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ABSTRACT

Bone disease is common in patients with multiple myeloma (MM), which manifests as bone pain and skeletal-related events (SREs)
such as pathological fractures and spinal cord compression. Myeloma bone disease (MBD) can adversely affect the quality of life
of patients and have negative effects on morbidity and mortality. The pathogenesis of MBD is complex, and several factors are
involved in the dysregulation of bone metabolism and uncoupling of bone remodeling, which result in net bone loss and devastating
SREs. Broadly speaking, elevated osteoclast activity, suppressed osteoblast activity, and an aberrant marrow microenvironment play a
role in MBD. Interaction of MM cells with the main bone cell osteocytes also promote further bone destruction. This review focuses on
the role of bone-modifying agents in the prevention and treatment of MBD. The mainstay of MBD prevention are antiresorptive
agents, bisphosphonates and denosumab. However, these agents do not play a direct role in bone formation and repair of existing
MBD. Newer agents with anabolic effects such as anti-sclerostin antibodies, parathyroid hormone, anti-Dickkopf-1 antibodies, and
others have shown potential in repair of MBD lesions. With the development of several new agents, the treatment landscape of
MBD is likely to evolve in the coming years. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American

Society for Bone and Mineral Research.
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Overview and Epidemiology

Multiple myeloma

Multiple myeloma (MM) is a neoplasm caused by malignant pro-
liferation of plasma cells in the bone marrow. It is characterized
by the production of monoclonal immunoglobulins, which can
lead to end organ damage. MM presents commonly as anemia,
bone pain (with skeletal lesions), hypercalcemia, and kidney fail-
ure.? It is diagnosed most commonly at ages of 65 to 74 years.
In the United States, an estimated 34,920 new cases of MM will
be diagnosed in 2021, with an estimated 12,410 deaths, account-
ing for 1.8% of all new cancers and 2.0% of all cancer deaths.”)
The estimated overall 5-year survival is 55.6%."

Myeloma bone disease

Osteolytic lesions with or without diffuse osteopenia, pathologic
fractures, and focal lytic lesions are common features seen in
patients with MM. Myeloma bone disease (MBD) occurs in

approximately 80% to 95% of patients.*® MBD predominantly
affects the axial skeleton and can have serious skeletal conse-
quences such as spinal cord compression and pathologic fractures
requiring radiotherapeutic and/or surgical intervention), commonly
referred to as skeletal-related events (SREs).” Fractures are
observed in approximately 50% of MM patients.® Even in patients
in remission or with low-grade stable disease after stem cell trans-
plantation, fractures were reported in up to 13% of patients.(s)
MBD can have debilitating effects on the quality of life of MM
patients and in their survivorship with respect to severe pain, psy-
chological distress, and loss of autonomy.(g) Most importantly, it is
also associated with increased morbidity and mortality."*~'?

Pathogenesis of MBD

Skeletal homeostasis is a complex and multifactorial process of
interactions between the bone matrix, osteoclasts, osteoblasts,
osteocytes, and the immune system.">'® Osteoclasts and osteo-
blasts are derived from distinct cellular lineages. Osteoclasts are
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derived from fusion of mononuclear cells of the monocyte-
macrophage lineage." They are regulated by receptor activator
of NF-kB (RANK), its ligand RANKL, and the decoy receptor osteo-
protegerin (OPG)."® Osteoblasts evolve from mesenchymal cells
to osteocytes through a differentiation process called osteoblas-
togenesis. This process is regulated by the Wingless-type (Wnt)
signaling and p-catenin pathways."”"'® In normal bone metabo-
lism, bone resorption and formation are regulated by a coupled
function of osteoclast and osteoblast. Imbalance between bone-
resorbing osteoclasts and bone-forming osteoblasts causes sig-
nificant dysregulation of bone homeostasis and resultant MBD.
The interactions among MM cells, residential cellular compo-
nents of the bone, and immune cells favor the expansion of
MM cells and the destruction of normal bone structures
(Figure URE 1). It has also been shown that once the destructive
bone disease occurs, it does not completely reverse even once
MM is in remission. Therefore, developing new therapies target-
ing MBD is important not only for MM disease control, but also
for the quality of life of MM survivors.

