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REVIEW ARTICLE

Serotonergic modulation of glutamate
neurotransmission as a strategy for treating
depression and cognitive dysfunction

Alan L. Pehrson, and Connie Sanchez*
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Monoamine-based treatments for depression have evolved greatly over the past several years, but shortcomings such as
suboptimal efficacy, treatment lag, and residual cognitive dysfunction are still significant. Preclinical and clinical studies
using compounds directly targeting glutamatergic neurotransmission present new opportunities for antidepressant
treatment, with ketamine having a surprisingly rapid and sustained antidepressant effect that is presumably mediated
through glutamate-dependent mechanisms. While direct modulation of glutamate transmission for antidepressant and
cognition-enhancing actions may be hampered by nonspecific effects, indirect modulation through the serotonin (5-HT)
system may be a viable alternative approach. Based on localization and function, 5-HT can modulate glutamate
neurotransmission at least through the 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors, which presents a rational
pharmacological opportunity for modulating glutamatergic transmission without the direct use of glutamatergic
compounds. Combining one or more of these glutamate-modulating 5-HT targets with 5-HT transporter inhibition may
offer new therapeutic opportunities. The multimodal compounds vortioxetine and vilazodone are examples of this
approach with diverse mechanisms, and their different clinical effects will provide valuable insights into serotonergic
modulation of glutamate transmission for the potential treatment of depression and associated cognitive dysfunction.
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Clinical Implications

> Significant unmet needs exist in the treatment of
major depressive disorder, such as suboptimal
efficacy and residual cognitive dysfunction.

> A paradigm shift from the traditional monoamine
therapeutics to approaches integrating glutamatergic
function has occurred recently in antidepressant
research, and has been especially fueled by the
surprising rapid and sustained antidepressant effect
of ketamine.

> We review the evidence that glutamate neuro-
transmission can be modulated indirectly by the
5-HT system through the 5-HT1A, 5-HT1B, 5-HT3,
and 5-HT7 receptors, and discuss the therapeutic
potential of a multimodal approach, combining one

or more 5-HT receptor mechanisms with 5-HT
reuptake inhibition.

> We review the available information for the two
multimodal compounds vortioxetine and vilazodone,
which are examples of this approach.

Introduction

Over the past 50 years, pharmacological treatments for
major depressive disorder (MDD) have evolved from
the older tricyclic antidepressants and monoamine
oxidase inhibitors, to selective serotonin (5-HT) reup-
take inhibitors (SSRI) and serotonin and norepinephr-
ine (NE) reuptake inhibitors (SNRIs). In recent years,
antidepressant combination therapies with multifunc-
tional pharmacologic mechanisms have been used
to enhance therapeutic outcomes.1 Some combinations
include an SSRI plus the 5-HT1A receptor and b

adrenergic receptor antagonist pindolol,2 or SSRIs
augmented with atypical antipsychotics.3 Despite
these therapeutic evolutions, significant unmet needs
still exist in treating depression, including improving
suboptimal treatment response and remission rates,
and cognitive impairments in domains such as memory,
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attention, executive function, and speed of processing.4,5

Moreover, some cognitive disturbances may predict the
development of mood disorders,6 and furthermore may
persist beyond remission.7 Since cognitive dysfunction in
depression contributes significantly to disability in some
patients,8 its alleviation is an important goal.

