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Abstract

Background

T cells regulate the adaptive immune response and have altered function in autoimmunity.

Systemic Lupus Erythematosus (SLE) has great diversity of presentation and treatment

response. Peripheral blood component gene expression affords an efficient platform to

investigate SLE immune dysfunction and help guide diagnostic biomarker development for

patient stratification.

Methods

Gene expression in peripheral blood T cell samples for 14 SLE patients and 4 controls was

analyzed by high depth sequencing. Unbiased clustering of genes and samples revealed

novel patterns related to disease etiology. Functional annotation of these genes highlights

pathways and protein domains involved in SLE manifestation.

Results

We found transcripts for hundreds of genes consistently altered in SLE T cell samples, for

which DAVID analysis highlights induction of pathways related to mitochondria, nucleotide

metabolism and DNA replication. Fewer genes had reduced mRNA expression, and these

were linked to signaling, splicing and transcriptional activity. Gene signatures associated

with the presence of dsDNA antibodies, low complement levels and nephritis were

detected. T cell gene expression also indicates the presence of several patient subtypes,

such as having only a minimal expression phenotype, male type, or severe with or without

induction of genes related to membrane protein production.

Conclusions

Unbiased transcriptome analysis of a peripheral blood component provides insight on auto-

immune pathophysiology and patient variability. We present an open source workflow and

richly annotated dataset to support investigation of T cell biology, develop biomarkers for

patient stratification and perhaps help indicate a source of SLE immune dysfunction.
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Background
Systemic Lupus Erythematosus (SLE) is a debilitating autoimmune disease affecting primarily
women. It involves dysregulation of T and B cells resulting in excessive production of antibod-
ies against self proteins and DNA, immune complex formation and T cell infiltration into tis-
sues. These processes cause a variety of symptoms including arthritis, cytopenia and kidney
failure. The etiologic origins of sporadic SLE are unknown, but altered regulation of T cells is
well documented [1–3]. Genetic determinates of SLE severity have been elusive in part because
of the heterogeneity that marks the disease [4, 5], with the majority of cases caused by genetic
predisposition coupled with environmental causes. SLE T cells present a poised activation phe-
notype associated with lower TCR activation threshold, lipid raft aggregation, increased cal-
cium flux upon activation, and overproduction of inflammatory cytokines. Altered gene
expression usually accompanies these functional alterations [6].

Expression signatures in SLE have been addressed primarily in the peripheral blood com-
partment, where pioneering work by the Pascual group first described the interferon signature
[7] [8]. These genes are inducible by the cytokine in vitro and have since been subdivided as
being targets of type I or II interferon [9]. Many of these are simultaneously induced in subsets
of cells including T and B cells [10] and monocytes [11] providing evidence for shared signal-
ing abnormalities in peripheral blood mononuclear cells.

We assayed steady-state mRNA abundance by sequencing to discover molecular underpin-
nings of T cell dysfunction in SLE. Alterations in expression reveal patient subtypes marked by
induction of genes involved in protein folding on the endoplasmic reticulum, high levels of
ribosomal protein genes, or the previously identified interferon signature alone. Substantial dif-
ferences in T cell expression in men and women were also found. Highlighted genes could rep-
resent biomarkers informative for disease management and may also direct investigation into
other T-cell driven autoimmune conditions. This methodology is amenable to study of any dis-
ease with great variability of symptom presentation if highly relevant tissue can be obtained for
transcriptome sequencing.

Materials and Methods

Sample Collection
At least 5ml of peripheral blood was collected to Lithium Heparin BD vacutainers from 14 SLE
patients under treatment at the Lupus Center at the Rheumatology Division of Beth Israel Dea-
coness Medical Center. All participating patients fulfilled the American College of Rheumatol-
ogy criteria for the diagnosis of SLE [12]. Blood was similarly obtained from 4 similarly aged
healthy female controls. This study was approved by the Institutional Review Board of Beth
Israel Deaconess Medical Center. Written informed consent was obtained from all participat-
ing subjects and all clinical investigation was conducted according to the principles expressed
in the Declaration of Helsinki.