Upregulation of osteoclast activity

Increased activity of osteoclasts is observed in MM that occurs
through several pathways: the RANK/RANKL pathway, the Notch

signaling pathway, and other factors that favor osteoclastogen-
esis. RANKL is produced primarily by osteocytes and promotes
osteoclast activity by binding to RANK. OPG is secreted by oste-
oblasts, bone marrow stromal cells (BMSCs), and osteocytes,
and inhibits interaction of RANK with RANKL. OPG was shown
to inhibit the development of osteolytic bone disease in
MM.%? In general, an increase in the RANKL/OPG ratio favors
bone destruction.”®?" This is seen in inflammatory diseases
such as rheumatoid arthritis and in several types of cancers.
Direct interaction of MM cells with BMSCs leads to increased
expression of RANKL, and decreased expression of OPG by
BMSCs and osteocytes in the bone microenvironment. The acti-
vated intracellular Notch signaling pathway results in increased
production of RANKL, which binds to RANK and promotes osteo-
clastogenesis.®>¥ Interactions between BMSCs, MM cells, and
immune cells induce release of proosteoclastogenic factors
and several cytokines such as interleukin-1b (IL-1b), IL-3, IL-6,
IL-11, and IL-17.%% These cytokines increase osteoclast activity
and decrease osteoblastogenesis, leading to increased bone
resorption. In addition, activin A, initially isolated as a gonadal
protein, a member of the transforming growth factor-p (TGF-p)
superfamily, is found to have a broad spectrum of biological
functions including regulating the extracellular matrix formation
and mineralization of the bone.?*?® MM cells induce the
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Fig. 1. Simplified schematic overview of MBD. The interactions between MM cells and BMSCs together with T cells inside the bone favor cytokine pro-
duction such as IL-1f, IL-6, IL-11, IL-3 and IL-17. Such cytokines increase osteoclast activity and decrease osteoblastogenesis, leading to increased bone
loss. The interaction of the aberrantly expressed Notch on MM cells with its Jagged ligand on adjacent MM cells or BMSCs induces increased production
of RANKL and decrease OPG, favoring increased osteoclastogenesis. The interaction between MM cells and osteocytes is bidirectional. MM cell derived
TN)-a and Notch signaling initiates osteocyte apoptosis, which in turn increases MM cell proliferation, through signaling such as Notch and BAFF. Oste-
ocyte apoptosis also increases RANKL and sclerostin, leading to bone absorption. Both MM cells and apoptotic osteocytes produces soluble factors such
as sclerostin, DKK-1, and the sFRPs, further suppresses osteoblastogenesis. MM cells also inhibit osteoblast differentiation by suppressing its critical tran-
scriptional factor RUNX2. In addition, MM cells induce the secretion of activin-A by BMSCs, which stimulates osteoclast growth and possibly inhibits oste-
oblast function. Abbreviations: BAFF, B-cell activating factor; BMSC, bone marrow stromal cell; DKK, Dickkopf; IL, interleukin; MBD, myeloma bone disease;
MM, multiple myeloma; OPG, osteoprotegerin; RANKL, receptor activator of NF-kB ligand; RUNX2, Runt-related transcription factor 2; sFRP, secreted
Frizzled-related protein; TNF, tumor necrosis factor.
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secretion of activin A by BMSCs, which stimulates osteoclast
growth and possibly inhibits osteoblast function.””?® Activin A
levels are found elevated in MM patients, especially in those with
advanced disease and extensive MBD.??