The glutamate system is the major excitatory
neurotransmitter system in the brain and is essential
for cognitive processing. In depressed patients, neuro-
chemical assessments have found increased basal
glutamate levels in serum or plasma,9–11 though
changes in its levels in cerebrospinal fluid12,13 and
brain tissue14,15 are somewhat inconsistent. Recent
studies using magnetic resonance spectroscopy (MRS)
in depressed patients have generally found reductions
in GLX, a combined measure of glutamate and
glutamine, possibly suggesting that the total glutama-
tergic pool available for synaptic and metabolic
activities is reduced in depression.16 However, studies
that have directly measured glutamate using MRS
have also found inconsistent results, with some groups
finding increases, decreases, or no change in glutamate
concentrations.16 There is also evidence from studies of
post-mortem brain tissue in depressed patients or
suicide victims for altered expression of N-methyl-D-
aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) receptors.17–20

Given the complexity of glutamatergic neurotransmis-
sion and the diversity of these results, it is difficult to
come to a definitive conclusion on the role of
glutamate in the etiology of major depression at this
time. In the future, information on functional single
nucleotide polymorphisms related to the glutamate
system may provide another valuable method of
examining glutamate’s role in this disease.

Nonetheless, interest in the role of glutamate in
depression is quickly accreting, primarily due to the
observation that the noncompetitive NMDA receptor
antagonist ketamine engenders a fast and relatively
long-lasting antidepressant effect.21 This observation
has prompted a new focus in antidepressant develop-
ment toward integrating glutamatergic function,22

leading to the suggestion of a wide range of glutamate
targets for the treatment of depression.23,24

5-HT neurotransmission is regulated both by the
serotonin transporter (SERT),25 which has been a target
of antidepressants for the past 30 years, and by
modulation via 5-HT receptor subtypes,26 some of
which (such as the 5-HT1A receptor) may be indepen-
dent therapeutic targets for the treatment of depres-
sion.27 A substantial body of data shows that, in
addition to modulating 5-HT neurotransmission,
multiple 5-HT receptor subtypes can also modulate
glutamate neurotransmission. This may be reflected in
results from a recent preclinical study, which found

that ketamine’s fast antidepressant activity was abol-
ished by 5-HT depletion,28 suggesting that these effects
may be serotonin-dependent. Thus, there may be an
opportunity to integrate monoamine and glutamate
strategies for treating depression. A new class of multi-
modal antidepressants has emerged, which, in addition
to inhibiting the SERT, also modulate 5-HT receptors,29,30

and may represent an example of this integrative
strategy.

In this review, we summarize the current knowl-
edge of putative glutamatergic antidepressants, 5-HT
receptor-mediated glutamate modulation, and current
evidence that multimodal serotonergic antidepressants
with indirectly modulating roles on glutamate trans-
mission are active in treating lowered mood and
impaired cognition.

Antidepressant Effects by Modulation of Glutamate
Transmission

The glutamate receptors are divided into two major
families: ionotropic and metabotropic glutamate recep-
tors (mGluRs). The ionotropic family includes NMDA,
AMPA, and kainate receptors. The metabotropic family
consists of Group I receptors (mGluR1 and mGluR5),
which potentiate both presynaptic glutamate release and
postsynaptic NMDA currents, and group II (mGluR2
and mGluR3) and Group III receptors (mGluR4,
mGluR6, mGluR7, and mGluR8), which in general
suppress glutamate function.31,32 Glutamate receptors
are widely expressed in the brain, and some of them
have been implicated in the treatment of depression.33

Preclinical and clinical compounds acting via these
targets and showing potential antidepressant activity
are listed in Table 1.

Over-activation of extrasynaptic NMDA receptors is
one of several hypothesized glutamate-related patho-
physiologies for depression.34 In support of this idea,
the noncompetitive NMDA receptor antagonist keta-
mine at a single i.v. dosing shows rapid (,4 h)
antidepressant effect that is sustained for up to 7 days
in therapy-resistant depressed patients.35 This rate of
onset is extremely fast compared to the 2-3 weeks that
approved antidepressants require. A single infusion
of a subtype selective NMDA NR2B antagonist
traxoprodil has shown a robust separation from
placebo in treatment-resistant depression (60% vs 20%
response) with sustained effects up to 1 week.36 However
memantine, a use-dependent NMDA receptor antago-
nist, has not demonstrated the same efficacy as ketamine,
though it was not tested in the same paradigm as
ketamine.37 Part of the mechanism for the antidepressant
effect of ketamine may involve disinhibition of pyrami-
dal cell firing as a result of the antagonism of NMDA
receptors located on interneurons.38 However, it remains
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to be seen whether the NMDA receptor blockade alone
mediates this fast antidepressant activity.

