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.e development of e1ective innate and subsequent adaptive host immune responses is highly dependent on the production of
proin3ammatory cytokines that increase the activity of immune cells. .e key role in this process is played by in3ammasomes,
multimeric protein complexes serving as a platform for caspase-1, an enzyme responsible for proteolytic cleavage of IL-1β and
IL-18 precursors. In3ammasome activation, which triggers the multifaceted activity of these two proin3ammatory cytokines, is
a prerequisite for developing an e7cient in3ammatory response against pathogenic Mycobacterium tuberculosis (M.tb). .is
review focuses on the role of NLRP3 and AIM2 in3ammasomes in M.tb-driven immunity.

1. Introduction

Mycobacterium tuberculosis (M.tb), the causative agent of
tuberculosis (TB), is a facultative intracellular bacterium
that can survive and replicate within host macrophages [1, 2].
By avoiding critical components of macrophage-killing
repertoire such as phagosome-lysosome fusion, phagosome
acidi?cation, activity of lysosomal enzymes or reactive ox-
ygen, and nitrogen intermediates, M.tb evades killing and
eradication [3]. In addition to phagocytic activity and ability
to present antigens to T-cells, macrophages are key cells that
regulate the antimycobacterial immune response via se-
creted cytokines. .e functional capacity of macrophages in
?ghting infection depends on the degree of their activation.
Inactive macrophages have limited ability to inhibit the
growth of ingested mycobacteria, thereby serving as a safe
life niche. After activation by interferon-gamma (IFN-γ)
that is secreted by T-cells, macrophages acquire enhanced
bactericidal strength enabling them to kill mycobacteria
growing intracellularly [4]. .e IFN-γ-driven antimicrobial
properties of phagocytes are augmented by IL-18 and IL-1β,
two proin3ammatory cytokines processed by caspase-1 that
are recruited to the in3ammasomes, multiprotein platforms

composed inter alia of intracellular sensors for pathogen- or
host-derived molecules. IL-18, belonging to the IL-1 family,
is produced by a wide range of immune and nonimmune
cells [5–7]. .e IL-18 precursor (pro-IL-18) is converted by
caspase-1 into an active molecule, which forms a signaling
complex with IL-18R [8, 9]. .e receptor is composed of two
chains: alpha (IL-18Ra) and beta (IL-18Rb). IL-18Rb is
a signal transduction chain, essential for the formation of
a high a7nity complex and cell activation. .e primary role
of IL-18 is to induce IFN-γ production in cooperation with
IL-12 or IL-15, although immunological e1ects exerted
by IL-18 are dependent on the cytokine microenvironment.
IL-18 is able to polarize T lymphocyte response towards.1,
induce T-cell proliferation, activate NK cells, enhance CD8(+)
T cytolytic activity, and augment, apart from IFN-γ, the
production of varied cytokines including tumor necrosis
factor-α (TNF-α), interleukin- (IL-) 4, IL-5, IL-13, IL-17, and
granulocyte-macrophage colony stimulating factor (GM-
CSF) [8, 10, 11]. .us, the multifaceted activity of IL-18
seems to play a prominent role in host defense against both
extracellular and intracellular pathogens, including M.tb.
However, an excessive IL-18 response might contribute to
the induction of pathomechanisms leading to the damage of
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cells and tissues [12, 13]. .erefore, the proin3ammatory
activity of IL-18 is balanced by a constitutively secreted IL-18
binding protein (IL-18BP), whose binding to IL-18 de-
creases the production of IFN-γ and other cytokines,
thereby reducing the risk of immunopathology [14]. .e
other in3ammasome-dependent cytokine, IL-1β, which is
mainly produced by monocytes and macrophages, plays
an important role in in3ammation and host immune
response by a1ecting the function of various cells, either
alone or in combination with other cytokines [15–17].
.e activity of IL-1β is tightly regulated at the levels of
its transcription and release. .e production of IL-1β
is regulated by several proteins including pyrin, PI-9
(the caspase-1 inhibitor proteinase inhibitor 9), and
some CARD-containing proteins, which interfere with the
recruitment of caspase-1 or directly neutralize its activity
[18]. .e e1ects of IL-1β are exerted via binding speci?c
cell surface receptors—IL-1RI and IL-1RII [19]. As in the
mature IL-18 form, active IL-1β is created after the
proteolytic cleavage of its precursor by in3ammasome-
dependent caspase-1. Mature IL-1β plays important ho-
meostatic functions in organisms and is implicated in the
initiation of antimicrobial immunity via the induction of
TNF-α and IL-6 release and polarization of .17 response,
which improve protective mucosal host defense by the
secretion of IL-17 and IL-22 [20, 21]. .e proin3ammatory
role of IL-1β in the resistance against M.tb has been
con?rmed by the observation that IL-1β or IL-1R knockout
mice were found to be more susceptible to TB showing high
mortality and increased bacterial burden in the lungs [22].
Additionally, double-de?cient IL-1α/β mice had signi?-
cantly larger granulomas, and their alveolar macrophages
produced less nitric oxide than the cells from wild-type
animals [23].

