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Abstract: Metabolic endotoxemia is a condition in which blood lipopolysaccharide (LPS) levels are
elevated, regardless of the presence of obvious infection. It has been suggested to lead to chronic
inflammation-related diseases such as obesity, type 2 diabetes mellitus, non-alcoholic fatty liver
disease (NAFLD), pancreatitis, amyotrophic lateral sclerosis, and Alzheimer’s disease. In addition,
it has attracted attention as a target for the prevention and treatment of these chronic diseases. As
metabolic endotoxemia was first reported in mice that were fed a high-fat diet, research regarding
its relationship with diets has been actively conducted in humans and animals. In this review, we
summarize the relationship between fat intake and induction of metabolic endotoxemia, focusing
on gut dysbiosis and the influx, kinetics, and metabolism of LPS. We also summarize the recent
findings about dietary factors that attenuate metabolic endotoxemia, focusing on the regulation of
gut microbiota. We hope that in the future, control of metabolic endotoxemia using dietary factors
will help maintain human health.
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1. Introduction

Lipopolysaccharide (LPS) is a component of the outer membrane of gram-negative bacteria and is
known to induce a variety of inflammatory reactions through Toll-like receptor 4 (TLR4). Injection of
LPS into human blood elicits an inflammatory response [1,2], but it was thought that LPS is rarely
detected in human blood, except under pathological conditions such as infection and colitis. However,
in 2007, Cani et al. showed that mice fed with a high-fat diet had higher blood LPS levels than normal
chow-fed mice, resulting in inflammation of the liver and adipose tissue, which led to the development
of NAFLD and insulin resistance, and the authors defined this condition as metabolic endotoxemia [3].
Since then, studies on metabolic endotoxemia have been conducted for a variety of diseases. It has been
reported that blood LPS levels are higher in humans with obesity [4], type 2 diabetes [5], NAFLD [6],
pancreatitis [7], amyotrophic lateral sclerosis [8], and Alzheimer’s disease [8] than those in healthy
individuals. Although the causal relationship between metabolic endotoxemia and disease onset is
unclear, it is expected to be an interesting target in the future from the viewpoint of disease prevention
and treatment. In recent years, the association between metabolic endotoxemia and dietary factors,
and the mechanism by which fat intake induces metabolic endotoxemia have been actively studied. In
contrast, dietary factors that suppress metabolic endotoxemia have also been explored. Here, we review
the relationship between fat intake and induction of metabolic endotoxemia, focusing on gut dysbiosis
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and the influx, kinetics, and metabolism of LPS. We also summarize the recent findings in humans
and animals about dietary factors that attenuate metabolic endotoxemia, focusing on regulation of
gut microbiota.

2. Fat Intake and Metabolic Endotoxemia

2.1. Dysbiosis

As Cani et al. reported an increase in blood LPS levels due to a high-fat diet in mice, the mechanism
of LPS influx by fat ingestion has been investigated. LPS content both in cecal contents and blood
was concomitantly increased by fat ingestion [9], and this increase of LPS was suppressed with oral
administration of intestinal alkaline phosphatase, a LPS inactivating enzyme [9]. Oral administration
of ampicillin and neomycin, broad-spectrum antibiotics that are poorly absorbed, also suppressed the
increase in blood LPS concentration induced by a high-fat diet [10]. These reports suggest that intestinal
bacteria are an important source of LPS. In particular, Cani et al. demonstrated changes in intestinal
flora (reduction in Bacteroides, Bifidobacterium, and Eubacterium) due to a high-fat diet. Thus, dysbiosis
of the intestinal flora due to a high-fat diet has attracted attention as a possible cause for metabolic
endotoxemia. Changes in the intestinal bacteria due to ingestion of a high-fat diet have been studied in
animals and humans and have been summarized in a review by Netto Candido et al. [11]. In animals,
it has been reported that a high-fat diet increases the proportion of Firmicutes, Proteobacteria, and the
ratio of Firmicutes to Bacteroidetes. On the other hand, in humans, it has been reported that high-fat
dietary intake increases the proportion of Bacteroidetes and decreases the proportion of Firmicutes and
Proteobacteria. One possible cause of the different changes in the gut microbiota at the phylum level
(e.g., Firmicutes, Bacteroidetes, Proteobacteria) in human and animal studies is the difference in the type
of fat consumed. The high-fat diet used in animal experiments (e.g., Research Diets Inc., catalog#
D12451) contains lard, while human studies assess fat intake in daily diets. Devkota et al. evaluated
the gut microbiota in C57BL/6 mice fed a low-fat diet, a high-fat diet with lard, or a high-fat diet with
milk fat for 21 days [12]. In this experiment, both high-fat diets were isocaloric, rich in saturated fatty
acids, and 37% of the ingested kcal were from fat. As a result, the proportion of Firmicutes increased
and that of Bacteroidetes decreased in the gut microbiota of mice fed a high-fat diet containing lard,
compared to mice fed a low-fat diet. In contrast, in mice fed a high-fat diet containing milk fat, the
proportion of Firmicutes decreased and that of Bacteroidetes increased compared to the low-fat diet fed
mice. Interestingly, Devkota et al. also identified specific bacteria that increased only by ingestion
of a high-fat diet containing milk fat [12]. Compared to mice fed a low-fat diet, or a high-fat diet
containing lard, mice fed with a high-fat diet containing milk fat had increased proportions of Bilophila
wadsworthia, a sulfite-reducing bacterium, in gut microbiota. They also elucidated the mechanism
underlying this increase; intake of milk fat increased the level of taurocholic acid in bile. Bilophila
wadsworthia populations increased by utilizing sulfur components in taurocholic acid, causing intestinal
inflammation in mice. An increase in total fecal bile acid and a concomitant increase in Bilophila
wadsworthia in the gut microbiota was also reported in humans upon dietary intake of animal fat [13].
Natividad et al. also showed that increased Bilophila wadsworthia in mice fed a high-fat diet contributed
to increased blood LPS levels (they measured soluble CD14 as a surrogate marker), increased fasting
blood glucose levels, and the development of a fatty liver [14]. As Helicobacter pylori was discovered as
a pathogen in gastric cancer, some pathobionts may also exist for induction of metabolic endotoxemia
(however, this cannot be detected by evaluating changes of the gut flora at the phylum levels). We
further discuss the bacterial genera that are thought to be associated with metabolic endotoxemia in
Section 4. It is also necessary to consider dietary LPS as a source of LPS. For example, milk has been
reported to contain high concentrations of LPS in some commercial products [15]. Multiple animal
studies have reported that ingested LPS may contribute to increased blood LPS levels. Specifically,
Kaliannan et al. measured blood LPS levels 45 min after ingestion of LPS alone or corn oil and LPS in
mice [9]. It showed that blood LPS levels were elevated when corn oil and LPS were co-administered.
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Lindenberg et al. reported that LPS concentrations in the blood were higher in mice fed a high-fat diet
containing LPS than in mice fed a high-fat diet without LPS [16]. However, the effect of LPS levels in
food on blood LPS levels has not been adequately studied in humans and further studies are needed.

2.2. Mechanisms of the Influx of LPS into the Bloodstream

The gut is protected by a barrier consisting of a mucin layer and epithelial cells. Thus, even if the
number of gram-negative bacteria that produce LPS increases in the gut, it is unlikely that the bacterium
itself will invade the body. The limulus amebocyte lysate assay used to measure LPS recognizes
lipid A, a glycolipid moiety of LPS [17], but because lipid A is embedded in the outer membrane of
gram-negative bacteria [18], elevated blood LPS levels suggest that LPS released from gram-negative
bacteria is flowing into the blood. In an in vitro study with Escherichia coli, the concentration of free LPS
in the culture medium increased with bacterial growth, but the addition of antibiotics stimulated further
LPS release [19]. In addition, Jin et al. suggested that treatment with penicillin and erythromycin
killed the gram-negative bacteria, Bacteroides and γ-Proteobacteria, leading to increased blood LPS levels
in mice [20]. Radilla-Vázquez et al. conducted a correlation analysis of blood LPS levels with fecal
Escherichia coli, Prevotella, and Bacteroides fragilis counts in humans and reported that the lower the
number of gram-negative bacteria Escherichia coli, the higher the risk of increased blood LPS levels [21].
These reports suggest that LPS release by lysis as well as the increase in gram-negative bacteria may be
important factors in increasing blood LPS levels, which may contribute to the inconsistent relationship
between changes in intestinal flora and blood LPS levels described above.