In support of a role for AMPA receptors in treating
depression, preclinical studies suggest that ketamine
exerts its antidepressant-like effect through AMPA
receptors,39 and that fast action is accompanied by
rapid neuronal and synaptic adaptation.32,40 It is
widely believed that neuroadaptive changes represent
a key event during antidepressant treatment, and
may play a role in the delayed onset of efficacy in
traditional antidepressants.41,42 Thus, ketamine’s rapid
effects on neuroadaptation may be a key mechanism in
its antidepressant effects, and may converge with
the general actions of antidepressant treatments
suggested in the past decades. Furthermore, the
AMPA receptor potentiator aniracetam has shown an
antidepressant-like profile.43,44 However, the clinical
benefit of AMPA receptor potentiation in depression
remains unsubstantiated.

Lamotrigine, a modulator of glutamate release via
its action on sodium and calcium channels, is
approved for relapse prevention in bipolar disorder
in the United States, and may have antidepressant
properties in unipolar patients.45 Additionally, it may
accelerate the rate of onset in combination with tradi-
tional antidepressants.46,47 Riluzole, which acts to reba-
lance glutamate levels by enhancing glutamate transport
in astrocytes, has shown efficacy in treatment-resistant
and bipolar depression.48,49 Further examples of targets

in the glutamate system with antidepressant-like impli-
cations include mGluR2/3 and mGluR5 antagonists or
negative allosteric modulators.50–52

Thus, although there is evidence that drugs that
negatively modulate some aspects of glutamate
neurotransmission have antidepressant-like effects,50–52

there is also evidence that increasing other aspects of
glutamate signaling can have antidepressant-like
effects.43,44 It remains to be seen which variables are
the true mediators of these effects. In comparison, the
prominent role of glutamatergic neurotransmission
in cognitive function is better understood. Antagonism
of NMDA receptors53 as well as other experimental
manipulations that reduce aspects of glutamatergic
neurotransmission, such as antagonism at AMPA54 or
mGlu5 receptors,55 are known to consistently impair
function across a range of cognitive domains. Accord-
ingly, the glutamatergic neurotransmitter system has
become a common target in developing cognition-
enhancing drugs,56 with the broad theme that increas-
ing synaptic glutamate neurotransmission, for exam-
ple using positive allosteric modulators at AMPA
(AMPAkines57), mGluR5 (CDPPB58), or NMDA recep-
tors (D-cycloserine59), improves cognitive function in
rodent models. However, improving mood and
cognition by directly modulating glutamatergic neuro-
transmission may be difficult, as excessive glutama-
tergic activation can lead to excitotoxic effects60 and
cognitive impairment.61 Furthermore, the near-ubiquitous

Table 1. Examples of glutamatergic compounds with antidepressant or antidepressant-like properties

Compound
examples Mechanism of action

Development
stage Effects References

Ketamine NMDA antagonist Clinical use Rapid (,4 h) antidepressant effect; sustained for
up to 1 week

35,149

Memantine NMDA antagonist Clinical use No effect 37
Lamotrigine Inhibition of glutamate

release
Clinical use Antidepressant properties in unipolar patients 46,47

Riluzole Increase in glutamate
uptake

Clinical use Antidepressant efficacy in treatment-resistant
and bipolar depression

48,49

Traxoprodil NR2B antagonist Clinical
development

Antidepressant effect in treatment-resistant
depression after a single infusion, sustained
up to 1 week

36

Aniracetam AMPA potentiator Clinical
development

Memory-enhancing effects, antidepressant-like
behavioral effects

43,44,150

LY392098 AMPA potentiator Preclinical Antidepressant-like effects in the tail suspension
and forced-swim tests

151

MPEP mGluR5 antagonist Preclinical Antidepressant-like effects in the mouse
tail-suspension and rat forced swim tests

50

LY341495 mGluR2/3 antagonist Preclinical Antidepressant-like effects; enhanced spatial
memory

52,152

MGS0039 mGluR2/3 antagonist Preclinical Antidepressant-like effects 51
GlyX13 NMDA receptor glycine

site partial agonist
Preclinical Antidepressant-like effects 153
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expression of glutamatergic receptors in the brain may
hamper the specificity of drug development.