Downregulation of osteoblast activity

Suppressed activity of osteoblasts occurs because of aberrant
Whnt signaling in MM.®? Inhibitors of the canonical Wnt pathway,
such as sclerostin, Dickkopf-like protein 1 (DKK-1), and soluble
frizzled-related proteins (sFRP), inhibit bone formation.®'3?
Sclerostin, a glycoprotein produced by osteocytes, impedes the
activation of the canonical Wnt pathway, inhibiting osteoblast
maturation and impairing bone mineralization.>3=>* Further-
more, it induces apoptosis of osteoblasts through caspase activa-
tion and increases the RANKL/OPG ratio, resulting in enhanced
osteoclastogenesis. Another antagonist of the Wnt pathway is
DKK-1, which is secreted by MM cells.*® Osteoblastogenesis
and new bone formation are inhibited by the binding of DKK-1
to lipoprotein receptor-related protein (LRP)-6. In addition,
DKK-1 enhances secretion of sclerostin®” and increases the
RANKL/OPG ratio, resulting in increased osteoclastogenesis.*®
Several other Wnt pathway regulatory factors including perios-
tin, Runt-related transcription factor 2, and Growth factor inde-
pendence 1 are also deregulated in MM.?%

As this brief discussion demonstrates, MBD is complex and
involves the dysregulation of several pathways and physiologic pro-
cesses. Detailed pathophysiologic mechanisms of MBD have been
described in detail in other reports.?**? Furthermore, recent pre-
clinical work has implicated the Hippo pathway in the pathogenesis
of MBD.#? In general, the mechanisms involved are still being
uncovered, and better understanding of the mechanisms involved
in MBD will result in innovative treatment approaches.

Osteocytes

Although the formation and resorption of the bone is directly
attributed to osteoblasts and osteoclasts, the majority of cells
in the bone microenvironment are osteocytes, which constitute
>95% of bone cells. Osteocytes are the central regulators of both
osteoblast and osteoclasts. Osteocytes secrete sclerostin, an
inhibitor of bone formation, and RANKL, which promotes osteo-
clastogenesis. Apoptotic osteocytes (seen in disuse, glucocorti-
coid treatment, estrogen deficiency) induces osteoclast
precursor recruitment and bone resorption.*'*2 MM cells inter-
act with osteocytes in the bone microenvironment and can pro-
mote MBD by increasing osteocyte apoptosis, increase sclerostin
and RANKL production, and inhibit osteoblast differentiation.
The interactions of MM cells and osteocytes are reciprocal. Oste-
ocytes are shown to activate Notch signaling via Notch3, which
leads to increased MM cell proliferation, and has the capacity
to change the Notch receptor repertoire expressed by MM
cells.? In vivo studies inhibiting Notch signaling, alone or in
combination with other anti-apoptotic treatment led to the inhi-
bition of MM cell growth. 344

Treatment of MBD

In patients with MM and/or MBD, various treatment strategies
are available. Management of underlying MM is crucial as
MBD will ensue or progress without adequate control of under-
lying MM. Preventative therapies are needed to delay MBD pro-
gression.*” Currently, the mainstay of preventative therapies

are antiresorptive agents (Table 1).467>> However, these agents
are limited in not being able to promote new bone formation or
repair existing bone lesions.*® Newer anabolic agents that
promote osteoblastogenesis and bone formation can poten-
tially repair existing bone lesions and could improve MBD
(Table 2).°77%% |n addition to bone-modifying agents, antitumor
therapies, radiotherapy, and surgery are other options used in
the treatment of MBD.(""#*)

Antiresorptive therapies
Bisphosphonates

Bisphosphonates (BPs) have been the most widely used antire-
sorptive medication in treating MM and MBD. BPs are pyrophos-
phate analogues that avidly bind to hydroxyapatite and get
incorporated into the bone matrix.®” All BPs have two phos-
phate groups with a central carbon atom; however, their affinity
for binding with hydroxyapatite depends on the composition of
the side chains.®® Bisphosphonates are classified into two main
types based on their affinity for binding with hydroxyapatite:
(i) BPs containing nitrogen, such as pamidronate and zoledronic
acid, and (ii) non-nitrogen-containing BPs, such as etidronate
and clodronate; the nitrogen-containing BPs are 100-fold to
10,000-fold more potent.®® Bisphosphonates suppress osteo-
clast activity and thus favorably change the balance between
bone formation and destruction, resulting in increased bone
mass, and there is experimental evidence suggesting that BPs
may have a mitogenic effect on osteoblasts. One of proposed
pathway is BP's effect on suppressing RANKL and increasing
OPG in human osteoblasts, leading to bone formation.©”=7%