2. Inflammasomes—Mediators of
Inflammation

In3ammation is an evolutionarily conserved protective re-
sponse to noxious stimuli mounted by the innate immune
system of the host. Immune de?ciencies leading to in-
su7cient development of in3ammation processes may result
in severe and recurrent infections, although overly intense
activation of the in3ammation cascade may be a cause of
chronic systemic in3ammatory disorders [24, 25]. .e de-
velopment of innate immunity starts from the recognition of
conservative antigenic structures called DAMPs (danger-
associated molecular patterns) and PAMPs (pathogen-
associated molecular patterns) by pattern recognition
receptors (PRRs) presented on the surface of ?rst-line defense
immune cells—macrophages and neutrophils. Activation of
these receptors triggers a cascade of signals that results in the
induction of multiple proin3ammatory cytokines. .e ?nal
step of the activation is the production of oxygen and ni-
trogen radicals, essential elements of the intracellular killing
system. .e secretion of these radicals is under strict control
of a variety of monocyte/macrophage-derived cytokines
such as IL-1β and IL-18..e key role in this process is played
by structures called in3ammasomes, multimeric protein

complexes that control many aspects of innate and adaptive
immunity. .rough their cooperation with PRRs, in3am-
masomes activate host defense pathways resulting in
clearance of various viral and bacterial infections, including
those caused by mycobacteria. .ey function as an acti-
vating sca1old for in3ammatory caspases that play an
essential role in the maturation and secretion of proin-
3ammatory cytokines as well as in pyroptosis, an in-
3ammatory death of infected cells [26, 27]. Caspases are
produced as inactive proenzymes that dimerize and un-
dergo cleavage to form active molecules. Assembly into
dimers, facilitated by various adaptor proteins binding to
speci?c regions of their precursor forms—procaspases, is
achieved through in3ammasome formation [28]. Activated
in3ammatory caspases, typically caspase-1, lead to the
generation of active IL-1β, IL-18, and IL-33 from their
proprotein precursors. .e mature cytokines are engaged
in the recruitment of immune cells to the sites of infection
and enhancement of the host’s defensive responses against
invading pathogens [26].

.e in3ammasomes are activated by multiple recognition
receptors, which determine their structure and function.
.e canonical in3ammasome sensors are nucleotide-binding
domain–like (NLR) proteins and absent in melanoma 2–like
(ALR) proteins and PYRIN. All of them have the ability to
assemble in3ammasomes and activate the in3ammatory
caspase-1.

.e NLR family contains the NLRPs (or NALPs) and the
IPAF (ICE-protease-activating factor) subfamilies [29, 30].
Each NLR molecule (NLRP1, NLRP3, NLRP6, NLRP7,
NLRP12, or NAIP/NLRC4) recognizes speci?c ligands that
activate the assembly of the in3ammasome. NLR proteins
consist of the conserved nucleotide-binding and oligo-
merization domain (NACHT or NOD), an N-terminal
caspase recruitment domain (CARD) or pyrin domain
(PYD) or baculovirus inhibitor repeat- (BIR-) like domain,
and C-terminal leucine rich repeats (LRRs) [26, 31–35].
LRRs are responsible for the recognition of PAMPs, while
the NACHT domain activates proin3ammatory cytokine
pathways via ATP-dependent oligomerization [26, 29]. .e
NLRP1 in3ammasome has a CARD that activates caspase-1
[36, 37], and therefore the recruitment of ASC is not re-
quired to interact directly with procaspase-1. However, it has
been shown that the participation of ASC in the process
enhanced the activation of the enzyme. In contrast, NLRP3
contains no typical CARD domain that contributes to the
activation of caspase-1 through the interaction of the PYD
domain of NLRP3 with ASC [25]. Compared with NLRP1
and NLRP3, the IPAF protein does not contain a PYD but
instead has a CARD that interacts directly with procaspase-1
without the need for ASC [38].