Thus, a strategy to indirectly modulate glutamatergic
neurotransmission in selected brain regions may be more
advantageous. A recent preclinical report demonstrated
that 5-HT depletion abolished ketamine’s antidepressant-
like activity, suggesting that 5-HT plays an important
role in its action.28 Furthermore, multiple 5-HT receptors
modulate glutamate neurotransmission. Taken together,
these data make it reasonable to explore a strategy in
which 5-HT receptor modulation can be used to alter
glutamate neurotransmission in a manner that may
improve both mood and cognitive function.

Modulation of Glutamate Transmission by 5-HT
Receptors

Here we discuss four 5-HT receptors known to be
involved in the action of multimodal antidepressants that
have been approved or are in the approval process, and
which have the potential to modulate the glutamate
system based on their localization and function.

5-HT1A receptors

The 5-HT1A receptor is an inhibitory autoreceptor or
heteroceptor located on serotonergic and other neurons,

whose activation typically results in suppression of
neuronal activity. The main function of presynaptic
autoreceptors localized in the midbrain raphe nuclei is to
self-regulate the function of the serotonergic system.62

Desensitization of these autoreceptors is believed to
play an important role in the onset of action of SERT
inhibitors.63,64 The antidepressant potential of 5-HT1A

receptor agonism or partial agonism has been studied
in both preclinical and clinical settings.65,66

As postsynaptic heteroreceptors, 5-HT1A is localized
in the hippocampus, septum, amygdala, and cortico-
limbic areas.67,68 Based on immunocytochemical studies,
the 5-HT1A receptor is expressed in both pyramidal cells
and GABAergic interneurons in the cortex and hippo-
campus.69 Unlike presynaptic 5-HT1A receptors, which
mainly act through inhibition of adenylate cyclase,
postsynaptic 5-HT1A receptors exert their inhibitory
action through G protein-coupled inwardly rectifying
K1 channels.70 Due to the inhibitory nature of GABAer-
gic interneurons, stimulation of 5-HT1A receptors
located on interneurons can paradoxically increase
cortical pyramidal cell firing, although higher doses
can suppress it, probably due to the action of 5-HT1A

receptors on the pyramidal cells.71–73 Similarly, 5-HT1A

receptor stimulation resulted in inhibition of GABAergic
interneurons in the hippocampus.74 Thus, based on
the localization of 5-HT1A receptors on both GABA and

Figure 1. A schematic diagram of the hypothesized modulatory role of 5-HT receptors on glutamatergic neurotransmission.
A glutamatergic pyramidal neuron and several GABA interneurons expressing the 5-HT3, 5-HT1A, 5-HT7, and 5-HT1B

receptors on either dendrites or axon terminals are shown. The multimodal compounds vortioxetine and vilazodone and their
possible sites of action are also shown. Note that 5-HT1A, 5-HT1B, and 5-HT7 receptors may be localized on different neuronal
populations. Symbols used: VLA, vilazodone; VOR, vortioxetine.

124 A. L. Pehrson and C. Sanchez



glutamate neurons (Figure 1), their activation may
lead to either an increase or a decrease in glutamate
neurotransmission depending on which subpopulations
of 5-HT1A receptors are activated.