With respect to the influx of free LPS, Laugerette et al. reported that in an in vitro assay system
using the intestinal epithelial cell line caco-2, LPS permeability to the basal side was increased in the
presence of oleic acid, 2-oleoylglycerol, soybean lecithin, cholesterol, and sodium taurocholate [22].
In addition, Clement-Postigo et al. reported a positive correlation between increased LPS levels in
the chylomicron fraction and increased triglyceride concentration in serum up to 3 h after a high-fat
meal [23]. LPS uptake in chylomicrons has been observed by immunoelectron microscopy [22]. These
results suggest that released-LPS in the intestine is taken up into micelles during lipid absorption,
and then LPS is absorbed from the intestine together with lipids. In mice, ingestion of a high-fat
diet has been reported to increase intestinal permeability by inhibiting the mRNA expression of tight
junction-related factors, zonula occludens-1 (ZO-1) and occludin in intestinal epithelial cells [10]. This
increase in intestinal permeability is markedly inhibited by antibiotic administration [10], suggesting
that it is not the direct effect of lipids but rather a change in intestinal flora. Indeed, secondary bile
acids metabolized by enteric bacteria are known to inhibit expression of intestinal tight junction
proteins [24,25]. Increased intestinal LPS has been reported to destroy the tight junction of intestinal
epithelial cells through TLR4 [26]. Although ingestion of a high-fat diet broadly enhances intestinal
and colonic permeability [27], permeability in the colon is closely related to increased blood LPS
levels [28,29]. Therefore, disruption of the barrier function by a high-fat diet may have also contributed
to the LPS inflow, and the colon may be important as a site of the absorption. The transit time of
colonic contents is also probably important. In mice, Anitha et al. suggested that saturated fatty acids
induced apoptosis of neurons in the large intestine, reduced peristalsis, induced constipation, and
increased blood LPS levels [30]. On the other hand, Reichardt et al. similarly evaluated peristalsis of
the large intestine by ingestion of a high-fat diet, but did not observe a clear decrease in peristalsis and
an increase in blood LPS levels [31]. Anitha et al. and Reichardt et al. used high-fat diets where either
60% or 30%, respectively of ingested kcal came from fat. Although the ratio of fat to energy intake
varied, it has been reported that blood LPS levels increased by consumption of a high-fat diet with
30% of kcal ingested being from fat [32,33]. Therefore, the reason for the lack of increase in blood LPS
levels in the study of Reichardt et al. is not considered to be a difference in the fat content of the diet.
Ingestion of a high-fat diet does not simply increase blood LPS levels, and retention time of colonic
contents due to constipation may also contribute to absorption of LPS.
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2.3. Kinetics and Activity of LPS

The LPS concentration in the portal blood is approximately 10 times higher than the LPS
concentration in the peripheral blood [34], suggesting that a part of the LPS released in the intestinal
tract is flowing from the portal vein. On the other hand, LPS which is concomitantly absorbed with
lipids binds to lipoproteins in chylomicrons via LPS-binding protein (LBP) [35], and is thought to
pass through the lymphatic system, flow into the blood stream from the left subclavian vein, and
then circulate throughout the body. It is reported that blood LPS is bound to various lipoproteins,
with plasma LPS concentrations of 31%, 30%, 29%, and 10% for the very low-density lipoprotein
(VLDL) fraction, low-density lipoprotein (LDL) fraction, high-density lipoprotein (HDL) fraction, and
free LPS, respectively [36]. In addition, LPS bound to lipoproteins of HDL has been reported to be
transferred to VLDL and LDL by LBP and phospholipid transfer protein [37], suggesting that the LPS
concentration of each lipoprotein fraction changes actively. There are several reports that bioactivity of
LPS bound to lipoprotein varies with the type of lipoprotein. First, Vreugdenhil et al. evaluated the
effect of chylomicrons, HDL, LDL, and VLDL on the production of tumor necrosis factor-α (TNF-α)
from human peripheral blood mononuclear cells on LPS stimulation and showed that chylomicrons
inhibited TNF-α production the most [35]. Emansipator et al. reported that a mix of LPS with LDL
or HDL decreased the spike recovery of LPS activity in the limulus amebocyte lysate test, and that
incubation of LPS with apo A1 decreased the febrile response of rabbits when injected compared to
those without apo A1 [38]. In a study using human mononuclear cells [39] and the mouse macrophage
cell line Raw 264.7 [40], it was reported that LPS bound to HDL showed reduced interleukin-6 (IL-6)
and TNF-α production. VLDL has also been reported to inhibit LPS-induced activation of nuclear
factor κB (NF-κB) [41]. On the other hand, oxidized LDL has been shown to promote NFκB activation
with LPS in macrophages [42], suggesting that binding to lipoproteins not only decreases LPS activity
but also may promote inflammatory responses.

Increased LPS content has been reported in the livers of mice fed a high-fat diet [43], suggesting
that the liver is an important site for LPS clearance. Ninety percent of the free LPS that entered the
bloodstream is captured by liver resident macrophages (i.e., Kupffer cells) within 1 h [44]. LPS bound
to HDL attaches primarily to sinusoidal epithelial cells of the liver [40,44], but it shows slower blood
kinetics than free LPS, with 50% present in plasma even 1 h after administration and the amount
accumulated in the liver accounted for only 15% of the dose [44]. LPS bound to HDL on the other
hand is distributed widely to organs other than the liver, such as the kidney and adipose tissue [44].
LPS accumulated in the liver is inactivated by acyloxyacyl hydroxylase produced by Kupffer cells
regardless of free or HDL-bound form [44]. Previously, in a mouse model of high-fat diet plus
streptozotocin-induced non-alcoholic steatohepatitis-hepatocellular carcinoma, fecal LPS levels were
continuously elevated from six weeks, while liver LPS levels were transiently elevated at eight weeks,
followed by increased plasma LPS levels [45]. This report suggests that the liver acts as the first barrier
against LPS entering from the intestinal tract and that liver dysfunction leads to elevated blood LPS
levels. Interestingly, LPS administration in mice increased the expression of apolipoprotein AIV in the
liver via TLR4, suggesting that the liver has a mechanism to increase HDL production and protect
itself against LPS stimulation [46].

3. Dietary Factors that Decrease Blood LPS Levels

Previous reports investigating the effects of dietary factors on blood LPS levels are summarized in
Table 1 (human interventional studies), Table 2 (human epidemiological studies) and Table 3 (animal
studies). The findings about representative food categories are reviewed in the following sections.
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3.1. Probiotics

Probiotics were defined by Fuller in 1989 as “A live microbial feed supplement which beneficially
affects the host animal by improving its intestinal microbial balance” [47], and has been studied
mainly for lactic acid bacteria and bifidobacteria. Since metabolic endotoxemia has been implicated
in gut dysbiosis, the effects of probiotics have been investigated. However, the results in humans
are unfavorable (Table 1). Lever et al. administered 195 mL of Yakult light (containing 2 × 1010

colony-forming unit (CFU) of Lactobacillus casei Shirota) for three months to individuals with metabolic
syndrome. The absence of detectable blood LPS in this study led to an assessment of the surrogate
LBP level, which was significantly higher in the Yakult light-fed group than in the non-fed group [48].
Pei et al. conducted a nine-week study in which low-fat yogurt was ingested in healthy or obese
individuals, however no significant decrease in blood LPS or LBP levels was observed [49]. In addition,
Pei et al. studied whether low-fat yogurt could be administered before a meal to suppress the increase
in blood LPS after a meal [50] and found no efficacy. On the other hand, there have been several reports
of the efficacy of probiotics in animal studies (Table 3) [43,51–55]. Lactobacillus rhamnosus, Lactobacillus
sakei, Lactobacillus acidophilus, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium infantis, and
Bacillus cereus are used as species, and the dosage ranges from 107 to 1010 CFU/day for four to twelve
weeks. These animal studies used a high-fat diet, a high-fat high-sucrose diet, or a Zucker-Lepfa/fa

obesity model. In addition to a significant decrease in blood LPS or LBP levels, improvement of
obesity, glucose metabolism, and dyslipidemia was also observed. Since the effects of probiotics are
strain-specific, it is expected that the effects of strains that have been effective in animal studies will be
verified in humans.

3.2. Prebiotics

Prebiotics was defined by Gibson and Roberfroid in 1995 as “nondigestible food ingredients
that beneficially affect the host by selectively stimulating the growth and/or activity of one or a
limited number of bacterial species already resident in the colon, and thus attempt to improve host
health” [56], and among the food components, dietary fiber and oligosaccharides are known as
typical prebiotics. To date, human intervention studies have been conducted with oligofructose [57],
inulin [58,59], galacto-oligosaccharides [60–62], resistant dextrin [63], insoluble dietary fiber [64], and
whole grains (Table 1) [65]. Oligofructose is an oligosaccharide containing one molecule of glucose
and several molecules of fructose and is found in many fruits and vegetables. Inulin is a type of
fructose-polymerized polysaccharide that is abundant in vegetables such as burdock and onion. In
intervention studies with oligofructose [57] and inulin [58,59], subjects with obesity, overweight subjects,
and subjects with type 2 diabetes consumed 10–21 g of test substances for 8–12 weeks. Two of the three
studies showed a significant decrease in blood LPS levels [57,58]. One study also showed a decrease
in plasminogen activator inhibitor-1 (PAI-1), a risk indicator for thrombosis [57], and the other study
showed an improvement in glucose metabolism [58]. Galacto-oligosaccharides are oligosaccharides in
which multiple molecules of galactose are attached to one molecule of glucose. Similar to oligofructose,
there have been three reports of interventional trials for galacto-oligosaccharide in obese, overweight,
and type 2 diabetic patients. One study showed that galacto-oligosaccharides reduced blood LPS levels,
and improved obesity by suppressing appetite [62]. In mice, chronic administration of LPS has been
reported to induce hyperphagia by decreasing leptin sensitivity of afferent vagal nerves [66], and the
reduced blood LPS levels and appetite suppression seen with galacto-oligosaccharide administration
are of interest in supporting an association between LPS and appetite.