.e members of the ALR group (known as the PYHIN
family) are characterized by the presence of the pyrin do-
main (PYD) and one or two hematopoietic IFN-inducible
nuclear antigens with 200 amino acid repeat (HIN-200)
domains [26]. .e PYD recruits proteins for the forma-
tion of in3ammasomes, while the HIN domain recognizes
and binds to DNA that can be found in the cytosol [26]. .e
best-known ALRs, absent in melanoma 2 (AIM2) and IFN-γ
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inducible protein 16 (IFI16), function as intracellular im-
mune sensors that detect microbial DNA. .e PYHIN
proteins di1er in their localization in the cell compartments;
AIM2 can be found in the cytosol, whereas IFI16 is usually
localized in the nucleus [39].

PYRIN, another canonical in3ammasome-activating
protein, is composed of an N-terminal PYD followed by
two central B-box zinc ?nger and coiled-coil domains and in
humans, a C-terminal B30.2/rfp/SPRY domain [40]. PYRIN
associates through a PYD-PYD interaction with ASC pro-
tein, leading to its oligomerization that results in caspase-1
activation and interleukin-1β processing [40]..e activation
of the PYRIN in3ammasome is induced by the inactivation
of RhoA GTPase by bacterial toxins [26, 41]. .e process of
activation has been detected in both mice and humans,
suggesting that the B30.2/rfp/SPRY domain is not necessary
for its initiation.

3. Inflammasomes in Mycobacterium
tuberculosis Infection

.e in3ammasomes have been found to play important roles
in host immunity against mycobacteria since it has been
found that mice de?cient in IL-18, IL-1β, or IL-1 receptor
type I (IL-1R1) are more susceptible to M.tb infection
[42–46]. Two in3ammasomes, containing NLRP3 and AIM2
molecules as sensor proteins, were found to play a crucial
role in M.tb-induced immunity (Figure 1) [20, 47, 48].

.e NLRP3-containing in3ammasome can be activated
by a wide group of stimuli including whole mycobacterial
cells, as well as viruses, fungi, environmental chemical ir-
ritants, and host-derived molecules such as extracellular
ATP, ?brillar amyloid-β peptide, and hyaluronan [22,
49–53]. .e NLRP3 in3ammasome-activated responses
result in the release of signi?cant amounts of caspase-1,
which leads to maturation and secretion of IL-1β and IL-18
and activation of pyroptosis [26]. .e process of NLRP3
activation is triggered by at least two signals: (1) a priming
signal eliciting the expression of NLRP3, pro-IL-1β, and pro-
IL-18 genes after TLR stimulation and (2) an activation
signal leading to the autocatalytic activation of procaspase-1
and proteolytic cleavage of pro-IL-1β and pro-IL-18. In most
cell types, NLRP3 priming is a prerequisite for deubiquiti-
nation and assembly of the NLRP3 in3ammasome. Reloc-
alization of NLRP3 to the mitochondria is followed by the
secretion of mitochondrial factors into the cytosol, potas-
sium eNux through membrane ion channels, and release
of cathepsin resulting in destabilization of lysosomal
membranes. Apoptosis-associated speck-like protein (ASC)
plays an important role in the formation of an e1ective
in3ammasome. ASC recruits procaspase-1 through its
C-terminal caspase recruitment domain (CARD) and in-
teracts with NLRP3 via its pyrin domain (PYD), serving as
a bridge between these two molecules. .e autocatalysis of
procaspase-1 results in its cleavage and transformation into
active caspase-1, which in turn cleaves the precursors of two
proin3ammatory cytokines, IL-1β and IL-18, leading to their
secretion into the cytoplasm or induction [24, 25, 48, 54, 55].
However, themechanismof triggering theNLRP3 in3ammasome