Cell extraction and RNA isolation
Rosette Sep T cell Purification (StemCell technologies, Vancouver, Canada) was employed as
instructed by incubation of blood for 30 min with tetrameric antibody mixture against CD14,
CD19, CD20/MS4A1, CD36, CD56, CD66b, CD123, GYPA, and CD16/FCGR3A which binds
non-T cells to erythrocytes. Density-gradient centrifugation with Lymphocyte Separation
Medium (Cellgro, Manassas, VA) was used to isolate the unstimulated T cells. T cell purity is
routinely>93% by this method as determined by CD3 APC/Cy7 HIT3a (Biolegend) staining
detected on a Beckman Coulter Gallios Cytometer. RNA was then prepared by Qiagen AllPrep

SLE Patient Subtypes by T Cell Expression

PLOS ONE | DOI:10.1371/journal.pone.0141171 November 6, 2015 2 / 19

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: SLE, Systemic Lupus
Erythematosus; PBMC, peripheral blood
mononuclear cells; SLEDAI, Systemic Lupus
Erythematosus Disease Activity Index; FPKM,
Fragments Per Kilobase of transcript per Million
mapped reads; FDR, False Discovery Rate; dsDNA,
double-stranded DNA.



Kit (Valencia, CA) from 3 million T cells with DNAse-I treatment. Roughly 2ug of total RNA
was submitted to sequencing, and OD260/280 ratios were approximately 2.1.

Sequencing and Analysis
Unstranded cDNA library preparation and sequencing was performed by BGI (Shenzhen,
China). Illumina sequencing provided roughly 75e6 paired 90bp reads for each (~ 12GB
gzipped data per sample), which were assessed by FastQC and trimmed to allow ~85% map-
ping to the GRCh37/hg19 assembly by TOPHAT. Expression scores in Fragments Per Kilobase
of transcript per Million mapped reads (FPKM) were obtained by CUFFLINKS for the 24262
best annotated genes, including many expressed psuedogenes and noncoding RNAs (S1
Table). For comparisons between different groups of samples, CUFFDIFF2 was used primarily,
alongside DESeq2 and nonparametric tests in R, to calculate expression and statistical differ-
ences. Heatmaps were generated using median-normalized expression data with Gene-e and
NMF clustering was performed on the Genepattern server, both provided by the Broad Insti-
tute. Singular Value Decomposition (SVD) was performed at http://biographserv.com/ and
Venn diagrams were created with BioVenn [13]. Online supplemental files contain methods
with specific program commands and R scripts which were implemented in R studio (S1 Text).

Results
We sequenced mRNA from peripheral T cells in two men and 12 women with a variety of SLE
manifestations and SLEDAI disease scores (Fig 1) [14]. As controls we prepared specimens
from 4 healthy women aged 25 to 37. None of the patients were receiving therapy with biologi-
cal agents (Table 1). To evaluate the cell-type purity of the samples we checked non-T cell
marker expression. Of the epitopes used to collect T cells by rosette negative selection, only one
had expression above background. CD16/FCGR3A, a receptor on NK and T cells [15], had
medium expression and was induced in some patients relative to controls. Negligible CD5 and
CD19 signal indicated that the preparation was free from B cells and our T cell purity is rou-
tinely>93% based on surface CD3 detection. Genes were stratified by expression (average
value of all 18 samples) into classes of high, medium, low and unexpressed (�34,�11,�1 and
less than 1FPKM). Most analysis was carried out on the top quartile of expression in the
genome (6047 genes) which included high and medium classes. Among the highest expressed
were B2 microglobulin (B2M), several thymosins and the expected myriad ribosomal and mito-
chondrial proteins.

Although total T cells are readily obtained and efficiently purified, variable numbers of con-
stituent cell types impacts transcript abundance. Our pan-T cell view provides breadth and
flexibility for study but does not address alterations in cell type frequency, such as lower total
lymphocyte counts or lower proportion of CD4 (fraction and absolute amounts) often found
in SLE patients. Genes with significant differential expression usually had greater than 2-fold
changes in transcript signal, and therefore likely reflect expression changes more so than differ-
ences in cell type frequency associated with SLE.

SLE T cells display more genes with increased rather than decreased
expression
First we sought an overall picture of mRNA abundance changes related to SLE in T cell sam-
ples. Differential expression metrics were found by CUFFDIFF2, which calculates groupwise
expression in Fragments Per Kilobase of transcript per Million mapped reads (FPKM) to allow
comparison across genes of varied size and applies a beta negative binomial distribution to gen-
erate a False Discovery Rate (FDR) where q<0.05 is routinely considered significant [16]. A
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scatterplot shows the distribution of fold change by expression level for genes with a 1.5- or
2-fold difference and those detected as significantly altered (Fig 2A). Count-based methods of