Based on the above interaction between effects
mediated through the 5-HT1A receptor and glutamater-
gic neurons, agonists of the 5-HT1A receptor are
predicted to have a memory-modulating role, and this
has been demonstrated in various preclinical studies.75–77

The 5-HT1A receptor full agonist flesinoxan impairs
working memory in a delayed conditional discrimina-
tion task in normal rats.78 Mixed results have been
shown in a passive avoidance test in mice, in which
pretreatment with flesinoxan either decreased or
increased memory function, depending on when it
was administered.79 In contrast, a memory-enhancing
profile was consistently observed with 5-HT1A agon-
ism in animals with learning and memory deficits. For
example, the 5-HT1A receptor agonist 8-OH-DPAT
reversed learning deficits induced by scopolamine and
MK-801 in an autoshaping learning task.77 Interestingly,
a postsynaptic-selective 5-HT1A receptor agonist F15599
was reported to improve working and reference memory
in rats with phencyclidine-induced memory deficits.76,80

This seems consistent with the glutamatergic modulatory
role of postsynaptic 5-HT1A heteroreceptors. Last,
5-HT1A receptor agonists, such as tandospirone, seem
also to be able to alleviate the memory deficits induced
by subchronic phencyclidine treatment.80

Thus, based on the localization and function of
5-HT1A heteroreceptors, 5-HT1A receptor stimulation
has the potential to enhance or suppress glutamatergic
neurotransmission, and thus may also have biphasic
effects on mood or cognitive function.

5-HT1B receptors

Like the 5-HT1A receptors, 5-HT1B receptors are dis-
tributed as autoreceptors or heteroreceptors throughout
the brain, in areas such as the ventral pallidum, globus
pallidus, substantia nigra, dorsal subiculum cerebral
cortex, and the hippocampus.81 Unlike the 5-HT1A

autoreceptors, which are localized in somatodendritic
regions of 5-HT neurons, 5-HT1B receptors are localized
either presynaptically at nerve terminals or postsynapti-
cally on dendrites.81–83 Postsynaptic 5-HT1B receptors
are co-localized with NMDA or AMPA receptors on
dentrites, and are thus well-positioned to modulate
glutamate transmission.82,83 Recently, Cai et al84 demon-
strated that 5-HT1B receptor agonism increases hippo-
campal excitatory field potentials through a CaM kinase-
dependent pathway. In the dorsal subiculum, however,
5-HT1B receptors are localized on CA1 pyramidal axon
terminals as inhibitory heteroceptors,85 and activation of
these receptors attenuates glutamate transmission in the

hippocampus due to its negative coupling to adenylate
cyclase.86–88

The 5-HT1B receptor has been implicated in the
pathophysiology and treatment of depression.89,90 It has
been shown that the 5-HT1B receptor agonist CP-94253
can modulate 5-HT synthesis in the Flinders Sensitive
Line rat, an animal model of depression.91 In intracer-
ebral microdialysis studies, stimulation of 5-HT1B

receptors by RU 24969 potentiated the antidepres-
sant-like effects of SSRIs and imipramine.92 Addition-
ally, 5-HT1B receptor stimulation with the selective
agonist CP-94253 in mice displayed an antidepressant-
like profile in the forced swim test.90

The 5-HT1B receptor may modulate learning and
memory through a glutamatergic mechanism. Intra-
hippocampal microinjection of the 5-HT1B receptor
agonist CP-93129 impairs spatial learning performance
in the radial maze task.93 On the other hand, the
5-HT1B receptor antagonist SB-224289 enhanced memory
consolidation during learning in an associative auto-
shaping learning task, and reversed the cognitive
deficits induced by either the cholinergic inhibitor
scopolamine or the NMDA receptor antagonist
MK-801.94 In an aversive contextual learning task in
mice, the 5-HT1B receptor antagonist NAS-181 dose-
dependently improved passive avoidance retention.95

Thus, 5-HT1B receptors may be able to positively or
negatively modulate glutamate transmission and may
be linked to the pathophysiology of depression. Due to
the somewhat contrasting antidepressant-like proper-
ties of 5-HT1B receptor agonism and memory deficit-
reducing effect of 5-HT1B receptor antagonism, a
balance of stimulation versus blockade of this receptor
may be needed. Based on this idea, a partial agonist for
the 5-HT1B receptor may be a reasonable approach,
although at the time of writing, the authors are not
aware of any empirical investigations of the effects of
5-HT1B partial agonism on mood and cognitive function.