In terms of SREs, none of the BPs approved by the US Food
and Drug Administration (FDA) (clodronate, pamidronate, or
zoledronic acid) showed superiority over the others in a recently
conducted Cochrane network meta-analysis.”® However, in a
randomized controlled study, zoledronic acid was shown to be
superior to clodronate for decreasing SREs in symptomatic newly
diagnosed patients with MM.®® In addition, patients random-
ized to the zoledronic acid arm showed improved overall survival
and progression-free survival, in addition to that attributed to
the preventative effects of SREs. This increase in survival is in
keeping with findings from preclinical studies and can be attrib-
utable to direct or indirect anti-MM effects.”"

Adverse effects of BPs include acute-phase reactions, which pre-
sent within the first few hours or days after initiation of BP and often
resolve with symptomatic management.”>’® Other serious
adverse events may occur, including renal impairment, osteonecro-
sis of jaw (ONJ), and atypical femoral fractures. Renal impairment
can occur with BPs because the kidneys eliminate BP exclu-
sively.®*®® Renal damage is multifactorial,”® and higher risk of
renal damage is seen in high doses of BP and with faster infusion
rates.” The true incidence of renal damage following BP therapy
is unknown. A study evaluating the use of BP in patients with breast
cancer and MM found renal damage in 10.7% of patients who
received zoledronic acid and 9.3% of patients who received pami-
dronate.” Renal damage from BPs is a notable adverse event
because renal damage can progress to renal failure.”? Another seri-
ous adverse event following BP therapy is ONJ, which occurs in a
minority of patients. The risk of ONJ is dependent on the dose
and duration of exposure to BP.”® Other risk factors for the devel-
opment of ONJ following BP therapy include dental infections,
advanced age, smoking, diabetes mellitus, and therapy with cyclo-
phosphamides.””7 In the event of BP-induced ONJ, the BP is
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Table 1. Phase 3 studies evaluating bone-targeting agents in MM

Intervention

Results

Study Phase Patient population
Lahtinen et al.“#® 3 Newly diagnosed MM
(1992)
Berenson et al.* 3 Durie-Salmon Stage Il
(1996) MM with >1 lytic bone
lesion
Berenson et al.*? 3 Durie-Salmon Stage Il
(1998) MM with =1 lytic bone
lesion
McCloskey 3 MM with 2 of 3 of the
et al.®"*? (1998, following: (1) clonal
2001) bone marrow
plasmacytosis; (2)
blood or urine
monoclonal protein; (3)
lytic bone lesions
Gimsing et al.®® 3 Newly diagnosed MM
(2010)
Morgan et al.®#>> 3 Newly diagnosed MM

(2010, 2011)

Himelstein et al.“#® 3 MM with =1 lytic bone
(2017) lesion
Raje et al.*” (2018) 3 Newly diagnosed MM

with >1 lytic bone
lesion

Clodronate oral 2400 mg
daily (n = 168) versus
placebo (n = 168) x
24 months.

Pamidronate IV 90 mg
every 4 weeks (n = 196)
versus placebo
(n =181) x 9 months.

Pamidronate IV 90 mg
every 4 weeks (n = 198)
versus placebo
(n=179) x 21 months.

Clodronate oral 1600 mg
daily (n = 264) versus
placebo (n = 272) until
SRE or hypercalcemia.

Pamidronate IV 30 mg
monthly (n = 250)
versus pamidronate IV
90 mg monthly
(n = 252) x 3 years.

Zoledronic acid IV 4 mg
every 3-4 weeks
(n = 981) versus
clodronic acid oral
1600 mg daily
(n = 979) until disease
progression.

Zoledronic acid IV every
4 weeks (n = 139, MM
subgroup) versus every
12 weeks (n = 139, MM
subgroup) x 2 years.

Denosumab SC
+ placebo IV (n = 859)
versus zoledronic acid
IV + placebo SC
(n = 859).

Progression of osteolytic lesions:
24% (clodronate) versus 12%
(placebo), p = 0.03.

SRE after 9 cycles: pamidronate
24% versus placebo 41%,
p = 0.001. No OS difference.