Fig 1. T cell transcriptome workflow and distribution of major clinical signs in the SLE patient cohort. A) Samples were obtained from peripheral
blood by negative selection and mRNA was sequenced at high depth. CUFFLINKS generated per-sample expression values and CUFFDIFF2 and DESeq2
were used for groupwise comparisons, which were repeated following discovery of novel sample subgroups. B) Frequency of SLE symptom presentation at
blood draw for patient samples. Highlighting colors based on patient subtypes determined by downstream analysis.

doi:10.1371/journal.pone.0141171.g001
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differential expression are reported to be advantageous in some scenarios, so we also used
DESeq2 which was usually confirmatory (p<0.01). Alterations were stratified at multiple levels
to provide flexibility for downstream analysis, some of which performed better with more
input genes having more subtle differential expression. For high- and medium-expression
genes (6047 with greatest average expression for all samples) at least twice as many displayed
increased rather than reduced mRNA expression relative to controls at all thresholds. Alter-
ations at each threshold were similarly distributed in terms of mRNA abundance. One third of
the genes showing more than 2-fold expression changes were statistically significant by CUFF-
DIFF2 (q<0.05) but only one third of these passed a comparable threshold in DESeq2
(p<0.01) (Fig 2B).

Previously reported interferon signature genes including OAS2, ISG15, UBE2L6, IFI35,
IFI44, and STAT1 were detected as significantly induced by both analyses [17]. Among highly-
expressed and significantly upregulated genes were IL2RG (encoding CD132, the common

Table 1. Clinical manifestations of the enrolled SLE patients.

ID L005 L137 L101 L062 L149 L140 L031 L072 L133 L074 L078 L102 L115 L027

Subtype 0 0 0 A A A B B B B B C C C

SLEDAI 0 16 0 1 20 8 4 6 16 26 6 12 12 6

Race white white white black white asian white black white black white white asian white

Sex F F F F M M F F F F F F F F

Years 55 39 40 32 33 30 43 39 51 31 61 24 28 48

Low Complement yes yes yes yes yes yes yes yes

Increased DNA binding yes yes yes yes yes yes yes yes yes

Arthritis yes yes yes yes

Hematuria yes yes yes yes yes yes

Proteinuria yes yes yes yes yes

PGA 1 2 0 0 2 0 1 2 3 2 1 2 3 1

C3 (mg/dl) 137 73 99 92 128 89 89 72 91 51 91 115 73 90

C4 (mg/dl) 13 7 24 23 7 34 17 7 2 11 11 25 17 18

dsDNA neg (1:40) neg neg (1:320) (1:20) (1:40) neg (1:80) (1:80) (1:80) neg (1:80) (1:320)

ESR 20 12 9 15 10 49 38 39 40 120 38 17 65 5

WBC/HPF 1 57 0 0 8 0 3 0 1 6 0 2 3 0

RBC/HPF 1 125 0 0 12 8 0 175 1 28 0 23 1 0

Urine Protein 30 300 0 30 30 30 0 x 0 1566 100 100 245 0

Spot/creatinine 0.8 1.9 0.1 0.2 x 0.2 0.1 0.8 0.3 4.6 1.1 1.9 3.6 x

WBC 6 8 6 3 4 8 6 9 8 8 6 9 13 4

Lymphocyte 1298 1957 1112 1079 954 832 1224 3355 600 1771 1462 335 1454 752

Hemoglobin 12 11 13 11 14 13 13 11 13 12 13 10 10 12

Platelets 146 320 259 191 238 283 336 273 279 312 241 312 352 220

Creatinine 0.6 0.7 0.5 0.5 0.8 1 0.9 0.9 0.6 0.5 0.9 1.2 2.3 0.6

Prednisone (mg) 0 60 0 0 0 10 10 30 20 40 0 40 10 4

Hydroxychloroquine 400 0 400 400 400 200 400 0 0 0 400 400 0 400

Azathioprine 100 0 0 0 0 0 100 0 0 0 0 0 0 0

Mycophenolate 0 0 0 1000 0 1500 0 3000 0 3000 750 0 2500 1500

Increased dsDNA binding (dsDNA), low complement (C3 or C4) or nephritis (hematuria or proteinuria) were the major symptoms most prevalent. SLEDAI,

Systemic Lupus Erythematosus Disease Activity Index; PGA, Physician's global assessment; ESR, erythrocyte sedimentation rate; WBC, white blood cell;

RBC, red blood cell; HPF, high-power field. Nephritis was confirmed by recent biopsy and patient L078 has minimal change disease deemed unrelated to

lupus.