Nutrients 2019, 11, 2277 6 of 38

3.3. Polyphenols

Polyphenols are secondary metabolites found in plants and are responsible for protection against
oxidative stress, UV damage, and pathogenic microorganisms [67]. Polyphenols are found in a
wide range of foods, including vegetables, fruits, tea, beans, and spices, and their consumption has
been reported to improve metabolic syndrome (decreased body weight, decreased blood pressure,
improved glucose metabolism, and improved lipid metabolism) [68]. However, up to 27% of ingested
polyphenols are detected in urine [69], suggesting that many of them are not absorbed and reach
the large intestine [70]. Since polyphenols reaching the large intestine have been reported to alter
the proportions of microbiota [71], it is expected that the effect of polyphenols against metabolic
syndrome is mediated through the improvement of dysbiosis and of the accompanying metabolic
endotoxemia. There are two human intervention studies investigating the relationship between
polyphenol intake and blood LPS, both of which evaluated the inhibitory effect on postprandial
elevation of blood LPS levels (Table 1) [72,73]. In the study performed by Ghanim et al., healthy
individuals ingested capsules containing 100 mg of resveratrol and 75 mg of polyphenol 10 min before
a 930-kcal high-fat, high-carbohydrate meal. Blood LBP levels up to 5 h after a meal were evaluated
and showed increased blood LBP levels in the placebo group but not in the capsule group [72]. On the
other hand, Clemente-Postigo et al. administered 272 mL of red wine to humans simultaneously with
excessive fat and found no effect on either blood LPS or LBP levels [73]. The efficacy of polyphenols has
been also reported in animal studies. The effects of grape seed proanthocyanin [29,33], resveratrol [74],
apple-derived polymeric procyanidins [75], genistein [76], isoflavone [77], and syringarecinol [78] on
blood LPS levels in animal models have been reported (Table 3). In particular, L’openz et al. reported
that six-month administration of genistein to high-fat diet-fed mice reduced their blood LPS levels and
improved their spatial memory ability [76]. Cho et al. administered syringalesinol to 40-week-old mice
for 10 weeks and showed that the decrease in blood LBP levels was accompanied with suppression of
changes in immune cells due to aging (decreased naive T cells and decreased T-cell proliferation) [78].
It has also been reported that adoption of a high-fat diet results in abnormal differentiation of bone
marrow hematopoietic stem cells due to increased blood LPS levels [79], suggesting that the effect of
syringalecinol on immunoaging might be also exerted in other models of metabolic endotoxemia.

3.4. Sulfated Polysaccharide

Sulfated polysaccharides are widely present in animal tissues and seaweed and are used industrially
as anticoagulants, pharmaceuticals, and gelling agents for foods. The effect of sulfated polysaccharides
on metabolic endotoxemia has been studied only in animals (Table 3). Intervention studies with
sea cucumber-derived sulfated polysaccharides [80,81], acaudina molpadioides-derived fucosylated
chondroitin sulfate [82], chicken-derived chondroitin sulfate [83] or fucoidan [84] have been performed.
Of these studies, two showed that administration of sulfated polysaccharides to high-fat diet-fed mice
increased the amount of short-chain fatty acids in the intestinal tract, decreased the blood LPS or
LBP concentration and attenuated weight gain [80,82]. Zhu et al. also reported the same effect of
sulfated polysaccharides in chow-fed lean mice [81]. Liu et al. demonstrated that exhaustive exercise
with a treadmill significantly impaired kidney function, decreased fecal butyrate levels, changed
intestinal morphology, and induced metabolic endotoxemia [83]. Their study is interesting in showing
that exercise stress also increased blood LPS levels, and that dietary factors are also effective in the
model mice.
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3.5. Other Dietary Components/Extracts/Foods

In the study by Abboud et al., obese or over weight subjects ingested 30 g of glutamine per day
for eight weeks (Table 1) [85]. As a result, their blood LPS levels and waist circumference decreased. In
an epidemiological study conducted with healthy subjects, 25-hydroxy vitamin D was reported to
negatively correlate to blood LPS levels (Table 2) [86]. The protective effect of vitamin D is supported
by animal studies in which vitamin D-deficient mice, exposed to a bacterial pathogen, exhibited lower
LPS detoxification activity of the intestine and greater endotoxin translocation [87]. The effect of other
dietary components, including tetrahydro iso-alpha acid [88], rhein [89], phlorizin [90], capsaicin [91],
rutin [92], and lycopene [93] on blood LPS levels in animals has also been reported (Table 3). Among
them, administration of tetrahydro iso-alpha acid [88], phlorizin [90], or rutin [92] to high-fat diet-fed
mice or db/db mice improved metabolic impairment. Administration of rhein [89], or lycopene [93]
to high-fat diet-fed mice showed a unique effect; they not only reduced blood LPS levels but also
prevented high-fat diet-induced memory impairment. Kang et al. showed that administration of
antibiotics to mice given capsaicin abolished the effect of capsaicin on blood LPS levels [91]. They
also showed that capsaicin-induced protection against high-fat diet-induced blood LPS increase is
transferrable by fecal microbiota transplantation.

It has also been reported that intervention with crude food extracts or the food itself can lower
blood LPS levels in animals (Table 3). We studied the effect of broccoli sprout extract, enriched in
functional glucosinolate “glucoraphanin” (details are described in Section 4) [94]. Anhê et al. examined
the effects of extracts from cranberry [95] or camu camu [96]. Camu camu is an Amazonian fruit
that contains an abundance of vitamin C and flavonoids such as ellagic acid, ellagitannins, and
proanthocyanidins. Administration of camu camu extracts to high-fat/high-sucrose diet-fed mice
reduced plasma bile acid pool size, altered gut microbiota composition, and reduced blood LPS levels.
Dey et al. reported that administration of green tea extract to high-fat diet-fed mice suppressed
inflammation and gut permeability especially in the ileum and colon, and reduced LPS influx from the
portal vein [34]. The reduction of blood LPS levels by feeding with Tartary buckwheat protein was
reported by Zhou et al. [32]. This study is valuable in that it elucidates one of the underlying mechanisms
by which plant protein intake leads to improvement of metabolic abnormalities. Intervention studies
with cocoa [97], nopal [98], and steamed fish meat [99] have been performed. Among these, Zhang et al.
performed unique experiments [99]. They divided mice into four groups, and fed them ad libitum with
normal chow, steamed fish, pork or beef at 9:00 and 18:00 daily for eight weeks. As a result, only mice
group fed with steamed fish showed decreased blood LBP levels compared to the other three groups.

3.6. Chinese Medicines

The effect of the Chinese medicines; geniposide + chlorogenic acid [100], potentilla discolor
bunge water extract [101], ganoderma lucidum mycelium water extract [102], semen hoveniae
extract [103], and shenling baizhu powder [104] on blood LPS levels have been reported in animals
(Table 3). The combination of geniposide and chlorogenic acid is included in a traditional Chinese
medicine, Qushi Huayu Decoction. Peng et al. indicated that administration of geniposide and
chlorogenic acid to high-fat diet-fed mice restored colonic tight junctions by inhibiting down-regulation
of RhoA/Rho-associated kinase signaling, and reduced blood LPS levels and hepatic LBP protein
levels [100]. Han et al. examined the effect of potentilla discolor bunge water extract in type 2 diabetic
mice induced by high-fat diet feeding and streptozotocin injection [101]. The results showed that fecal
LPS levels in the type 2 diabetic model mice were significantly increased compared to the control
normal mice. The administration of potentilla discolor bunge water extract to mice reduced fecal
LPS levels, decreased blood LPS levels and increased the expression levels of tight junction proteins
(Claudin-3, ZO-1, and Occludin) in the colon. Chang et al. studied the effect of ganoderma lucidum
mycelium, a Basidiomycete fungus [102]. They showed the dose-dependent effect of ganoderma lucidum
mycelium water extract on blood LPS reduction, suggesting that high molecular weight polysaccharides
(>300 kDa) isolated from the extract is an effective component. Ping et al. reported that the extract of
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semen hoveniae, a seed of Hovenia dulcis Thunb rich in dihydromyricetin and quercetin, decreased
blood LPS levels in a mouse model of alcohol-induced liver injury [103]. It has been reported that
administration of shenling baizhu, a mixture of ten different traditional Chinese medicinal herbs, to
high-fat diet-fed mice decreased LPS levels in the portal vein [104].

3.7. Dietary Habits

In relation to dietary habits, Kopf et al. conducted an intervention study in humans with BMI
> 25 kg/m2 and low intake of whole grains, fruits, and vegetables (Table 1) [65]. During the weekly
interview, the subjects themselves selected the vegetables and fruits to be eaten the following week from
apples, bananas, blueberries, clementines, grapes, pears, strawberries, broccoli, carrots, cauliflower,
celery, green beans, green leaf lettuce, peas, spinach, sweet pepper, and tomatoes. The subjects ate
these fruits and vegetables for 21 to 30 servings/week (at least three servings/day) for six weeks. As a
result, compared to control group in that dietary habits were not or minimal changed, average daily
intake of refined grains was 1/3, fruit intake was doubled, and vegetable intake was four times, leading
to a significant reduction in blood LBP levels and IL-6 levels. An epidemiological study by Ahola et al.
in patients with type 1 diabetes has shown a negative correlation between several dietary patterns
and blood LPS levels: These dietary patterns are “Fish” (frequently eats fish dishes), “Healthy snack”
(frequently eats fruits, berries, fresh vegetables, yoghurt, low-fat cheese, and does not drink many soft
drinks) and “Modern” (frequently eats poultry, pasta, rice, meat dishes, fried and grilled foods, and
fresh vegetables) (Table 2) [105]. In the epidemiological study by Ahola et al., no significant correlation
was found between blood LPS levels and intake of energy, carbohydrates, fats, proteins, or dietary
fiber. In regard to the absence of a significant positive correlation between blood LPS levels and fat
intake (the believed cause of blood LPS elevation in humans and animals), the authors consider that the
previously reported amount or proportion of fat intake may be greater than the intake in the normal
diet. Similarly, Amar et al. reported no significant correlation between fat intake and blood LPS levels
in 201 subjects [106]. In the same study, Amar et al. reported a positive correlation between total
energy intake and blood LPS levels [106]. The effect of caloric restriction on blood LPS levels have
been reported in both humans and mice. Ott et al. reported that, in women with a BMI of 30 kg/m2

or more, intake of a defined formula diet of 800 kcal/day for four weeks decreased blood LBP levels,
and following intake of the normal diet (1800 kcal/day), blood LBP levels returned to the initial levels
(Table 1) [107]. Even in mice, caloric restriction of 30% [108] or 40% [109] has been reported to decrease
blood LPS or LBP levels (Table 3). A common finding in these reports in mice is that blood LPS or
LBP levels are reduced by calorie restriction compared to ad libitum even in normal chow-fed mice.
This suggests that the influx of LPS into the bloodstream is not limited to the specific conditions of
excessive fat intake but can also occur by some mechanism in the normal diet.
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Table 1. Dietary factors that have been evaluated for efficacy on blood lipopolysaccharide (LPS) levels in human interventional studies.