complex activation cascade is still a subject of debate, and at
least three models for the process have been proposed. .e
?rst suggestion is that the activation mechanism is associated
with an eNux of potassium ions out of the cell and a reduction
in their intracellular concentration. Such amodel of activation
occurs in monocytes/macrophages after stimulation with
numerous stimuli including ATP, nigericin, bacterial cells, or
their components [56, 57]. Recently, NEK7 protein, amember
of the family of NIMA-related kinases (NEK proteins), has
been identi?ed as an NLRP3-binding protein that acts
downstream of potassium eNux to regulate NLRP3 assembly
and activation [58]. He et al. demonstrated that in the absence
of NEK7, caspase-1 activation and IL-1β release were abro-
gated in response to signals that activate NLRP3 [58].
According to the second suggested mechanism, in3amma-
some activation is a result of lysosomal membrane damage
and release of the phagosome content into cytosol [22, 59].
.e third and most accepted model assumes that the in-
duction of the NLRP3 in3ammasome complex is caused by
mitochondrial reactive oxygen species (ROS) [60–63]. .e
common ?nal step in all of these models is the release
of cathepsins into the cytosol leading to the lysosomal de-
stabilization and conversion of procaspase-1 into a bi-
ologically active caspase-1 form. It should also be mentioned
that formation of the NLRP3 in3ammasome and cytokine
release occur independently of transcriptional upregulation
[64]. Juliana et al. showed that TLR4 signaling through
MyD88 nontranscriptionally primed the NLRP3 in3amma-
some by its deubiquitination. .e mechanism was dependent
on mitochondria-derived reactive oxygen species and was
involved in the secretion of cytokines, such as IL-18, and
other in3ammatory mediators such as high-mobility group
protein 1 (HMGB1) [64, 65].

.e AIM2 (absent in melanoma 2) receptor, possessing
a C-terminal HIN-200 domain and an N-terminal pyrin
domain (PYD), triggers AIM2 in3ammasome activation,
in3ammatory cell death (pyroptosis), and release of IL-1β
and IL-18 in response to cytosolic double-stranded (ds)
DNA [66, 67]. Studies of gene-targeted AIM2-de?cient mice
have shown that AIM2 in3ammasomes play a role in host
defense against viruses and intracellular bacterial pathogens
such as listeriae and mycobacteria [68–70]. AIM2 in3am-
masomes can be activated by DNA sequences having at least
80 base pairs in length in a sequence-independent manner
[71, 72]. .e HIN-200 and PYD domains take part in
forming a complex, which is maintained in an inactive state
during homeostasis [71, 73]. Binding of dsDNA to HIN-200
facilitates oligomerization of AIM2, and the resulting
conformational change exposes the N-terminal PYD to
allow the recruitment of the adaptor protein ASC. .e
CARD of ASC binds the CARD of procaspase-1, that forms
an active AIM2 platform. Upon autoactivation, caspase-1
directs maturation and secretion of proin3ammatory cy-
tokines [48, 55, 66, 68, 74].

