences in image preprocessing, algorithm implementation,
and feature-specific parameters. To ensure direct comparison,
only those features shared with the same mathematical definitions
were selected. Additionally, in LIFEx, features were calculated on the
largest cluster of continuous voxels, while in IBEX, whole ROI was
used regardless of whether voxels were connected or not. In the
current study, only the connected ROI was used for calculation.
Moreover, IBEX did not allow non-negative HUs of the CT scans,
despite the fact that the lowest HU for a CT scan is −1,014. Thus,
HU transformation was applied for feature calculation. Several
studies have previously demonstrated that features can vary when
calculated in different software platforms (21, 26, 27). The Image
Biomarker Standardization Initiative (IBSI) is an international
collaboration developed to help standardize radiomics feature
calculation in terms of feature definition and nomenclature (28,
29). However, IBSI did not give guidelines for feature calculation
settings. To eliminate variation from image preprocessing, no
additional and only the default preprocessing was applied. What
we found is that many first-order features showed good agreement
across packages, with nearly all features differed. All second-order
features showed poor–moderate agreement and had large variations
when using package-specific default parameters. Therefore, when
these radiomics features are used for predictive modeling,
computer-aided diagnosis, or image segmentation, for example,
the results could greatly differ depending on the software being used.
It is unlikely for a single institutional research-oriented work to use
different radiomics analysis software packages. However, for
multicenter clinical trials and future accreditation work, the
reproducibility of radiomics features using different analysis
algorithms/packages should be documented and carefully evaluated.

Previously, the repeatability of radiomics features was tested
in a “coffee-break” dataset of patients scanned with 15-min
intervals (30–32). Due to ethical reasons by introducing an
extra image dose, limited patient data can be collected and
sometimes phantom measurement has to be used as an
alternative (33). However, it is unclear whether stable features
measured from the physical phantom or limited data of the
patients with “coffee-break” intervals can truly represent the
clinical scenario in which the time between scans is in the order
of days. On the other hand, daily CBCT is commonly used in the
radiation department for most of the patients, thus providing an
informative test–retest dataset for radiomics feature repeatability
assessment. Especially during the first- and second-day CBCT,
patient anatomy changes are relatively minimal, which may
allow for radiomics feature stability evaluation. It is also
noticed that features from 5-day apart CBCTs were less
consistent than the 2-day apart images. It cannot be excluded
that in this time period, the tumor changes subclinically and that
this change is detected by radiomics. When prognostic
information is derived from image features in a radiomics
study, one should be aware of changes in a tumor. It is
advisable to avoid using features that are not robust in a test–
retest study. However, if the dataset with a large time interval is
used for test–retest analysis, it would mean that we discard
features that are actually informative. Although beyond the scope
Frontiers in Oncology | www.frontiersin.org 8
of the current study, our future work will expand the current
finding to broader-scope clinical studies to identify the most
reliable and informative radiomics predictors for clinical
outcome. Moreover, feature repeatability and its correlation
with volume were further assessed in the current study. It is in
consensus that from a multi-institutional trial that volume was
one of the robust features in the clinical test–retest analysis (34).
It was shown that two GLRLM features were highly correlated
with volume, and this could partly explain the good repeatability
of these features. However, the size dependence could introduce
a certain level of uncertainty to extend the work to other studies.
As such, we emphasize the importance of a proper test–retest
study with a close control on the imaging acquisition protocol,
interval of scans, target volume range, etc.

There were some limitations in this study. Several factors
could have reduced the robustness of radiomics features. The
variability of feature values, however, was compounded by
differences in segmentation methods and institution-specific
factors, whereas the dependence of the variability in features
due to image-specific parameters (e.g., tissue type, imaging
modality, and image acquisition) was not discussed. Although
in this study we had patients for a test–retest study in a more
clinical-oriented scenario compared with previous studies, the
dataset was very small to be able to analyze subsets to test these
effects. Future studies of images, where predictive performance
for the outcome of interest is investigated, taken at different time
points during treatment with a multi-institutional trial are
necessary to address these considerations. Future studies
should be designed to tightly control all aforementioned
factors in a radiomics study. Nevertheless, to minimize the risk
of using unstable and unreproducible features in a radiomics
analysis, it is advisable to perform treatment site-specific and
time-, scanner-, and imaging protocol-controlled analyses.

Despite CT/CBCT being the most common image modalities in
the radiation oncology world and stringently maintained for patient
setup/dose calculation purpose, there is a lack of consensus in terms
of calibration process of the image system for additional radiomics
(texture) analysis. Previous works primarily focused on
understanding the inherent characteristics of CT-based radiomics
features using water/solid water phantoms, the Gammex phantom
(SunNuclear, Melbourne, FL, USA) or other commercially available
phantoms designed for CT performance check (33, 35–37).
However, those phantoms were originally designed with uniform
materials offering HU close to human tissues with minimal internal
patterns. These led to recent studies designing radiomics phantoms
that consist of different textural compositions. Among them, the
most used onewas the credence cartridge radiomics (CCR) phantom
which consisted of 10 different cartridges with rubber, polyurethane,
cork, etc. (38). However, the capability of those materials in
recapitulating human tissue in terms of a wide range of radiomics
features was not evaluated. Additionally, radiomics feature itself as
well as its stabilities can be disease-specific and material-dependent.
Moreover, studies to understandCBCT-based radiomics features are
even limited, and whether the findings in CT can be translated into
CBCT is unknown. We are in the process of designing radiomics
phantoms with various compositions to replicate radiomics features
November 2021 | Volume 11 | Article 773512
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of different disease sites. These phantoms can be further used to
evaluate feature reproducibility in terms of different material designs
with varied acquisition settings and acquisition techniques including
CBCT. Further effort can be expanded on understanding not just the
variations on acquisition settings but also on which range and what
methods can combat these variations.

In summary, the reproducibility and repeatability of CBCT-
based radiomics features were assessed and compared for the
first time on both H&N and pelvic sites. There were overlaps of
stable features in both disease sites, yet the overall stability of
radiomics features may be disease-/protocol-specific and a
function of time between scans. More investigations are needed
to further evaluate the stability of CBCT-based radiomics
features before establishing its role as clinical biomarkers.
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