Category Dietary Factor Dose Consumption
Period

Subject LPS LBP

Gut Microbes with Significant Changes
in Proportion **

Increase Decrease

Probiotics/
Prebiotics

Yakult light
(Lactobacillus casei Shirota 1 × 108

CFU/mL) [48]
195 mL 3 months Metabolic syndrome ND ↑ — —

Low-fat yogurt
[49] 339 g 9 weeks Healthy subject or Obesity → → — —

Low-fat yogurt
[50] 226 g Premeal

Healthy subject or Obesity
(postprandial endotoxemia

was assessed)
→ → — —

Oligofructose
[57] 21 g 12 weeks Overweight/

Obesity ↓ — — —

Oligofructose-
enriched inulin

[58]
10 g 8 weeks Type 2 diabetes ↓ — — —

Inulin +
Oligofructose

[59]

8 g
8 g 3 months Obesity → —

Bifidobacterium,
Faecalibacterium

prausnitzii

Bacteroides
intestinalis,

Bacteroides vulgatus,
Propionibacterium

Galacto-
oligosaccharide

[60]
5.5 g 12 weeks Type 2 diabetes → → none none

Galacto-
oligosaccharide

[61]
15 g 12 weeks Overweight/

Obesity — → Bifidobacterium spp. none

α-Galacto-
oligosaccharide

[62]
6–18 g 14 days Overweight ↓ — Bifidobacteria none

Resistant dextrin
[63] 10 g 8 weeks Type 2 diabetes ↓ — — —

Insoluble dietary fiber
[from Fiber One Original cereal

(General mills)]
[64]

30 g With high-fat,
high-calorie meal

Healthy subject
(postprandial endotoxemia

was assessed)
↓* — — —

Whole grains
[65] 3 servings 6 weeks Overweight/

Obesity — ↓ none none
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Table 1. Cont.

Category Dietary Factor Dose Consumption
Period

Subject LPS LBP

Gut Microbes with Significant Changes
in Proportion **

Increase Decrease

Probiotics/
Prebiotics

Bifidobacterium longum +
Oligofructose +

Life style modification
[110]

— 24 weeks Non-alcoholic
steatohepatitis ↓ — — —

Polyphenol

Resveratrol +
Polyphenol

[72]

100 mg
75 mg

10 minutes before
intake of high-fat

high-carbohydrate
meal

Healthy subjects
(postprandial endotoxemia

was assessed)
— ↓ * — —

Red wine
[73] 272 mL With high-fat meal

Healthy subjects
(postprandial endotoxemia

was assessed)
→ → — —

Dietary
habits

Fruits +
Vegetables

[65]
3 servings 6 weeks Overweight/

Obesity — ↓

α-diversity
(No significant

change in bacterial
genera was found)

none

Caloric restriction
[107] 800 kcal 4 weeks Obesity — ↓

Anaerostipes hadrus,
Blautia sp.,

Ruminococcus faecis,
Bifidodbacterium sp.

Agathobacter rectalis

Others Glutamine
[85] 30 g 14 weeks Overweight/

Obesity ↓ — — —

ND: Not detected, —: No data, ↑: Significantly increased,→: Not significantly changed, ↓: Significantly decreased, *: Attenuation of postprandial endotoxemia, **: The bacteria mentioned
by the author in the paper are listed.
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Table 2. Correlation of dietary factors, gut microbes, and blood LPS levels in human epidemiological studies.

Subject Number of
Subject

Correlation of
Dietary Factor and Gut Microbe *

Correlation of
Blood LPS and Gut Microbe

Correlation of
Blood LPS and Dietary Factor

Over-
weight

pregnant
women

[111]

88
P

Dietary fiber
vs.

diversity, richness,
Firmicutes in

unidentified family of
order Clostridiales,

Barnciellaceae family
belonging to the

phylum Bacteroidetes

P none P none

Vitamin A,
β-Carotene

vs.
Firmicutes

N Fat vs. diversity, richness,
Barnsiellaceae N none N none

Healthy
subjects

[86]
150 N

25-Hydroxy
vitamin D

vs.

Coprococcus,
Bifdobacterium N LPS vs. Faecalibacterium N LPS

vs. 25-Hydroxy vitamin D

Type 1
diabetes

[105]
668 — — — — — — N LPS

vs.

Dietary pattern;
“Fish”(frequently eat fish
dishes), “Healthy snack”

(frequently eat fruits, berries,
fresh vegetable, yoghurt,

low-fat cheese, and do not
drink much soft drinks),

“Modern”(frequently eat
poultry, pasta, rice, meat

dishes, fried and grilled foods,
and fresh vegetables)

—: No data, P: Positive correlation, N: Negative correlation, LPS: lipopolysaccharide, *: The bacteria mentioned by the author in the paper are listed.
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Table 3. Dietary factors that have been evaluated for efficacy on blood LPS levels in animal interventional studies.

Category Dietary Factor Dose Administration
Period Model LPS LBP Significant Change in

Gut Microbiota

Probiotics/
Prebiotics

Lactobacillus rhamnosus GG
[51] 1 × 108 CFU/day 12 weeks HFD-fed ApoE KO mouse ↓ — no

Lactobacillus rhamnosus CNCM
I-4036

[52]
1 × 1010 CFU/day 30 days Chow diet-fed

Zucker-Lepfa/fa rat — ↓ —

Lactobacillus sakei OK67 +/−
Lactobacillus sakei PK16

[53]

1 × 109 CFU/day
1 × 109 CFU/day

4 weeks HFD-fed
C57BL/6 mouse ↓ — yes

Bifidobacterium longum BR-108
(sterilized)

[54]
200, 400 mg/kg/day 4 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Bifidobacterium infantis +
Lactobacillus acidophilus +

Bacillus cereus
[55]

0.5 × 106 CFU/day
0.5 × 106 CFU/day
0.5 × 105 CFU/day

12 weeks HFHSD-fed
SD rat ↓ — yes

Lactobacillus plantarum LC27 +/−
Bifidobacterium longum LC67

[43]

1 × 109 CFU/day each
(or 0.75 × 109 (LC27) +

0.25×109 (LC67)
CFU/day in mix)

4 weeks HFD-fed
C57BL/6 mouse ↓ — yes

Oligofructose
[112] 10% (mixed in diet) 12 weeks HFHSD-fed

SD rat ↓ — yes

Galacto-
oligosaccharide

[84]
800 mg/kg/day 8 weeks HFD-fed

SD rat ↓ — yes

Inulin
[113]

5% (intragastric
administration,

sample volume was
not described)

6 weeks

standardized diet (kcal %:
10% fat, 20% protein, and
70% carbo- hydrate; 3.85
kcal g−1)-fed db/db mouse

↓ — yes

Wheat-derived arabinoxylan
[114] 7.5% (mixed in diet) 8 weeks HFD-fed

C57BL/6J mouse ↓ — —
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Table 3. Cont.

Category Dietary Factor Dose Administration
Period Model LPS LBP Significant Change in

Gut Microbiota

Polyphenols

Grape seed proanthocyanidin
[33] 500 mg/kg/day

10 days
(prophylactic) or
17 weeks (with
cafeteria diet)

Cafeteria diet
(high-fat/high

carbohydrate diet)-fed
Wistar rat

↓ — —

Grape-seed proanthocyanidin
[29] 100, 500 mg/kg/day 2 weeks

Cafeteria diet
(high saturated-fat/high

refined-carbohydrate
diet)-fed Wistar rat

↓ — —

Resveratrol
[74] 50, 75, 100 mg/kg/day 16 weeks HFD-fed

C57BL/6 mouse ↓ ↓ yes

Apple-derived polymeric
procyanidins

[75]

0.5% (administration
route was not

described)
20 weeks HFHSD-fed

C57BL/6J mouse ↓ — yes

Genistein
[76] 0.2% (mixed in diet) 6 months HFD-fed

C57BL/6 mouse ↓ — yes

Isoflavone
[77] 0.1% (mixed in diet) 5 weeks HFD-fed

C57BL/6 mouse ↓ ↓ yes

Syringaresinol
[78] 50 mg/kg/day 10 weeks 40-week-old

C57BL/6 mouse — ↓ yes

Sulfated
polysaccharide

Sea cucumber-derived sulfated
polysaccharide

[80]
300 mg/kg/day 8 weeks HFD-fed

BALB/c mouse — ↓ yes

Sea cucumber-derived sulfated
polysaccharide

[81]
300 mg/kg/day 42 days Chow-fed

BALB/c mouse — ↓ yes

Acaudina molpadioides-derived
fucosylated chondroitin sulfate

[82]
80 mg/kg/day 10 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Chicken-derived chondroitin
sulfate

[83]
150 mg/kg/day 16 days

Exhaustive exercise stress
model

BALB/c mouse
↓ — yes

Fucoidan
[84] 100 mg/kg/day 8 weeks HFD-fed

SD rat ↓ — yes
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Table 3. Cont.