doi:10.1371/journal.pone.0141171.t001
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subunit of receptors for Il-2, -4, -7–15 and -21), CD53, ENO1 and many immunoglobulin frag-
ment transcripts. Select genes with diverse functions are listed, with those in bold found by
both CUFFDIFF2 and DESeq2 (Fig 2C). Genes with significantly reduced mRNA abundance
included RGS1 and RGS2, which drive G-protein alpha subunits to their inactive state, EZR,
which regulates cytoskeleton-membrane interactions, and several nuclear expression regula-
tors. OAS2 and NR4A2 serve as examples of robust alterations, which usually persisted in
patients both with low and high (SLEDAI>6) disease activity (Fig 2D), but were not altered in
all patients. Although CCR4 and CCR7mRNAs were significantly reduced, their surface
expression is reported to be increased on SLE T cells [18, 19], suggesting altered post-transla-
tional or membrane trafficking regulation for these receptors.

Genes Related to Disease Symptoms
Gene expression markers of SLE symptoms could aid in diagnosis and may point to causative
biology. We sought expression changes linked to the presence of increased anti-dsDNA

Fig 2. SLE T cells display more genes with increased rather than decreased expression. A) Distribution of expression stratified at the 1.5-, 2-fold and
q<0.05 CUFFDIFF2 significance levels.B) Relationship between q values and expression fold change in SLE relative to control.C) Select genes significantly
increased or decreased as determined by sequencing and CUFFDIFF2, with those confirmed by DESeq2 in bold. D) Example constituent data for OAS2 and
NR4A2 in control, inactive and active (SLEDAI >6) samples, where error bars represent the median absolute deviation about the median.

doi:10.1371/journal.pone.0141171.g002
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antibodies, low complement levels, or nephritis. Comparison to controls largely recapitulated
the overall SLE analysis, showing similar gene expression related to all major symptoms. This
was not surprising given that many patients exhibited more than one symptom. We therefore
made comparisons among patient samples with and without each SLE manifestation. Although
CUFFDIFF and DESeq analyses suggested genes with substantial fold changes and statistically
significant differences in expression, the underlying data revealed great vulnerability to outlier
expression. We employed the Mann-Whitney nonparametric rank-sum test, based on group-
wise median rather than mean expression values, which yielded genes with statistically differ-
ent expression in samples with and without each clinical sign.

Samples obtained from patients with increased dsDNA antibodies (titer greater than 1:40 at
blood draw) had 579 and 44 genes detected as significant at the p>0.05 and 0.01 levels, respec-
tively (Fig 3A). Most compelling was confirmation of an association with increased expression
for LY6E [20]. More mRNA for caspase inhibitor CARD16 and proteasome regulator PSMF1
was also detected. Reductions were evident for mRNA for SEMA4D, which has altered expres-
sion in arthritis [21], and ITPKB, encoding an inositol phosphate kinase involved in stem cell
division [22, 23]. DESeq2 confirmed the association of all but PSMF1 with this clinical feature
(p<0.01), while CUFFDIFF2 confirmed only LY6E. None of the genes associated with other
symptoms were confirmed by either analysis.

A similar number of gene expression differences uniquely marked samples obtained from
patients having low complement (C3 lower than 90 mg/dl or C4 less than 12 mg/dl). Most of
the 388 and 46 genes detected at the p<0.05 and<0.01 levels had increased expression (Fig
3B). Several of these have activity at the endoplasmic reticulum. SEC11C encodes a subunit of
microsomal signal peptidase complex while peptidyl-prolyl cis/trans isomerases cyclophilin B
(PPIB) and FKBP11 both support protein folding. Increases in BOLA2, which binds glutare-
doxin 3 to regulate iron levels [24] and the poorly characterized SCAND1 are also good candi-
date genes for which increased activation marks this clinical phenotype. The function of these
genes hints at a disruption of normal activity rather than increased T cell activity.