5-HT3 receptors

Among 5-HT receptors, the 5-HT3 receptor is the only
known excitatory ion channel, and is expressed
throughout the brain, including the following regions:
(1) hippocampus; (2) amygdala; and (3) entorhinal,
frontal, and cingulate cortices.96 Immunohistochemical
studies show that 5-HT3 receptors are localized in
postsynaptic dendrites, especially of GABAergic inter-
neurons in cortical and hippocampal regions.97,98

These receptors function as a mechanism of 5-HT-
mediated excitation of GABA neurons.97 In freely
moving rats, the 5-HT3 receptor antagonist ondanse-
tron significantly suppressed the firing rate of CA1
hippocampal GABAergic interneurons and concomi-
tantly increased the firing rate of glutamatergic
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pyramidal cells by disinhibition.99 Consistent with the
above, activation of 5-HT3 receptors can suppress both
the spontaneous firing and NMDA-evoked responses
of the pyramidal neurons in the rat medial prefrontal
cortex.100,101 Thus, 5-HT3 receptor antagonism
enhances glutamate transmission by reducing GABA-
mediated inhibition, as illustrated in Figure 1.

This mechanism may explain previous reports that
5-HT3 receptor antagonism by ondansetron enhances
long-term potentiation (LTP) and hippocampal and
cortical theta rhythms.102,103 Likewise, 5-HT3 receptor
antagonists also improve memory102,104–107 in precli-
nical studies. For example, the 5-HT3 receptor antago-
nist itasetron showed memory-enhancing effects in a
multiple-choice avoidance behavioral task,104 and
ondansetron blocks scopolamine-induced deficits in
learning.108 In addition to the previously mentioned
effects on cognition, 5-HT3 receptor antagonists have
antidepressant-like effects. The antagonists such as
zacopride and ondansetron reversed helpless behavior
in rats.109 Newer antagonists also show antidepres-
sant-like activities in the forced swim test and in
olfactory bulbectomized rats.110 5-HT3 receptor
antagonists also augment the effects of SSRIs.111,112

In conclusion, 5-HT3 receptor antagonism shows
antidepressant-like activity and increased cognitive
function in preclinical studies, possibly through facil-
itation of glutamate neurotransmission by reducing
the activity of inhibitory GABA neurons.

5-HT7 receptors

The 5-HT7 receptor is a G-protein-coupled receptor
(GPCR) with positive coupling to adenylate cyclase,
and is highly expressed in the brain, including the
thalamus, hypothalamus, hippocampus, and cortex.113

In midbrain slices of rat brain containing the dorsal
and median raphe nuclei, the mixed 5-HT receptor
agonist 5-carboxamido-tryptamine inhibited glutamate
release, and this was reversed by the 5-HT7 receptor
antagonist SB-258719.114 Thus, 5-HT7 receptors in
the axon terminals of the glutamatergic cortico-raphe
neurons may serve as heteroreceptors that inhibit
glutamate release.114,115 The 5-HT7 receptor is also
expressed on the cell bodies of pyramidal neurons.116

In normal animals, activation of the 5-HT7 receptor
leads to increased firing of glutamatergic neurons in
the cortex117 and hippocampus.118 However, these
effects on glutamatergic neurotransmission may be
accompanied by increased inhibitory GABAergic
transmission, likely due to expression in both pyrami-
dal neurons and GABAergic interneurons. These
concomitant effects were demonstrated in the hippo-
campus with an increase in the frequencies of both
spontaneous inhibitory postsynaptic currents recorded

in pyramidal neurons and spontaneous excitatory
postsynaptic currents recorded in interneurons.119