Category Dietary Factor Dose Administration
Period Model LPS LBP Significant Change in

Gut Microbiota

Other dietary
components

Tetrahydro iso-alpha acid
(included in hops)

[88]
0.1% (mixed in diet) 8 weeks HFD-fed

C57BL/6J mouse ↓ — —

Rhein (included in rhubarb)
[89] 120 mg/kg/day 6 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Phlorizin (included in apple)
[90] 20 mg/kg/day 10 weeks Chow-fed

db/db mouse ↓ — yes

Capsaicin
[91] 0.01% (mixed in diet) 12 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Rutin
[92] 0.64% (mixed in diet) 20 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Lycopene
[93] 0.03% (mixed in diet) 10 weeks HFD and fructose-fed

C57BL/6 J mouse ↓ — —

Other
extracts/dietary

components

Broccoli sprout extract
[94] 2.2% (mixed in diet) 14 weeks HFD-fed

C57BL/6JSlc mouse ↓ ↓ yes

Camu camu extract
[96] 200 mg/kg/day 8 weeks HFHSD-fed

C57BL/6J mouse ↓ — yes

Other
extracts/dietary

components

Cranberry extract
[95] 200 mg/kg/day 8 weeks HFHSD-fed

C57BL/6J mouse ↓ — yes

Green tea extract
[34] 2% (mixed in diet) 8 weeks HFD-fed

C57BL/6J mouse ↓ — yes

Tartary buckwheat protein
[32] 23.5% (mixed in diet) 6 weeks HFD-fed

C57BL/6 mouse ↓ — yes



Nutrients 2019, 11, 2277 15 of 38

Table 3. Cont.

Category Dietary Factor Dose Administration
Period Model LPS LBP Significant Change in

Gut Microbiota

Foods

Cocoa
[97] 8% (mixed in diet) 18 weeks HFD-fed

C57BL/6J mouse ↓ — —

Nopal
[98]

5% of dietary fiber
was replaced with

those of nopal-derived
(mixed in diet)

1 month HFHSD-fed
Wistar rat ↓ — yes

Steamed fish meat
[99]

Ad libitum
(9:00–12:00 and

18:00–21:00)
8 weeks Chow-fed

C57BL/6 mouse — ↓ yes

Chinese medicines

Geniposide +
Chlorogenic acid

[100]

90 mg/kg/day
1.34 mg/kg/day 4 weeks HFD-fed

C57BL/6 mouse — ↓ —

Potentilla discolor Bunge water
extract
[101]

400 mg/kg/day 8 weeks
HFD-fed, streptozotocin-

injected
C57BL/6J mouse

↓ ↓ yes

Ganoderma lucidum mycelium
water extract

[102]
2–8 mg/day 8 weeks HFD-fed

C57BL/6NCrlBltw mouse ↓ — yes

Semen hoveniae extract
[103] 300, 600 mg/kg/day 8 weeks

Alcohol-containing
Lieber-DeCarli diet-fed
SD rat (Alcoholic liver

disorder model)

↓ — yes

Shenling Baizhu powder
[104] 30 g/kg/day 16 weeks HFD-fed

SD rat ↓ — yes

Caloric restriction

30% caloric restriction
[108] — 62–141 weeks HFD, LFD-fed

C57BL/6J mouse — ↓ yes

40% caloric restriction
[109] — 30 days Chow-fed C57BL/6J

mouse ↓ ↓ yes

—: No data, HFD: High-fat diet, HFHSD: High-fat high-sucrose diet, ↑: Significantly increased,→: Not significantly changed, ↓: Significantly decreased.
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4. Association of Dietary Factor-Induced Reduction of Blood LPS and Modulation of
Gut Microbiota

Although few studies have evaluated the relationship between the effect of dietary factors on blood
LPS and intestinal flora in humans, several studies have evaluated intestinal flora in oligosaccharide
intervention studies (Table 1). A common finding in these reports is an increase in Bifidobacterium.
Bifidobacterium has been reported to enhance the intestinal tight junction by preserving claudin 4 and
occludin localization at tight junctions, and inhibit permeability in mice with colitis [115]. Similarly,
in human colonic epithelial cell line T84, the addition of culture supernatant of Bifidobacterium has
been reported to enhance barrier function through increased expression of tight junction protein,
suggesting that some humoral factors contribute to improved intestinal barrier function [116]. Increased
expression of tight junction protein in Bifidobacterium-treated mice has been reported to be associated
with increased short-chain fatty acids (acetic acid, butyric acid, and propionic acid) in the intestinal
tract [117]. These short-chain fatty acids have been reported in the human colonic epithelial cell line
caco-2 to act as an energy source for epithelial cells to protect themselves, and also act as a histone
deacetylase inhibitor which inhibit Nod-like receptor P3 inflammasomes to maintain the barrier
function of epithelial cells [118]. These results suggest that the increase in Bifidobacterium induced by
oligosaccharide intake decreases blood LPS levels through the improvement of the barrier function
of the intestinal tract. In addition, dietary factors that increase Bifidobacterium are expected to reduce
blood LPS levels.

Changes in intestinal flora by the dietary factors listed in Table 4 was greatly dependent on the
study. However, all of the dietary factors commonly lowered blood LPS or LBP levels in animals,
as described in Table 3. In other words, by finding bacteria that have decreased or increased in
many dietary factor intervention studies, we can find specific bacteria that contribute to the increase
or decrease in blood LPS levels. To this end, we have organized the number of reports that show
increases or decreases of each bacterial genus (Figure 1). We selected eight of these genera (Lactobacillus,
Bacteroides, Akkermansia, Clostridium, Escherichia, Roseburia, Prevotella and Desulfovibrio) as bacteria
included in a sufficient number (five or more) of reports, and a biased number of reports (Bifidobacterium
was excluded because it was discussed above. Faecalibacterium was also excluded because there is
almost no bias in the number of reports).

Lactobacillus, Bacteroides, Akkermansia, Roseburia, and Prevotella are possible bacterial genera that
may contribute to the reduction of blood LPS levels. Lactobacillus is a gram-positive bacterium that
produces large amounts of lactic acid during carbohydrate fermentation. The probiotic contribution
of Lactobacillus to the regulation of metabolic endotoxemia is studied (Table 3). Administration of
Lactobacillus rhamnosus CNCM I-4036 to obese Zucker-Leprfa/fa rats decreased the mRNA expression
levels of endothelin receptor type B (Ednrb) in the intestinal mucosa, and reduced the blood LBP
level [52]. Reduction of Ednrb decreases the density of negative charge of the colonic mucin layer,
leading to an increase in the ability of the mucin layer to adsorb microparticles and bacteria, thereby
inhibiting their penetration through the colonic mucosa [119]. Lactobacillus sakei OK67 and PK16 are
reported to suppress high-fat diet-induced colitis, and to reduce the fecal Proteobacteria population
and fecal LPS levels in mice [53]. In addition to the previous reports described in Table 3, it has
been reported that oral administration of Lactobacillus reuteri ZJ617 suppresses LPS-induced apoptosis
of intestinal epithelial cells and maintains the intestinal barrier function [120]. We have described
in Section 2.2 that LPS is absorbed from the intestinal tract during lipid absorption. Interestingly,
oral ingestion of Lactobacillus acidophilus ATCC 4356 in mice has been reported to reduce the mRNA
levels of Niemann-Pick C1-like 1, which is involved in lipid absorption in the intestine, and in
the suppression of cholesterol absorption [121]. Taken together, this suggests that Lactobacillus
contributes to a decrease in blood LPS levels through strengthening the intestinal barrier, reducing the
amount of LPS in feces, and suppressing lipid absorption. As described in Table 4, Bifidobacterium,
oligofructose, galacto-oligosaccharide, syringaresinol, acaudina molpadioides-derived fucosylated
chondroitin sulfate, green tea extract, Tartary buckwheat protein, nopal, semen hoveniae extract,
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and 30% caloric restriction are dietary factors that increase the proportion of Lactobacillus in the gut
microbiota. Among them, the amylolytic Bifidobacterium strain is reported to stimulate the growth of a
nonamylolytic Lactobacillus probably by producing intermediate metabolites of starch metabolism [122].
Oligosaccharides (oligofructose and galacto-oligosaccharide) were reported to support the growth
of Lactobacillus as prebiotics [123]. Green tea extract [124] and buckwheat-resistant starch [125] were
reported to promote the growth of Lactobacillus in a fermentation assay. On the other hand, in
an in vitro fermentation assay using gut microbiota, it was reported that fucosylated chondroitin
sulfate promotes the growth of Bacteroides, Bifidobacterium, and Clostridium, while the number of
Lactobacillus decreases [126]. Thus, the mechanism by which Lactobacillus increased in mice fed with
fucosylated chondroitin sulfate needs to be further studied. The mechanism by which the proportion of
Lactobacillus in gut microbiota increases due to calorie restriction also remains unknown. As it has been
reported that the bacteria adapted to the nutritional environment can grow predominantly in the gut
microbiota consortium [127], Lactobacillus might be able to grow even under malnutrition. The effect of
syringaresinol, nolpal, and semen hoveniae on the growth of Lactobacillus has not been revealed.