Patients with nephritis (confirmed by recent biopsy and usually coincident with proteinuria
or hematuria) showed fewer genes with altered expression (58 or 2 for p<0.05 or 0.01) and
there were no obvious links between them (Fig 3C). The coefficient of variability for altered
genes (p<0.05) was greater for these samples (1.2 versus 0.9 and 1.1 for DNA antibodies and
low complement, respectively). Patient L078 biopsy and electron microscopy indicated mini-
mal change disease unrelated to lupus, and exclusion from the non-nephritis group had no
effect on the detected signature genes because non-parametric tests are only mildly affected by
single sample values. One striking marker was TNFRSF14/HVEM, encoding a coreceptor for
herpes virus which transduces immunosuppressive signals from BTLA [25]. Although this
mRNA was marginally increased in SLE patients relative to controls, patients with nephritis
had significantly lower amounts relative to those without. A similar pattern was found for
many genes increased in SLE, including OAS2 andMX1, which may indicate progression of
disease beyond functional immune signaling within T cells and on to response to renal break-
down. Other increased mRNAs linked to the presence of nephritis were C1orf86/FAAP20, cod-
ing for a DNA repair factor [26], and LINC00339, an uncharacterized noncoding RNA. FOS
mRNA was strikingly increased. This member of the AP1 transcription complex has numerous
immune roles, and mRNA for its paralog FOSL2 was among those significantly decreased over-
all in patient samples.

Although we detected mRNAs marking the presence of major clinical signs of SLE, the fold
changes were less than expected and the genes involved did not suggest a clear picture of the rela-
tionship between T cell expression and cause of the symptoms. This could be due to the small size
of our cohort and the fact that multiple overlapping symptoms were present in several patients.
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Novel Patient Subtypes are Detected by T cell Expression Clustering
Next, we looked for expression patterns among all patients that might uncover subgroups. We
applied unbiased clustering (Pearson) to organize samples by expression similarity in a heat-
map, first using genes with at least 1.5-fold expression changes in SLE versus controls. Initial
clustering was skewed by outlying expression in single samples. Though potentially interesting
they disrupt visualization of groups with coherent behavior. To purify the data we filtered for
genes with coefficients of variation (Standard deviation divided by average) between 2 and 0.3,
which yielded roughly 1000 genes.

Fig 3. T cell expression of specific genes linked to major clinical manifestations of SLE. Select genes with differential expression in women largely
unique to each symptom were detected by Mann-Whitney rank sum tests related to A) increased presence of dsDNA antibodiesB) Low C3 or C4
complement levels or C) biopsy-confirmed lupus nephritis. Error bars represent median absolute deviation from the median value for each group and
*p<0.05, **p<0.01 for pairwise tests conducted on samples from patients with or without each symptom (healthy control data plotted only for comparison).

doi:10.1371/journal.pone.0141171.g003
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Immediately obvious was that three SLE samples cluster with the controls, indicating similar
T cell gene expression (Fig 4A). These samples exhibit only a minor T cell expression pheno-
type we term Type 0. Two of these patients had low disease activity (SLEDAI 0), but L137 had
a higher disease score so its control-like expression pattern is surprising, and may be explained
by high dose prednisone treatment. Two other sample groups were delineated by high expres-
sion for two different sets of genes (red in the bottom middle for three sample columns, or
more diffusely in the upper right for nine samples). The middle group contains samples from
two men with active disease and a woman (L062) with SLEDAI 1, which we denote Type A.
This unbiased organization of samples is striking because active and inactive samples cluster
together, uncoupling disease score from T cell expression in some cases.

To view modules with common patterns we repeated clustering following removal of entries
with lower than top quartile expression. This made additional sample types apparent among
those from SLE patients (Fig 4B). At the top of this heatmap is a module of genes induced in
four patients with increased immunoglobulin fragment mRNAs as well as two genes whose
products act at the endoplasmic reticulum, peptide isomerase chaperone TXNDC5 [27] and
MZB1, which promotes IgM assembly. Another module specific to three patients was marked

Fig 4. Unbiased clustering identifies patient subtypes by T cell gene expression. A)Genes with altered expression in lupus T cells relative to controls,
which also showed moderate variation across all samples, were median normalized and Pearson clustered with average linkage, where red and blue denote
high and low expression.B) Removal of genes with expression outside of the top quartile permits identification of subtype signature genes.C)Unbiased NMF
clustering using the same input genes yields similar patient subgroups. D) SVD clustering of samples provides an approximate metric of sample similarity,
where average values for control, affected and all samples are centrally located.

doi:10.1371/journal.pone.0141171.g004
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by induction of ARL6IP5/JWA, an ROS-sensitive ER protein involved in DNA repair, prosta-
glandin receptor PTGER2 and an expressed pseudogene of ribosomal protein RP11. We denote
these sample groups as Type B and C, and they were similar both in the cohort of genes and
extent of expression change outside of these striking modules. They present a more severe
expression phenotype than the other sample groups, but most of the alterations are detectable
to a minor degree in Type 0 patient samples. In this view, outlier expression for L078 is readily
identified. The induction of several genes unique to individual samples was pervasive in our
cohort, and may hint at a common disease mechanism linked to transcriptional regulatory
failure.