Based on these data, 5-HT7 receptor activation has
mixed effects on glutamatergic neurotransmission,
but the overall effect in normal rodents appears to be
excitatory.117 Importantly, this relationship may be
altered in disease states, as 5-HT7 receptor activation
in 6-hydroxydopamine-lesioned animals led to a net
inhibition, rather than excitation, of pyramidal cell
firing in the same study.117 Based on these results,
5-HT7 receptor antagonism may result in either increases
or decreases in glutamatergic neurotransmission within
the context of depression.

Although the effects of 5-HT7 receptor modulation
on glutamatergic neurotransmission are currently
somewhat unclear, clear antidepressant-like activities
of 5-HT7 antagonism have been reported in a number
of preclinical studies. Treatment with the 5-HT7

receptor antagonist SB-269970 reduced immobility in
the forced swim and tail suspension tests, and there
was a further synergistic effect on extracellular 5-HT
release in the frontal cortex when SB-269970 was
combined with the SSRI citalopram.120 Therefore, the
results from preclinical studies suggest that 5-HT7

receptor antagonism might be a novel strategy for
treating depression.121,122

Additionally, memory-enhancing effects of 5-HT7

antagonists have been shown in preclinical models123–126

and have been reviewed elsewhere.122 In cases where
learning or memory was disrupted by NMDA antago-
nists such as phencyclidine or MK-801, 5-HT7 receptor
antagonism consistently improved performance.123–125,127

Interestingly, combined 5-HT7 receptor antagonism
and SERT inhibition produced a synergistic effect in a
preclinical test of executive function.128

These data support a modulatory role of 5-HT7

receptors on glutamate transmission as mentioned
above. 5-HT7 receptor antagonism might be beneficial
to cognitive function and antidepressant activity.

Multimodal Antidepressants

There are currently two multimodal compounds with
clinically documented antidepressant activity: vilazo-
done, which is approved for clinical use in the U.S.,
and vortioxetine, which is undergoing regulatory review.
Given the complexity of the serotonergic modulation of
glutamate, it is not possible to predict the net effect that
multimodal serotonergic compounds will have on
glutamate neurotransmission. Thus, the need for empiri-
cal data on the effects of these compounds on glutamate
neurotransmission is paramount.

Vilazodone is a recently approved antidepressant
with high affinities for the SERT (IC50 0.5 nM) and
5-HT1A receptor (EC50 0.2 nM)129,130 (Table 2). Vilazodone
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is a partial agonist at the 5-HT1A receptor, but with a
relatively high intrinsic activity—69% of the magnitude
of the full 5-HT1A receptor agonist 8-OH-DPAT.130 In
preclinical studies, vilazodone seems to outperform the
SSRIs paroxetine and fluoxetine, as measured by 5-HT
release and ultrasonic vocalization. However, the fact
that antidepressant-like effects are observed at moderate
but not higher doses in the rat and mouse forced swim
test may suggest that its 5-HT1A receptor partial
agonism may inhibit the expression of rodent antide-
pressant-like behaviors.130,131 Vilazodone’s potential to
interact with glutamate neurotransmission is illustrated
in Figure 1. The antidepressant efficacy of vilazodone
was seen only in some of the clinical trials, partly
due to the need to balance the higher dose (40 mg)
needed versus the high rate of gastrointestinal side
effect, and thus its efficacy and safety profiles in
comparison to current antidepressants require further
clinical evaluation.132,133

Vortioxetine is an investigational multimodal anti-
depressant that acts as a 5-HT3, 5-HT7, and 5-HT1D

receptor antagonist; 5-HT1B receptor partial agonist;
5-HT1A receptor agonist; and SERT inhibitor in
vitro112,134,135 (Table 2). Its pharmacological profile
indicates that vortioxetine has the potential to mod-
ulate glutamate transmission through all of the four
5-HT receptor pathways discussed above (Figure 1).
Multiple reports of preclinical studies have shown the
antidepressant-like activities of vortioxetine.112,134–138