SRE after 21 cycles: pamidronate
50% versus placebo 58%,
p = 0.02. No OS difference.

Nonvertebral fractures: 6.8%
(clodronate) versus 13.2%
(placebo), p = 0.04. Vertebral
fractures: 38% (clodronate)
versus 55% (placebo),

p = 0.01. No OS difference.

Median time to first SRE:
9.2 months (pamidronate
90 mg) versus 10.2 months
(pamidronate 30 mg), p = 0.6.
No OS difference.

Skeletal related events: 27%
(zoledronic acid) versus 35%
(clodronic acid), p = 0.0004.
Median OS: 50.0 months
(zoledronic acid) versus
44.5 months (clodronic acid),
p = 0.04.

Non-inferior difference in
probability of SRE with
between-group difference,
0.06 (99.9% Cl, —0.12 to 0.24);
p =0.14.

Median time to first SRE:

22.8 months (denosumab)
versus 24.0 months
(zoledronic acid), p = 0.01 for
non-inferiority of denosumab.

Abbreviations: IV, intravenous; MM, multiple myeloma; OS, overall survival; SC, subcutaneous; SRE, skeletal related event.

discontinued, and most patients can be managed with conserva-
tive measures such as optimal dental hygiene and antibiotics.%
Some patients may require surgical excision of necrosed bone.
Atypical femoral fractures following BP therapy have been
recognized as a serious consequence of prolonged exposure to
BPs.€'% patients may or may not present with pain in the thigh
or groin region, and potential atypical fractures should be investi-
gated in patients on BPs who present with skeletal pain.®¥ The
pathogenesis of atypical fractures following BP therapy has been
postulated to be related to long-term suppression of bone remo-
deling; however, the exact mechanisms remain unknown.”>#>

Denosumab

Excessive production of a key component, RANKL, in the patho-
genesis of MBD has been associated with increased bone

resorption.®* Denosumab is a fully human monoclonal antibody

against RANKL thatimpedes the interaction of RANKL with RANK.
Initial phase I/Il clinical trials of denosumab demonstrated
decreased bone resorption markers, resulting in a decrease in
bone resorption.©%2”

To further determine the role of denosumab in the management
of MBD in patients with MM, a phase lll randomized, placebo-
controlled study of 1718 patients with newly diagnosed MM with
at least one documented lytic bone lesion was conducted.*”
Patients were randomized in a 1:1 allocation ratio to receive
120 mg denosumab subcutaneously with intravenous placebo or
to receive 4 mg intravenous zoledronic acid with subcutaneous pla-
cebo, every 4 weeks. Patients in the denosumab group had a similar
time to first SRE (hazard ratio [HR] 0.98; 95% confidence interval [Cl],
0.85-1.14) as patients in the zoledronic acid group. Further post hoc
analysis using a 15-month landmark timepoint revealed that
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Table 2. Clinical studies evaluating novel treatment approaches to MBD

Study Phase Target Drug Intervention Notable findings
Abdulkadyrov 2a Activin  Sotatercept 4:1 randomization. Sotatercept SC Anabolic effect with sotatercept in
et al.®” (2014) A (recombinant (0.1, 0.3, or 0.5 mg/kg) or placebo patients who had not received
activin every 28 days x 4 cycles + bisphosphonates within
receptor type melphalan, prednisone, 2 months prior to study initiation.
lIA ligand trap) thalidomide (n = 30). Increased hemoglobin levels with
sotatercept therapy.
NCT01562405©% 1 Activin  Sotatercept Sotatercept + lenalidomide or Pending.
A pomalidomide +
dexamethasone in RRMM
lyer et al.*® 1b DKK-1  BHQ880 (IgG1 BHQ880 IV (3-40 mg/kg) No DLTs. RP2D BHQ880 10 mg/kg,
(2014) anti-DKK-1 + zoledronic acid IV (4 mg) mainly based on target saturation
monoclonal intravenously every data.
antibody) 28 days x 24 cycles (n = 28). General trend toward increased
BMD observed over time.
NCT01302886°" 2 DKK-1  BHQ880 BHQ880 in high-risk smoldering Pending.
myeloma
NCT01337752¢? 2 DKK-1  BHQ880 BHQ880 or placebo + bortezomib,  Pending.
dexamethasone in NDMM who
are not candidates for
bisphosphonate therapy.
NCT01457417°% 1 DKK-1  DKN-01 (IgG4 DKN-01 in MM. Pending.
anti-DKK-1
monoclonal
antibody)
Diamond 2a PTH Teriparatide SC teriparatide 20 pg Serum P1NP increased by 4.8-fold
et al.®® (2020) (recombinant daily x 12 months (n = 12). (0.5-13) and lumbar spine QCT
PTH) BMD by 43.8% (12.2%-100%). No