Membership in each group was somewhat dependent on the algorithm and expression
thresholds employed, but the four types of patient samples persisted across clustering schemes.
We used other methods to verify the tendency to form these groups. Non-negative matrix fac-
torization (NMF) largely recapitulated the Pearson clustering (Fig 4C) and helped confirm that
L078 was most similar to Type B, although it represents an edge case. Singular Value Decom-
position (SVD) organization of the samples provided additional evidence for structured simi-
larity, where Type 0 grouped with the controls, Type A is quite separate, and Types B and C
are closer together (Fig 4D). In each case Type 0 samples were positioned between the controls
and Types B and C, indicating an intermediary or perhaps transitional expression phenotype.
We repeated CUFFDIFF analysis to find genes altered in each sample subtype with regard to
the controls (S1A Fig) and found more alterations linked to Type B and C, consistent with the
segregation resulting from unbiased clustering. Most of the altered expression found in Type 0
was also detected in Type B and C samples. Type B had a greater number of genes that were
different from all other sample types (S1B Fig). The clinical data associated with these sample
groups did not show striking patterns, other than the fact that Type B and C samples were
obtained from patients with more symptoms and higher disease scores (orange and red
highlighting, Table 1).

We next sought expression markers capable of partitioning samples into the patient sub-
groups. CUFFDIFF and DESeq comparisons yielded largely overlapping lists of genes, similar
to our findings related to potential mRNA biomarkers of SLE clinical manifestation. Although
many genes have significant expression alterations in SLE T cells, most are driven by differ-
ences present in less than half of the patients in our cohort due to the relatively mild expression
phenotype samples in subgroup 0 and A. We applied the nonparametric Kruskal–Wallis and
Dunn tests, which allows for comparison between multiple groups. Putative markers were then
prioritized by specificity and high expression (Fig 5). An exception was Type 0 samples, for
which LY6E and NME1-NME2 expression was chosen on account of the induction present in
all subtypes relative to controls. Type A samples exhibited high levels of DDX17 and ZAP70
mRNA, while type B samples show increasedMZB1 and TXNDC5 are expected to best differ-
entiate them from type C samples. Type C samples were less obviously marked but displayed
higher levels of PTGER2 and ARL6IP5mRNA compared to Type A.

Immunosuppression is a serious confounder of human autoimmunity studies, so we also
looked for expression differences related to prednisone use. CUFFDIFF and DESeq detected
relatively few significant alterations (88 and 4 respectively at q<0.05 and p<0.01), for which
only TXNDC5 andMZB1 had been highlighted as related to patient status or subtype. We next
looked among the 324 genes with at least 1.5-fold expression change in patients with or without
prednisone administration for genes of interest in other comparisons. This more liberal view
revealed FOS and LINC00339 (induction linked to nephritis), as well asMZB1 and TXNDC5
(induced in Type B patient samples), as increased in patients under steroid treatment. Mann-
Whitney analysis detected 139 genes at the p<0.05 threshold, of which only FOS, LINC00339,
and C1orf86 had been previously noted (all increased in nephritis). These results indicate that
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prednisone may underlie expression that we found related to nephritis or Type B status. There
is considerable overlap for these attributes in our cohort, especially for nephritis and predni-
sone use. However, based on relatively high expression of Type B markers even for patient
L078, who was steroid-free, we expect confounding effects to be ruled out in future studies. We

Fig 5. Marker gene expression suggested to identify SLE patient subtypes.Genes were selected based on their ability to differentiate first all SLE
samples from controls (top) and then subtypes A or B from the others. Although not all of the genes selected had statistically different expression from all
other groups, their use in concert is expected to be sufficient for stratification. Error bars represent median absolute deviation from the median value for each
group, and * signifies p<0.05 by Kruskal-Wallis rank-sum followed by Bonferroni-corrected Dunn post test.

doi:10.1371/journal.pone.0141171.g005
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suspect patient L137 to be present in the mild phenotype subgroup on account of high dose
prednisone treatment.

Functional Annotation detects Pathways and Protein Domains Linked to
SLE Expression Changes
DAVID analysis provides a literature-based overview of biological functions related to differen-
tial expression [28], where KEGG pathways and INTERPRO protein domains offer concise
and non-redundant terminology. We compared SLE samples to controls, and also pooled con-
trols with mild expression phenotype samples (Type 0 and A females) for comparison with
grouped Type B and C samples. Patient subtype information strengthened this analysis because
the comparison of samples with weak or strong expression phenotypes detected more signifi-
cant terms, and more genes associated with each, than did the initial control versus SLE analy-
sis (Fig 6).