Bacteroides is a gram-negative obligate anaerobe. Hooper et al. reported that Bacteroides
thetaiotaomicron, a prominent component of the normal mouse and human intestinal microflora,
modulates expression of genes involved in mucosal barrier fortification [128]. The administration of
Bacteroides fragilis HCK-B3 and Bacteroides ovatus ELH-B2 to mice attenuated LPS-induced intestinal
inflammation, by either modulating cytokine production or restoring the Treg/Th-17 balance [129]. On
the other hand, in a state in which no dietary fiber is ingested, it has been suggested that Bacteroides
degrades the mucin layer of the intestinal tract, decreases the barrier function of mucus, and induces
inflammation [130]. Therefore, it should be noted that depending on the diet of the host, Bacteroides
can act as either probiotics or pathobionts. As described in Table 4, an increase in Bacteroides was
reported in four out of five intervention studies with sulfated polysaccharides. Bacteroides is a
unique bacterium among gut flora that has degrading enzymes corresponding to various sulfated
polysaccharides [131] and is able to utilize sulfated polysaccharides such as heparin [131], heparan
sulfate [131], and chondroitin sulfate [132] as energy sources. It is therefore thought that intake
of sulfate polysaccharide preferentially nourishes Bacteroides in gut flora and suppresses metabolic
endotoxemia via its anti-inflammatory and barrier function-enhancing effects.

Akkermansia is a mucin-adherent intestinal bacterium [133], which grows by degrading mucin [134],
and produces propionic acid, a short-chain fatty acid [135]. In addition, Akkermansia promotes butyrate
production, by supporting the growth of Anaerostipes caccae through mucin degradation [136]. As noted
above, these short-chain fatty acids are known to enhance intestinal barrier function. In addition, it has
been reported that Akkermansia-derived extracellular vesicles administered in mice are localized to the
large intestine, and directly enhance intestinal barrier function by increasing epithelial cell expression of
tight junction proteins [137]. Furthermore, oral administration of Akkermansia to mice inhibited high-fat
diet-induced thinning of the mucin layer, reduced blood LPS concentration, and inhibited obesity
and abnormal glucose metabolism [138]. Akkermansia has been reported to be negatively correlated
with obesity (waist-to-hip ratio and subcutaneous adipocyte diameter) and diabetes mellitus (glucose
intolerance states), and is attracting attention as a next-generation probiotic [139]. Among the dietary
factors that increase the proportion of Akkermansia in the gut flora, polyphenols are intriguing because
most of intervention studies with polyphenols (apple-derived polymeric procyanidins, genistein, and
isoflavone) or polyphenol-rich food extracts (camu camu extract, cranberry extract, and green tea
extract) consistently reported an increase of Akkermansia (Table 4). Anhê et al. reported that cranberry
extract administration to mice increased colonic Kruppel-like factor 4 (a marker of goblet cells) and
Muc2 mRNA expression, suggesting that polyphenols enhance mucin production and support the
growth of Akkermansia [95]. On the other hand, direct prebiotic action of polyphenols to Akkermansia has
been reported in a study using the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) [140].



Nutrients 2019, 11, 2277 18 of 38

Table 4. Changes of gut microbiota induced by dietary factor intervention in animal experiments.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Probiotics/
Prebiotics

Lactobacillus sakei OK67
+/−

Lactobacillus sakei PK16
[53]

Feces PCR, NGS OTU (O67), Ace (O67), Chao1
(O67), Shanon (O67)

Simpson (O67), Proteobacteria,
Firmicutes, Firmicutes/Bacteroidetes,

Proteobacteria/Bacteroidetes

Bifidobacterium longum
BR-108

(sterilized)
[54]

Cecal contents PCR Bifidobacterium spp.,
Lactobacillus spp. Firmicutes

Bifidobacterium infantis +
Lactobacillus acidophilus +

Bacillus cereus
[55]

Feces PCR
Bifidobacteria, Lactobacillus,

Bacteroides,
Bifidobacteria/Escherichia coli

Escherichia coli, Enterococcus

Lactobacillus plantarum
LC27 +/−

Bifidobacterium longum
LC67
[43]

Feces PCR Actinobacteria (LC67, LC27 + LC67)

Firmicutes, Bacteroidetes,
δ/γ-Proteobacteria, Deferribacteres

(LC67, LC27+LC67),
Firmicutes/Bacteroidetes,

Proteobacteria/Bacteroidetes

Oligofructose
[112] Cecal contents PCR

Bacteroides/Prevotella,
Bifidobacterium, Lactobacillus,

Roseburia

Clostridium leptum (cluster IV),
Clostridium cluster I, Clostridium

cluster XI, Methanobrevibacter,
Akkemansia muciniphila,

Faecalibacterium prausnitzii

Galacto-oligosaccharide
[84] Cecal contents NGS

Verrucomicrobia, Akkermansia,
Ruminococcus, Blautia, Bacteroidetes,

Proteobacteria, Adlercreutzia,
Staphylococcus, Prevotella,
Oscillospira, Lactobacillus,

Desulfovibrio

Firmicutes, Actinobacteria,
Clostridium, Bacillus

Inulin
[113] Feces NGS Bacteroidetes, Cyanobacteria,

Bacteroides

Firmicutes, Deferribacteres,
Tenericutes, Ruminiclostridium_6,

Mucispirillum
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Polyphenols

Resveratrol
[74] Cecal contents NGS Deferribacteraceae

none (In this study, population of
Desulfovibrionaceae in the high-fat
diet + intervention group was at
the same level with normal chow

group, but there was no significant
reduction from high-fat diet group.)

Apple-derived polymeric
procyanidins

[75]
Cecal contents NGS

Bacteroidetes, Verrucomicrobia,
Adlerceitzia, Roseburia, S24-7,
Bacteroids, Anaerovorax, rc4-4,

Akkermansia

Firmicutes, Firmicutes/Bacteroidetes,
Clostridium, Lachnospiraceae,

Bifidobacterium

Polyphenols

Genistein
[76] Feces NGS

Firmicutes, Verrucomicrobia,
Prevotellaceae, Verrucomicrobia,

Prevotella, Akkermansia,
Faecalibacterium, Prevotella copri,
Prevotella stercorea, Akkermansia

muciniphila

Bacteroidetes, Bacteroidaceae,
Bacteroides, Bacteroides acidifaciens,

Bacteroides uniformis

Isoflavone
[77] Feces NGS

α-diversity, Actinobacteria,
Verrucomicrobia,

Bifidobacterium/Enterobacteriaceae,
Akkermansia

Proteobacteria

Syringaresinol
[78] Cecal contents NGS

Firmicutes/Bacteroidetes, Firmicutes,
Lactobacillus, Lactobacillus animalis,
Lactobacillus johnsonii, Lactobacillus

reuteri, Lactobacillus intestinalis,
Bifidobacterium pseudolongum

Shannon diversity indices,
Jeotgalicoccus nanhaiensis,

Staphylococcus lentus, Bacteroidaceae
(EF098405_s), Bacteroides vulgatus,

Akkermansia muciniphila
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Sulfated
polysaccharide

Sea cucumber-derived
sulfated polysaccharide

[80]
Feces NGS

bacterial diversity, Verrucomicrobia
(depolymerized sulfated

polysaccharide), Bacteroides,
Alloprevotella, Ruminiclostridium_9,

Butyricicoccus, Akkermansia

Proteobacteria, Escherichia-Shigella
(polymerized sulfated polysaccharide),
Pseudomonas (depolymerized sulfated

polysaccharide), Yersinia
(depolymerized sulfated

polysaccharide), (In this study,
decrease of Desulfovibrio with the

intervention of sulfated polysaccharide
to high-fat diet-fed mouse was shown

as heatmap, but significance of
difference was not described.)

Sea cucumber-derived
sulfated polysaccharide

[81]
Feces NGS

Proteobacteria (polymerized sulfated
polysaccharide), Bacteroides

(polymerized sulfated
polysaccharide), Allobaculum

(depolymerized sulfated
polysaccharide), Alloprevotella,

Roseburia, Turicibacter, Desulfovibrio

Enterococcus, Streptococcus,
Escherichia-Shigella, Lactobacillus

Acaudina
molpadioides-derived

fucosylated chondroitin
sulfate

[82]

Feces PCR, NGS

Bacteroidetes, Lactobacillus,
Actinobacteria, Faecalibacterium

prausnitzii, Deferribacteres,
Bacteroidales, Bifidobacteriales,

Lachnospiraceae NK4A136 group,
Bacteroides, Bacteroides acidifaciens,

Bifidobacterium choerinum

Firmicutes, Escherichia coli, Clostridiales,
Bacilli, Lactobacillales, Clostridia

Clostridiales, Firmicutes Clostridiales,
Lactococcus, Clostridium ruminantium

Chicken-derived
chondroitin sulfate

[83]
Feces NGS

Bacteroidetes, Bacteroides acidifaciens,
family S24-7, Lysinibacillus

boronitolerans
Firmicutes, β-Proteobacteria

Fucoidan
[84] Cecal contents NGS

Proteobacteria, Verrucomicrobia,
Enterobacter, Bacteroidetes, Bacillus,

Ruminococcus, Adlercreutzia,
Prevotella, Oscillospira, Desulfovibrio,

Firmicutes, Actinobacteria, Clostridium,
Corynebacterium, Staphylococcus,

Lactobacillus, Aerococcus
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Other dietary
components

Rhein (included in
rhubarb)

[89]
Cecal contents PCR Bacteroides/Prevotella, Desulfovibrio Bifidobacterium, Lactobacillus