new fractures or lytic lesions were
recorded. Increase in serum PTNP
concentrations from 33 to 151
pg/L (p <0.001) from baseline
after 12 months. Lumbar spine
BMD increased 43.8% from
baseline (p < 0.001).

Abbreviations: BMD = bone mineral density; DKK-1 = Dickkopf-1; DLT = dose-limiting toxicity; IV = intravenous; MBD = myeloma bone disease;
MM = multiple myeloma; N = number; NDMM = newly diagnosed multiple myeloma; P1NP = pro-peptide of type 1 procollagen; PTH = parathyroid hor-
mone; QCT, quantitative computed tomography; RP2D = recommend phase 2 dose; RRMM = relapsed refractory multiple myeloma; SC, subcutaneous.

denosumab was superior to zoledronic acid with respect to the
time to first SRE development (HR 0.66; 95% Cl, 0.44-0.98). No differ-
ence in overall survival was observed between the groups. Further
subgroup analysis to evaluate the effect of denosumab on
progression-free survival showed that denosumab had a statisti-
cally significant greater progression-free survival rate when com-
pared to zoledronic acid, suggesting an additive effect of
denosumab with antimyeloma therapy.®® Patients receiving deno-
sumab had fewer adverse events related to renal toxicity (10%
vs. 17%), likely because the clearance of denosumab, in contrast
to BPs, occurs via the reticuloendothelial system and is indepen-
dent of renal function.®®°® Moreover, acute-phase reactions, a clas-
sic adverse event that occur frequently in patients who receive BPs,
occurred in 5% of patients receiving denosumab, compared to 9%
of patients receiving zoledronic acid.®" In contrast, the incidence of
hypocalcemia was higher with denosumab (17%) compared to
zoledronic acid (12%). The incidence rate of ONJ in patients receiv-
ing denosumab was similar to that of patients receiving zoledronic
acid (4% vs. 3%, p = 0.15). This study confirmed that denosumab as
an option as a bone-modifying agent in MM and may be particu-
larly useful in MM patients with renal insufficiency that precludes
the use of zoledronic acid.

Denosumab should not be abruptly discontinued due to the
risk of rebound osteoporosis,”? and multiple spontaneous verte-
bral fractures have been observed in studies with longer follow-
up after stopping denosumumab.”® MM patients who start
denosumuab should be counseled that that they must continue
denosumab at minimum every 6 months or bridge to BP therapy
if they choose to discontinue every 4-week denosumab dosing at
some point to prevent rapid bone turnover.®¥ If adherence to
denosumab therapy is anticipated to be a challenge, then BP ther-
apy may be preferred in such patients. Monitoring bone resorp-
tion biomarkers such as C-telopeptide (CTX) or N-telopeptide
(NTX) to determine the optimal timing of BP bridging after deno-
sumab discontinuation has also been explored although has not
been clearly defined for routine practice.