For genes induced in SLE, significantly related KEGG pathways are readily associated with
activated and proliferating immune cells, and included Oxidative Phosphorylation (37 genes),
Lysosome (26), Proteasome (19) Antigen Processing (16), Glycolysis (14), N-Glycan biosyn-
thesis (11) and Fatty Acid Elongation (5). Significant INTERPRO terms included Immuno-
globulin (33) and NAD(P) Binding (27) domains. Down-regulated genes were associated with
signaling and nuclear pathways including Spliceosome (13 genes), FC receptor RI Signaling
(8), Erb Signaling (9) and Apoptosis (9) and Circadian Rhythms (4). Genes with reduced
expression in SLE were enriched for domains related to signaling and gene expression, includ-
ing Kinase (31), Zinc-Finger (13), Basic Leucine Zipper (9) and Jumonji Transcription Factor
(6) motifs. The genes related to each term are listed in the supplement (S2 Table). Analysis of
patient subtype samples did not offer compelling differences from these ontology terms, pre-
sumably because fewer genes were specific to each.

Induced Transcription Factors Are Suggested to Regulate Induced
Genes
We next looked at ENCODE immunoprecipitation data for factors detected in chromatin that
might share responsibility for any observed expression changes. Examination of the body and
3kb flanking regions of genes induced at least 2-fold in SLE T cells revealed thousands of bind-
ing events. As the consortium data is derived from various cell lines, we looked at the expres-
sion of these binding ChIP targets in our data. Among those with signal at induced loci, nine
had greater than 1.5-fold increased mRNA in SLE (Fig 7A), most of which are known to impact
lymphocyte development or activity. Minimally characterized in T cells was WRNIP1 (Werner
helicase interacting protein 1), an ATP-dependent DNA-binding protein related to DNA
repair [29, 30]. As they show increased mRNA and are found at induced loci, these factors
likely act as transcriptional activators.

A greater number of transcription/chromatin factors were reduced in expression (Fig 7B), a
trend detected by DAVID analysis. Among the 14 ChIP targets with mRNAs reduced at least
1.5-fold, several have little described role in T cells. These include ZNF274, which recruits
repressive factors SETDB1 and TRIM28/KAP1 [31], chromatin modifiers CHD1 and 2 [32]
and ZBTB7A, which represses glycolytic genes [33].

Because mRNA levels are frequently unchanged for transcription factors directing an
expression program, we checked ChIP targets unaltered in SLE and depict those with at least
100 sites at induced loci (Fig 7C). Several top hits are well known to influence T cell biology.
Runx3 is critical for thymocyte development [34] and YY1 influences Th2 cytokine production
[35]. SMC3 and RAD21 interact with MXI1 (found among ChIP targets with decreased
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Fig 6. Distinct biological pathways and protein domains are identified following sample clustering. The number of genes with altered expression used
for each query is in parentheses for each comparison. Significant terms with Benjamini q values <0.05 are in bold. More terms were detected for Control
versus SLE samples by removal of male samples (CON v SLE(F)). Further refinement was obtained by grouping minor expression phenotype samples
instead with controls (C+0+A(F) v B+C). Redundant and nonspecific terms were discarded and the remaining were ranked by the number of genes
associated.

doi:10.1371/journal.pone.0141171.g006
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mRNA) to function in the cohesin complex, and the former is associated with atopic asthma
[36]. Expression for these ChIP factors was usually similar in Type B and C samples (Fig 7D).

Conclusions
Patient variability challenges diagnosis and treatment of many diseases, and peripheral blood
provides a window into health status capable of reporting on tissues throughout the body. The
transcriptome of peripheral blood components show variation with circadian [37] and seasonal
[38] periodicity and are growing in descriptive utility in autoimmunity [39] and other clinical
settings including transplantation [40] heart failure [41] amyotrophic lateral sclerosis [42] and
several cancers [43, 44] where patient subtypes can be identified based on tumor immune cell
expression [45]. Expression analysis in disease-relevant tissue is also useful for prioritization of
genomic variants [46].

SLE patients present great clinical heterogeneity as a result of genetic diversity and epige-
netic changes related to immunological memory. Robust molecular diagnostics have the poten-
tial to guide treatment and describe the causes of the disease. Our mRNA analysis identified
new genes related to T cell dysfunction and confirmed induction of interferon signature genes
(ISG), including OAS2 which we previously showed is specific to SLE autoimmunity [47].