.e latest data suggest that NLRP3- or ASC-de?cient
animals are characterized by impaired in3ammasome for-
mation and increased susceptibility to TB [20, 54, 68, 75, 76].
However, NLRP3−/− and ASC−/− mice produced IL-18 and
IL-1β levels comparable to those of wild-type mice, which
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suggests the involvement of in3ammasome-independent
pathways in the secretion of these cytokines [21, 42, 47].
Many reports have demonstrated that a wide range of mi-
croorganisms are able to inhibit in3ammasome activation
and function. Viruses and many bacterial pathogens develop
several mechanisms of repression of in3ammasome folding;
however, not all mechanisms are clearly understood. Yer-
sinia enterocolitica produce YopE and YopT proteins that
supress caspase-1 maturation, whereas YopK protein of Y.
pseudotuberculosis binds to the type III secretion system,
thereby preventing the recognition of the pathogen by host
cell in3ammasome. Pseudomonas aeruginosa mediates
suppression of NLRC4-in3ammasome by secreting ExoU
and ExoS e1ectors, whose mechanism of action still needs
elucidation. Virulent M.tb can inhibit the formation of
AIM2 and NLRP3 in3ammasomes both directly and in-
directly, but the factors responsible for the inhibition have
not been recognized thus far. One of the likely mechanisms
is the activity of Zn-metalloprotease called ZMP1, which
inhibits the activation of NLRP3 in3ammasome and, as
a consequence, leads to the reduction of caspase-1 activity
[77–79]. Master et al. showed that infection of mice mac-
rophages with zmp1-deleted M.tb induces activation of the
in3ammasome, resulting in enhanced maturation of phag-
osomes, increased IL-1β secretion, and betterM.tb clearance
in lungs [79]. It is probable that M.tb is able to restrain the
activation of other in3ammasome types, but evidence is
needed to con?rm this hypothesis. In addition to the in-
duction of in3ammasome activation via PRRs,M.tb antigens
can modulate other innate immunity-associated functions.
One recently identi?ed protein, tyrosine phosphatase (Ptp)
A, enters the nucleus of the host cells and regulates the
transcription of many host genes involved in the mecha-
nisms of innate immunity, cell proliferation, and migration
[80]..e enzyme is also able to dephosphorylate certain host
proteins (p-JNK, p-p38, and p-VPS33B), leading to in-
hibition of phagosome-lysosome fusion and blocking the
acidi?cation of phagosomes. Both activities are crucial for
M.tb virulence in vivo through the promotion of M.tb’s
intracellular survival in macrophages [80]. M.tb often es-
capes from the phagosome within a few days of the invasion
of the host organism and creates di7culties in assessing the
potential role of in3ammasomes during the initial stages of
mycobacterial infection. Moreover, the evaluation of IL-1β
and IL-18 produced as a result of in3ammasome activation is
inadequate in revealing the signi?cance of formed multi-
protein platforms in the course of developing infection. .e
initiation of phagocytosis causes a decrease in the levels of
potassium ions in macrophages, which have been found to
be one of the crucial in3ammasome activators during in-
fections with M.tb and nontuberculous mycobacteria [81].
Other regulators such as thioredoxin-interacting proteins,
activated by the increase in reactive oxygen species in cy-
tosol, are thought to have minor e1ect on the formation of
in3ammasomes inM.tb infection [47]..e signaling cascade
can also be activated by the mycobacterial type VII secretion
system (ESX-1), which is responsible for translocation of
extracellular DNA (eDNA) in cytosol and the production
of IFN-β. Many studies have demonstrated that, at the

molecular level, IFN-β regulates the AIM2 in3ammasome
activity [82, 83]. Some ESX-1-de?cient M. smegmatis mu-
tants have been shown to possess limited capacity for AIM2
in3ammasome activation. However, in contrast to non-
tuberculous mycobacteria (NTM), M.tb mutants lacking
ESX-1 system failed to inhibit AIM2 formation, while the
wild-type strain inhibited the in3ammasome activation
[47, 84]..e suggested mechanism of inhibition involves the
IFN-β-mediated induction of IL-10, which in turn sup-
presses IL-1β production [85, 86]. However, further in-
vestigation is needed to elucidate the molecular mechanism
of M.tb-driven AIM2 inhibition and its consequences
for bacterial virulence. M. bovis BCG vaccine strain, which
does not possess the ESX-1 system, poorly activates multiple
NLR and in3ammasome complex components includ-
ing caspase-1 [87]. .e bacilli repress the expression of
thioredoxin-interacting protein (TXNIP), an antioxidant
inhibitor recruiting caspase-1 to the NLRP3 in3ammasome.
.e inhibition of TXNIP by BCG limits NLRP3 activation
and restrains pyroptosis following mycobacterial infection.
Proin3ammatory responses to BCG bacilli was found to be
driven primarily through Toll-like receptors (TLRs), since
BCG does not activate expression of genes downstream of
TLR/MyD88- and NOD-2-driven NF-κβ and AP-1 path-
ways. However, BCG is still able to induce moderate IL-1β
secretion as measured by transcription of in3ammasome
network genes [87, 88]. Understanding BCG-induced
pathways of in3ammasome activation can be helpful in
improving the existing vaccine or developing new anti-
tuberculous vaccines. .e recombinant BCG ΔureC::hly
vaccine candidate (VPM1002) has been shown to induce
improved protection against TB over the parental BCG
strain [4]. Saiga et al. demonstrated that VPM1002 acti-
vated the AIM2 in3ammasome and caspase-1 through the
ability of listeriolysin to perforate phagosome membranes,
which is encoded by the hly gene integrated into BCG
genome [4]. .e perforation facilitates the release of my-
cobacterial DNA into the cytosol, in a way that is similar to
the ESX-1 system of M.tb. Mice vaccinated with VPM1002
showed increased production of IL-1β and IL-18 as well as
induction of the stimulator of IFN genes (STING)-
dependent autophagy, which promotes delivery of BCG
antigens to MHC molecules and improves their pre-
sentation to T-cells [4].