Anabolic therapies
Anti-sclerostin antibodies

MBD is a consequence of both an increase in bone resorption
and a decrease in bone formation.® Although BPs can reduce
the rate of bone resorption, they do not affect bone formation,
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and thus MBD is not completely preventable with the use of BPs
alone. Encoded by the SOST gene, sclerostin is produced by oste-
ocytes, binds to Wnt co-receptors, and antagonizes the path-
way.(34) This is an important pathway in the pathogenesis of
osteoporosis; however, its role in preventing or treating MBD
has not yet been well established. In an in vitro study, MM cells
co-cultured with osteocytes led to increased expression of
SOST/sclerostin in osteocytes, decreased Wnt signaling/p-cate-
nin, and decreased osteoblast differentiation.?*

A study in mice with MM showed similar findings with raised
levels of sclerostin and a 50% decrease in OPG, which correlated
with a decrease in osteoblast markers.*® Other studies showed
that anti-sclerostin treatment in mice with MM increased trabec-
ular bone volume and thickness.®®*” In a study of patients with
MM, elevated sclerostin levels were found in those with abnor-
mal bone remodeling.®®

Recent trials have tested humanized anti-sclerostin monoclo-
nal antibodies romosozumab and blosozumab in patients with
osteoporosis. A phase | randomized and controlled trial of sub-
cutaneous or intravenous romosozumab versus placebo in
healthy men and postmenopausal women revealed that
patients who received romosozumab showed increased serum
levels of bone formation markers and decreased serum levels
of a bone resorption marker in comparison to patients who
received placebo.”? In a phase Il, multicenter, parallel-group
study, postmenopausal women with low bone mass who
received romosozumab had increased bone density and bone
formation, with decreased bone resorption, compared with
women who did not receive romosozumab.'®” An international,
randomized, double-blind, parallel-group phase Il trial (Fracture
Study in Postmenopausal Women with Osteoporosis [FRAME]) of
romosozumab at a dose of 210 mg once monthly showed a
lower risk of vertebral fracture at 12 months in the patients
receiving romosozumab compared to placebo.'°”

Romosozumab is generally well tolerated. In the large phase llI
FRAME trial, injection site reactions were seen in 5.2% of patients
in the romosozumab group, compared to 2.9% in the placebo
group."" Thefrequencies of mortality and cardiac disorders were
similar between the groups. ONJwas detected in two patients with
recognized risk factors in the romosozumab group. An atypical
femoral fracture occurred in one patient 3.5 months after the first
dose of romosozumab. Romosozumab was approved in 2019 in
Japan and the United States for the treatment of osteoporosis in
patients at high risk of fracture. The efficacy of antisclerostin anti-
bodies has not been evaluated in patients with MM.

McDonald et al.®” evaluated the effect of antisclerostin anti-
body alone or in combination with BPs in myeloma murine
models. Results showed that antisclerostin antibody therapy pre-
vented suppression of osteoblastic bone formation which is
induced by myeloma, prevented bone loss, lowered the number
of osteolytic lesions, and most importantly, increased bone
strength and fracture resistance. Combination treatment with
an antisclerostin antibody and zoledronic acid improved bone
mass, strength, and fracture resistance when compared to treat-
ment with zoledronic acid monotherapy. Thus, antisclerostin
antibodies alone, or in combination with other therapies may
also be a promising therapeutic approach for future investiga-
tion in MM.

Parathyroid hormone

In the osteoporotic setting, parathyroid hormone (PTH) has been
shown to have anabolic effects; however, the exact mechanisms

for the anabolic effect remain unclear."°? It has been postulated
that PTH may increase osteoblastogenesis as well as inhibit scler-
ostin, a potent promoter of osteoclastogenesis. A recombinant
form of PTH, teriparatide, and a recombinant analog of PTH-
related peptide, abaloparatide, are FDA-approved for women
with osteoporosis.%>1%¥ Several preclinical studies have evalu-
ated the effects of PTH administration in MM. For example in
mouse models, PTH treatment has been shown to increase bone
mineral density (BMD) via upregulation of osteoblasts, and gene
expression profiling of whole myeloma bones demonstrated
increased expression of osteoblastic markers and reduced
expression of osteoclastic markers with PTH exposure.'%
Importantly, myeloma cells did not express PTH receptors, and
PTH did not impact myeloma cell growth in vitro.'% Several
case reports have shown teriparatide to improve BP-associated
ONJ by showing significant healing of necrotic bone."%®