Phlorizin (included in
apple)

[90]
Feces PCR, DGGE Akkermansia muciniphila, Prevotella none

Capsaicin
[91] Cecal contents NGS Ruminococcaceae, Lachnospiraceae family S24_7

Rutin
[92]

Small intestinal
contents NGS

Bacteroidales_S24-7 group,
Bacteroidaceae, Porphyromonadaceae,

Rikenellaceae, Desulfovibrionaceae

Firmicutes, Firmicutes/Bacteroidetes,
Deferribacteraceae, Lachnospiraceae
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Other
extracts/dietary

components

Broccoli sprout extract
[94] Cecal contents NGS none Proteobacteria, Desulfovibrionaceae

Camu camu extract
[96] Feces NGS

microbial richness, Bifidobacterium,
Barnesiella, Barnesiella spp.,

Turicibacter spp., Akkermansia
muciniphila, Delftia, Roseburia,

Anaerostipes, unclassified genera
within the families

Christensenellaceae, unclassified
genera within the families

Erysipelotrichaceae

Firmicutes/Bacteroidetes, Lactobacillus,
Anaerotruncus, Parabacteroides

Cranberry extract
[95] Feces PCR, NGS Akkermansia none

Green tea extract
[34] Cecal contents NGS

Shannon index, Chao1 richness,
Bacteroidetes, Actinobacteria,

Verrucomicrobia, Bacteroidales,
Bifidobacteriales, Verrucomicrobiales,

Turicibacterales. RF39,
Coriobacteriales, Bifidobacterium,

Blautia, Dorea, Lactobacillus,
Ruminococcus, Akkermansia,
Butyrivibrio, Akkermansia

muciniphila, Ruminococcus gnavus,
Bifidobacterium pseudolongum,

Bifidobacterium adolescentis

Firmicutes, Firmicutes/Bacteroidetes,
Clostridiales, SMB53

Tartary buckwheat
protein

[32]
Feces PCR Bifidobacterium, Lactobacillus,

Enterococcus, Clostridium Escherichia coli, Bacaeroides
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Foods
Nopal

[98] Feces NGS

α-diversity, Anaeroplasma, Prevotella,
Ruminucoccus, Bacteroides fragilis,

Ruminococcus bromii, Rumminococcus
flavefaciens, Lactobacillus reuteri,

Akkermansia muciniphila

Firmicutes/Bacteroidetes,
Faecalibacterium, Clostridium,

Butyricicoccus, Bacteroides
acidifaciens, Blautia producta,
Faecalibacterium prausnitzii,
Butyricicoccus pullicaecorum,

Clostridium citroniae

Steamed fish meat
[99] Feces NGS

Proteobacteria, Firmicutes,
Ruminococcaceae, Oscillospira,

Clostridium, Escherichia
Shannon index, Bacteroidetes, S24-7

Chinese
medicines

Potentilla discolor Bunge
water extract

[101]
Feces NGS

Bacteroidetes, Bacteroidales_S24-7_group,
norank_f_Bacteroidales_S24-7_group,

Parabacteroides,
Eubacterium_nodatum_group,

norank_f_Rhodospirillaceae, Tyzzerella,
Rikenella, Alistipes,

Lachnospiraceae_NK4A136_group,
norank_f_Ruminococcaceae, Romboutsia,
Coriobacteriaceae_UCG_002, Bacteroides,

Allobaculum, Coprococcus_3,
norank_f_Christensenellaceae

Proteobacteria, Helicobacteraceae,
Helicobacter

Ganoderma lucidum
mycelium water extract

[102]
Cecal contents NGS

Parabacteroides goldsteinii, Bacteroides
spp., Anaerotruncus colihominis,
Roseburia hominis, Clostridium

methylpentosum (Clostridium IV),
Clostridium XIVa, Clostridium XVIII,

Eubacterium coprostanoligenes

Firmicutes/Bacteroidetes,
Proteobacteria, Mucispirilum shaedleri,
Escherichia fergusonii, Enterococcus
spp., Lactococcus lactis, Clostridium

lactatifermentans (Clostridium XIVb),
Oscillibacter valericigenes

Semen hoveniae extract
[103] Feces NGS

Shannon index, Verrucomicrobia,
Bacteroidetes, Parabacteroides,

Alloprevotella, Alistipes, Lactobacillus,
Akkermansia

Proteobacteria,
Firmicutes/Bacteroidetes, Oscillibacter,

Helicobacter
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Table 4. Cont.

Category Dietary Factor Sample Method
Gut Microbe with Significant Changes in Proportion *

Increase Decrease

Chinese
medicines

Shenling Baizhu powder
[104] Feces NGS

Shannon index, Actinobacteria,
Cyanobacteria, Anaerostipes,

Bifidobacterium

Firmicutes/Bacteroidetes, Blautia,
Roseburia, Phascolarctobacterium,

Desulfovibrio (Significance of
difference was not described)

Caloric
restriction

30% caloric restriction
[108] Feces NGS

(low-fat diet vs. low-fat diet with
caloric restriction) Lactobacillus,

OTU45 (in Lactobacillus),
Bifidobacterium, [increased by

caloric restriction with both of
low-fat diet or high-fat diet]

OTU119, OTU155, OTU267 (in
Tannerella)

(low-fat diet vs. low-fat diet with
caloric restriction) Streptococcaceae,

TM7, OTU469 (in
Desulfovibrionaceae) [decreased by

caloric restriction with both of
low-fat diet or high-fat diet] OTU65

(in Lactococcus), OTU366 (in
Bacteroidales), OTU37 (in

Peptostreptococcaceae),

40% caloric restriction
[109] Feces NGS Lactobacillaceae, Erysipelotichaceae,

Bacteroidaceae, Verrucomicrobiaceae Firmicutes

PCR: Polymerase chain reaction, NGS: Next-generation sequencing, DGGE: Denaturing gradient gel electrophoresis, OUT: Operational taxonomic unit, *: The bacteria mentioned by the
author in the paper are listed.



Nutrients 2019, 11, 2277 25 of 38Nutrients 2019, 8, x FOR PEER REVIEW  16 of 34 

 
Figure 1. The number of reported changes of intestinal bacterial genera in dietary factor intervention 
studies in animals. 

Lactobacillus, Bacteroides, Akkermansia, Roseburia, and Prevotella are possible bacterial genera that 
may contribute to the reduction of blood LPS levels. Lactobacillus is a gram-positive bacterium that 
produces large amounts of lactic acid during carbohydrate fermentation. The probiotic contribution 
of Lactobacillus to the regulation of metabolic endotoxemia is studied (Table 3). Administration of 
Lactobacillus rhamnosus CNCM I-4036 to obese Zucker-Leprfa/fa rats decreased the mRNA expression 
levels of endothelin receptor type B (Ednrb) in the intestinal mucosa, and reduced the blood LBP level 
[52]. Reduction of Ednrb decreases the density of negative charge of the colonic mucin layer, leading 
to an increase in the ability of the mucin layer to adsorb microparticles and bacteria, thereby 

8 6 4 2 0 2 4 6 8 10 12

Lactobacillus
Bacteroides

Akkermansia
Bifidobacterium

Clostridium
Escherichia

Roseburia
Prevotella

Desulfovibrio
Faecalibacterium

Ruminococcus
Parabacteroides

Blautia
Enterococcus
Oscillospira

Alloprevotella
Staphylococcus

Lactococcus
Adlercreutzia
Allobaculum
Anaerostipes
Eubacterium

Alistipes
Bacillus

Ruminiclostridium
Butyricicoccus

Helicobacter
Oscillibacter
Anaerovorax
Turicibacter

Lysinibacillus
Barnesiella

Turicibacter
Delftia
Dorea

Butyrivibrio
Anaeroplasma

Tyzzerella
Rikenella

Romboutsia
Coprococcus

Anaerotruncus
Tannerella

Methanobrevibacter
Mucispirillum
Jeotgalicoccus
Pseudomonas

Yersinia
Streptococcus

Corynebacterium
Aerococcus

Anaerotruncus
Mucispirilum

Phascolarctobacterium

Number of reports

Increase

Decrease

Figure 1. The number of reported changes of intestinal bacterial genera in dietary factor intervention
studies in animals.

Roseburia [141] is an enteric bacterium that utilizes dietary fiber and may enhance intestinal
barriers by producing butyric acid. It has been reported that administration of Roseburia to mice
enhanced differentiation of regulatory T cells in the intestinal lamina propria and suppressed intestinal
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inflammation [142]. As described in Table 4, oligofructose, apple-derived polymeric procyanidins, sea
cucumber-derived sulfated polysaccharide, camu camu extract, and ganoderma lucidum mycelium
water extract were reported to increase the proportion of Roseburia in the gut flora. Roseburia metabolizes
oligofructose into fructose, which is used for growth, but for this process, acetic acid that is produced
by Bifidobacterium is required [143]. Therefore, in order to grow Roseburia by oligofructose intake, it is
necessary to pay attention to the symbiotic relationship with other intestinal bacteria and the amount
of short-chain fatty acids in the intestine. Other dietary factors, procyanidins, sea cucumber-derived
sulfated polysaccharide, camu camu extract, and ganoderma lucidum mycelium, have not been studied
for their prebiotic function for Roseburia.