Apart from direct induction of proin3ammatory cyto-
kine secretion, the activated caspase-1 triggers the pyroptotic
death of infected cells. .e cytosolic protein Gasdermin D
(GSDMS) is a key mediator of this process. .e cleavage of
GSDMD by activated caspase-1 results in the release of its
N-terminal fragment (GSDMD-NT), which forms pores in
the plasma membrane of the infected cell leading to the
elimination of the pathogen [26, 89–91]. .e pores disrupt
cell membrane integrity allowing water in3ux, cell swelling,
and osmotic lysis together with an eNux of small molecules,
including proin3ammatory cytokines. GSDMD-NT is able
to kill both cell-free and intracellular microorganisms and
can be thought as a new antibacterial agent. However, it is
still not known whether GSDMD-NT is able to permeabilize
the membrane of the phagosomes and kill the bacteria
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hidden within these organelles. So far, there is no evidence of
such a function. It is probable that the inhibition of bacterial
growth ismediated by other caspase components. Using single-
cell analysis, .urston et al. demonstrated that the replica-
tion of cytosolic Salmonella typhimurium was inhibited
independently or prior to the onset of cell death, suggesting
that caspase-1 and caspase-11might have additional functions
in the elimination of cytosolic bacteria [92].

4. Therapeutics Targeting Inflammasome
Pathways

Biologic agents interfering with in3ammasome activation
may provide new means of therapeutical interventions for
many diseases. .ese agents may target either upstream
processes of in3ammasome regulation or downstream IL-1
signaling [41]. Inappropriate activity of in3ammasomes
has been found to be involved in the pathogenesis of
certain autoin3ammatory skin disorders such as cryopyrin-
associated periodic syndrome (CAPS) or familial Medi-
terranean fever (FMF) as well as a number of chronic
in3ammatory diseases such as multiple sclerosis, gouty
arthritis (gout), atherosclerosis, type 2 diabetes, and obesity
[29, 93, 94]. Moreover, mechanisms controlling the NLRP3
in3ammasome arrangement have also been implicated in
the development of lung, kidney, and liver diseases [95–97].
Colchicine, a drug used for treatment of gout, has been
shown to inhibit macrophage NLRP3 in3ammasome as-
sembly and activation in vitro and in vivo [98]. Colchicine
blocks monosodium urate crystal-induced NLRP3
in3ammasome-driven caspase-1 activation and IL-1β pro-
cessing and release, suppresses the expression of genes in-
volved in cell regulation, and inhibits IL-1-induced L-selectin
expression on neutrophils [99]. Other therapeutics that
target in3ammasome-driven end products include VX-765
(inhibitor of caspase-1 activation), Anakinra (recombinant
form of IL-1 receptor antagonist), Canakinumab (monoclonal
antibody against IL-1β), Rilonacept (IL-1 inhibitor), IL-18
binding protein, and anti-IL-18 receptors antibodies [8, 41, 100].
A number of newmolecules have been identi?ed as inhibitors
of IL-1β processing (glyburide, parthenolide, CRID3, aur-
ano?n, isoliquiritigenin, β-hydroxybutyrate, and MCC950);
however, con?rming their clinical utility will require addi-
tional time and research [24].

5. Conclusion

In3ammasomes have been implicated as specialized sig-
naling platforms critical for the regulation of both innate
immunity and in3ammation. M.tb has been shown to
modulate the host innate immune response by delaying cell
death systems of the host, thereby facilitating its own
proliferation. Understanding the molecular mechanisms of
in3ammasome activation during intracellular pathogen
infections such as with M.tb, and the evasive mechanisms
employed by this evading pathogen, may lead to devel-
opment of more potent therapies to combat the pro-
liferation of M.tb.
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