Further, in clinical studies, its efficacy as an antide-
pressant has been demonstrated in several studies to
date,139–145 although statistically significant separation
from placebo has not been observed in every clinical
trial.146,147 Recently, it was reported that vortioxetine
enhanced time-dependent contextual fear memory and
object recognition memory in rats.148 Additionally,
5-HT depletion-induced memory deficits were dose-
dependently reversed by vortioxetine treatment,106

while escitalopram and duloxetine were inactive.

These data strongly suggest that the receptor activities
of vortioxetine contribute to its cognition-improving
properties in rats.106 In further support of the relevance
of the receptor mechanism, this study reported
improved memory performance in rats by a selective
5-HT1A receptor agonist and a 5-HT3 receptor antago-
nist.106 Furthermore, a recent clinical study in elderly
depressed patients showed a beneficial effect of
vortioxetine compared to placebo in cognitive tests
of processing speed, verbal learning, and memory.140 It
should be noted that vortioxetine has a 10-fold lower
in vitro affinity for rat 5-HT7 (Ki 5 200 nM) compared
with human 5-HT7 receptors (Ki 5 19 nM), and a ,15-
fold lower affinity at rat 5-HT1A (Ki 5 230 nM) com-
pared with human 5-HT1A receptors (Ki 5 15 nM)112

(Table 2). Thus, the contribution of the 5-HT7 and
5-HT1A receptors in the clinic may be underestimated
by evaluation of preclinical models. Based on the
current preclinical understanding of the mechanisms
and the preclinical and clinical results, we hypothesize
that vortioxetine’s multimodal profile including 5-HT3

and 5-HT7 antagonism, 5-HT1B partial agonism, and
5-HT1A agonism could result in enhanced glutamate
transmission and contribute to its antidepressant and
cognitive enhancing properties (Figure 1). However,
the way in which vortioxetine modulates glutamate
transmission remains to be empirically determined.

Conclusions

Pharmacological treatments for major depressive dis-
order have evolved from monoamine-based therapies
to integration of glutamatergic mechanisms. Data from
current clinical and preclinical compounds targeting
NMDA, AMPA, and mGluR receptors and glutamate
transport present new opportunities for the treatment
of depression. The serotonergic system can modulate
glutamate transmission through 5-HT3, 5-HT1A, 5-HT7,
and 5-HT1B receptors. These 5-HT receptor targets

Table 2. Clinical compounds with serotonin (5-HT) transporter (SERT) inhibition plus activity at one or more 5-
HT receptors linked to glutamatergic modulation

Vilazodone Vortioxetine

Target Type of activity Human IC50 (nM) Human Ki (nM) Rat Ki (nM)

5-HT3 Antagonist 3.7 1.1
5-HT7 Antagonist 19 200
5-HT1B Partial agonist 33 16
5-HT1A Agonist 0.2 (69%) 15 (full) 230
SERT Inhibitor 0.5 1.6 8.6
References 129 112, 134, 135

The in vitro pharmacological activities were from either binding or functional measurements. Numbers in
parentheses denote agonist efficacy.
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present opportunities for integrating glutamatergic
modulation into monoamine-based therapies, without
the direct use of glutamatergic compounds. The
multimodal compounds vilazodone and vortioxetine
are examples of this approach with diverse mechan-
isms, to indirectly modulate glutamate transmission by
respectively targeting the 5-HT1A receptor, or 5-HT3,
5-HT1A, 5-HT7, and 5-HT1B receptors along with the
SERT. Clinical results with these multimodal com-
pounds will provide valuable insights into whether
exploiting serotonergic modulation of glutamate trans-
mission is an effective strategy in treating depression.
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