It has been suggested that LPS from Prevotella has fewer phosphate and acyl moieties contributing
to endotoxin activity, resulting in a lower TLR4 stimulatory capacity than LPS from Salmonella [144].
Therefore, by increasing the population of Prevotella in the intestinal flora, endotoxin activity in
the intestinal contents and damage to intestinal epithelial cells might be decreased, leading to the
reduction of blood LPS levels. On the other hand, Prevotella produces succinate as a metabolite of sugar
metabolism [145]. It has also been reported that succinate from intestinal bacteria is utilized by and
promotes growth of Salmonella serovar Typhimurium [146] and Clostridium difficile [147], which are
the pathogens of pseudomembranous colitis. Succinate has also been reported to induce colitis via
succinate receptors and to promote colonic fibrosis [148]. In addition, proportion of Prevotella in the
gut flora has been reported to be positively correlated with blood LPS levels in patients with type 2
diabetes [149]. Thus, an increase in the proportion of Prevotella does not necessarily have a positive
effect on intestinal health. It is necessary to carefully investigate the contribution of Prevotella to blood
LPS levels.

Clostridium, Escherichia, and Desulfovibrio are bacterial genera that may contribute to the increase
of blood LPS levels. Many pathogenic bacteria (such as enterohemorrhagic Escherichia coli, Clostridium
botulinum, Clostridium tetani, and Clostridium perfringens), which produce effector proteins or enterotoxins
that disrupt epithelial tight junction belong to these genera [150]. In addition, the endotoxin activity of
LPS in non-pathogenic Escherichia is also higher than in Bacteroides, and an increased proportion of
these Escherichia in enteric flora aggravate colitis [151]. Clostridium species catabolize cholic acid to
deoxycholic acid for their growth [152]. It is reported that, in mice, deoxycholic acid increases intestinal
permeability through the reduction of goblet cell number, suppression of mucin production, induction
of low-grade inflammation, and suppression of tight junction protein (ZO-1) expression [153]. In terms
of dietary factors that reduce Escherichia, there are many reports of sulfated polysaccharides (Table 4).
We could not find any reports that suggested the direct inhibitory effect of sulfated polysaccharide
on growth of Escherichia. On the other hand, it is suggested that Bacteroides, that can be preferentially
grown in sulfated polysaccharide feeding, compete with Escherichia in the co-culture assay [127].
In order to elucidate the mechanism by which sulfated polysaccharides reduce the proportion of
Escherichia, it is hoped to study focusing on the interaction between gut microbes. Among the dietary
factors that reduce Clostridium, procyanidin is reported to decrease the growth of Clostridium in fecal
batch culture [154]. The bactericidal activity of methanol extract of nopal against Clostridium has also
been reported [155].

Desulfovibrio is a gram-negative, obligate anaerobe, sulfate-reducing bacterium. Desulfovibrio
utilizes electrons supplied by the oxidation of lactic acid in the electron transport system of the
respiratory chain, uses sulfuric acid as the final electron acceptor, and produces hydrogen sulfide as
a metabolite [156]. Desulfovibrio is ubiquitous in the intestines of humans and mice. Of the studies
that showed significant changes in the proportion of Desulfovibrio, most studies reported that the
proportion was increased associated to the reduction of blood LPS levels (Table 4). However, it is also
reported that proportions of Desulfovibrio increased in the colons of patients with ulcerative colitis [157]
and has attracted attention as a pathogen of colitis. In addition, Xie et al. reported in mice that the
increase of Desulfovibrio in feces was positively correlated with the increase of LPS levels in feces,
liver, and blood [45]. Qui et al. reported that ingestion of a high-fat diet in mice increased fecal
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Clostridium and Desulfovibrio, and oral administration of these bacteria to the normal chow-fed mice
increased fecal and blood LPS levels [158]. These reports suggest that Desulfovibrio plays an important
role as a source of LPS in the intestine. Desulfovibrio also competes with Anaerostipes caccae for lactic
acid produced by Bifidobacterium, and reduces butyric acid production by inhibiting the growth of
Anaerostipes caccae [159]. In addition, as the coexistence of Desulfovibrio and Bifidobacterium inhibits the
growth of Bifidobacterium [159], this suggests that the amount of acetic acid produced by Bifidobacterium
might be also reduced. On the other hand, it has also been reported that oral administration of
Desulfovibrio increases the amount of hydrogen sulfide in the intestinal tract and inhibits intestinal
peristalsis [160]. Desulfovibrio is thought to play an important limiting role in increasing blood LPS
levels by supplying LPS, decreasing intestinal barrier function due to reduction of short-chain fatty acid
content, and prolonging retention time of intestinal contents due to inhibition of peristalsis (Figure 2).
However, despite Desulfovibrio being an important target for metabolic endotoxemia, few dietary
factors have been reported to reduce the proportion of Desulfovibrio (Tables 1–4).
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Figure 2. A hypothetical schematic of the behavior of Desulfovibrio in the intestine, influx of LPS, and
the effects of sulforaphane on Desulfovibrio. Desulfovibrio, a source of LPS, reduces the amount of
short-chain fatty acids in the intestinal tract through lactic acid consumption and suppression of growth
of Bifidobacterium, thereby attenuating tight junction. In addition, hydrogen sulfide, a metabolite of
Desulfovibrio, inhibits peristalsis, thereby retaining the LPS-containing intestinal contents and promoting
LPS absorption. The functional component of the broccoli sprouts, glucoraphanin, is metabolized by
enteric bacteria to sulforaphane. Sulforaphane inhibits the growth of Desulfovibrio and the entry of LPS
into the blood (details are described in the Section 4). LPS: Lipopolysaccharide, GR: Glucoraphanin,
SFN: Sulforaphane. Broccoli and sprouts illustrations© irasutoya, 2012 and 2013, respectively.

Sulforaphane (1-isothiocyanato-4-methylsulfinylbutane) is an isothiocyanate with an N=C=S
functional group and is abundant in broccoli (especially the sprout) and other cruciferous vegetables
as the precursor glucoraphanin. Sulforaphane is thought to play a role in plant protection through
its antimicrobial action [161], induction of programmed cell death of infected tissue [162], and
inhibition of insect feeding [163]. On the other hand, in humans and rodents, sulforaphane activates
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NF-E2-related factor 2 (NRF2), which induces expression of genes expressing antioxidant and
detoxication enzymes, including phase II enzymes, and then exerts anti-cancer [164], anti-liver
damage [165], and anti-depressive effects [166].

We found that dietary administration of broccoli sprout extract reduced blood LPS levels and
attenuated obesity, glucose intolerance, hepatic steatosis, and inflammation in mice fed a high-fat
diet [94]. We also reported that the proportion of Desulfovibrionaceae [upper taxa (family) of Desulfobivrio]
was positively correlated with blood LPS levels, and that ingestion of broccoli sprout extract reduced
Desulfovibrionaceae in cecal contents. Subsequently, Wu et al. also reported that broccoli powder
reduced the proportion of Desulfovibrio in the large intestinal contents of mice [167]. They reported that
the decrease in Desulfovibrio composition was negatively correlated with the activity of myrosinase-like
activity, isothiocyanate content, and NAD(P)H:quinone dehydrogenase 1 (NQO1) in the colonic
mucosa. Ingested glucoraphanin is metabolized by myrosinase-like enzymes in enteric bacteria, which
then produce sulforaphane [168]. Since sulforaphane enhances NQO1 activity through activation of
NRF2 [168], it is suggested that sulforaphane metabolized and formed from glucoraphanin in broccoli
sprouts may have an inhibitory effect on Desulfovibrio (Figure 2). Sulforaphane has been reported to
exert antibacterial activity against the Proteobacteria (Desulfovibrio belongs this phyla) [169], but its direct
effect on Desulfovibrio is not well understood. It is hoped that the mechanism by which sulforaphane
decreases the proportion of Desulfovibrio will be elucidated.

5. Conclusions

In this article, we summarized previous reports about the regulation of metabolic endotoxemia
through dietary factors, focusing on gut microbiota. Although changes in the composition of Firmicutes
and Bacteroides due to excessive fat intake have been reported to contribute to metabolic endotoxemia
in many reports, the results differ between studies and between species, and further investigation
is needed to find true pathobionts. Moreover, since human epidemiological studies have not found
a correlation between fat intake and blood LPS levels, it is necessary to search for dietary factors
other than fat that cause metabolic endotoxemia. Regarding dietary factors that improve metabolic
endotoxemia, human intervention studies have focused on probiotics, prebiotics, polyphenols and
dietary habits, and it has been reported that prebiotics, including oligosaccharides, are effective.
On the other hand, few studies have evaluated the effects of dietary intervention on gut flora in
humans. The development and popularization of next-generation sequencing has made it possible to
comprehensively analyze the “fecal” microbiota in humans. On the other hand, as mentioned above,
there are also mucin-adherent bacteria that are thought to be involved in metabolic endotoxemia (e.g.,
Akkermansia and Bacteroides). In a colitis mouse model, it has been reported that the bacterial flora in
the mucin layer exhibits changes from 12 weeks before the onset of colitis, and that the mucin layer
was thinned [170]. In this study, changes in the fecal flora occurred at the same time as the onset
of colitis, indicating that the bacteria in the mucin layer play an important role in understanding
the physiological state of the intestinal tract. However, although it is possible to collect mucin layer
samples in animals, it is not easy to do so in humans, due to ethical and technical obstacles. In the
future, if a method for collecting the mucin layer in a noninvasive manner is established in humans,
the research field of metabolic endotoxemia can be further advanced. Then, it is expected that we
will comprehensively understand the relationship between dietary factors, dysbiosis, and metabolic
endotoxemia in humans by conducting human intervention studies and epidemiological studies with
dietary surveys, gut microbiota analysis using next-generation sequencers and evaluation of blood
LPS levels.
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