Fig 7. ENCODE ChIP analysis identifies factors which account for induced expression in SLE T cells. The number of chromatin immunoprecipitation
binding sites within a 3kb window about significantly induced genes were countedA) Factors binding near induced genes which themselves are induced.B)
Factors binding near these genes having reduced mRNA.C) ChIP factors with unchanged mRNA and more than 100 binding sites near induced loci.D)
Expression of select chromatin factors by sample type, where error bars represent the median absolute deviation from the median.

doi:10.1371/journal.pone.0141171.g007
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Patient stratification by ISG expression, however, remains poorly correlated to disease activity
[48]. While many of the pathways and domains we found are unsurprising, their notation will
aid study of lymphocyte function. Induction of small groups of genes unique to single patients
was unexpected, and may prove to be a source of pathological variability related to more com-
mon failures of transcriptional repression. Study of nuclear regulators may be most fruitful, in
light of the persistent hypomethylation and expression activation displayed SLE T cells [49–
51].

We expected patients with various clinical signs to show more distinctive expression pat-
terns, as has been shown for rheumatoid arthritis [52]. Our data indicate that the extent of
expression alteration in T cells correlates more with the severity of disease rather than which
major symptoms were apparent. Both Type B and C sample groups had more genes with signif-
icant expression differences, and higher average SLEDAI scores, than did Type 0 in comparison
to controls. We were encouraged that expression analysis detects subtypes of patients.
Although these expression phenotypes do not correlate with specific symptoms, they will sup-
port patient stratification for study of SLE T cell function. We expect that patient subtypes, at
least with regard to sexual dimorphism, will increase discriminatory power and reveal common
symptoms or treatment response subsequent analysis of a larger cohort.

Several genes primarily associated with B cells, such as CD38 andMZB1, had striking induc-
tion in SLE T cells. This may mark an aberrant or immature cell type that is resistant to nega-
tive selection T cell purification. Signals related to B cell activation may mistakenly be received
on or within T cells, driving trans- or dedifferentiation to a close lineage member. Expression
of immunoglobulin transcript fragments is perplexing, and their profound induction in some
patients indicates a potential mechanism of disease, again, perhaps related to a transcriptional
or chromatin regulatory lesion. While we saw no evidence of Ig protein, the number of loci and
degree of induction for these and several genes with products located on the endoplasmic retic-
ulum offer strong evidence that regulation of antibody production deserves further
examination.

We conclude that study of diseases hampered by patient heterogeneity can be supported by
high coverage transcriptomics of purified tissues, even in small cohorts. Unbiased detection of
patient subtypes and biomarkers associated with symptoms may both be revealed if expression
variability is carefully considered. The genes and domains suggested herein will hopefully aid
in the study of SLE lymphocyte biology and eventually provide aid to clinical decision making.

Supporting Information
S1 Data. This file contains expression and comparison information extracted from S1
Table for use as input for analysis in R.
(CSV)

S1 Fig. T cell sample types B and C present the most alterations relative to controls. A)
Gene counts for 1.5- and 2-fold expression changes (FPKM) apparent in various comparisons
show that sample Types B and C have the most extreme expression phenotypes relative to con-
trols. The number of samples used as input is listed in parentheses for each comparison. B)
Overlaps of mRNAs increased or reduced at least 1.5-fold in abundance in three sets of three
comparisons. Left, refinement effect on the overall control v SLE analysis. Middle, patient
Types B and C show most of the altered genes found in Type 0 in addition to many others.
Right, comparisons of clinical signs show greater similarity between increased dsDNA anti-
body and low complement samples, and that nephritis is accompanied by reductions in many
mRNAs.
(TIF)
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S1 Table. This file contains the gene expression data resulting from the Cufflinks and Cuff-
diff analysis, including FPKM and descriptions for the most annotated 24,263 human
genes along with metrics from the comparisons performed. The raw sequence data has been
deposited at the Sequence Read Archive under Bioproject Accession ID PRJNA293549.
(XLS)

S2 Table. This file includes lists of ENSG IDs for all CUFFDIFF comparisons yielding
greater than 1.5x mRNA expression changes and the David Analysis of Kegg pathway and
Interpro domain terms for the refined SLE versus control comparison.
(XLS)

S3 Table. This file includes count-based expression data (matrix_counts) and the compari-
son matrix inputs for DESeq analysis and an overview of the results.
(XLS)

S1 Text. This document contains supplemental methods information including commands
and scripts employed for informatics analysis.
(DOC)
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