Concerns about the safety of PTH use the MM patients remain,
particularly regarding the mitogenic potential of anabolic agents
such as PTH analogues in promoting MM growth. For example,
high levels of PTH may enhance the growth of MM cells via the
secretion of IL-6.%7 In prostate cancer, a higher serum level of
PTH has been associated with an increase in skeletal metasta-
sis. "% As such, in the label, teriparatide is contraindicated in
patients with a history of osteosarcoma, or with increased risk
of osteosarcoma with prior radiation to the bone, or metastatic
bone disease."® Its use could also potentially exacerbate hyper-
calcemia that can occur in MM patients. Recently, a small pilot
study of the use of teriparatide in MM was reported in which
12 patients were treated with subcutaneous teriparatide 20 pg
daily without concurrent BP use for 12 months.®® Overall, teri-
paritide was well tolerated, and no new SREs or hypercalcemia
was observed while patients were on study. Importantly, teri-
paratide did result in an increase in BMD when measured in
the lumbar spine by 43.8% from baseline (p < 0.001). Thus, the
encouraging results from this study could suggest a role of ana-
bolic agents in treatment of MBD, and the utility of PTH in the
treatment of MBD warrants further investigation.

Anti-DKK-1

DKK-1 is a potent regulator of the Wnt signaling pathway and is
found to be elevated in MM. It inhibits the Frizzled co-receptor
LRP6 and is produced by BMSCs as well as malignant plasma
cells. In the presence of sclerostin, DKK-1 decreases p-catenin,
which reduces differentiation of osteoblasts.®”''® A humanized
immunoglobulin G (IgG) anti-DKK-1 monoclonal antibody,
BHQ880, has been evaluated in vitro and in vivo."''” BHQ880
was successful at reversing the inhibiting effect of DKK-1 on oste-
oblast differentiation and promoted bone formation in a murine
model of human MM. BHQ880 also inhibits MM cell growth and
its negative effect on osteoblastogenesis, and reduced IL-6
secretion. No direct effects were detected on osteoclastogenesis.
Clinically, the use of BHQ880 has been evaluated in combination
with zoledronic acid in a phase Ib study with 28 patients, and
there was a trend toward increased BMD with treatment over
time.®® However, because concurrent zoledronic acid was
administered in this study, the relative impact of BHQ880 on
bone remodeling was uncertain in this study. A phase Il study
of BHQ880 in high-risk smoldering MM (NCT01302886)" and
a randomized placebo-controlled phase Il study of BHQ880 in
untreated MM patients who are not candidates for BP therapy
(NCT01337752)? are ongoing which will further define the role
of anti-DKK-1 treatment in the setting of MBD.
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Other therapies with undetermined role in MBD

TGF-p has been implicated to play a role in MBD.“” The use of a
TGF-B inhibitor, neutralizing antibody 1D11, in mice showed
increased osteoblast differentiation and improved bone disease,
yet no improvement in overall tumor burden was noted."'?
Further evaluation is needed because TGF- can act as both a
tumor suppressor and an oncogene, and the long-term side
effects of using TGF-B-neutralizing antibodies have not been
evaluated. Another agent under investigation is sotatercept, a
soluble recombinant activin receptor type 2A ligand fused to
the human immunoglobulin G (IgG) Fc domain, which disrupts
downstream cascades by binding to activin A/B plus members
of the TGF-B family. In a phase Il trial in newly diagnosed and/or
relapsed MM patients, the addition of sotatercept to melphalan,
prednisolone, and thalidomide revealed increased levels of
bone-specific alkaline phosphatase, a biomarker for bone for-
mation.®” Other antitumor therapies with effects on bone
metabolism have also been evaluated but are beyond the scope
of this review.

Society Guidelines

Several societies have developed guidelines for the screening,
prevention, monitoring, and treatment of MBD in patients with
MM. Here we highlight some of the most clinically relevant
recommendations.

Screening

The National Comprehensive Cancer Network (NCCN) recom-
mends imaging of any patient with suspected MM.""® For initial
diagnostic workup, they recommend the use of whole-body low-
dose computed tomography (CT) or FDG-PET/CT. When
advanced imaging is not available, a skeletal survey is accept-
able; however, it is significantly less sensitive. Following treat-
ment of MM, the NCCN panel recommends use of advanced
imaging, including whole-body fluorodeoxyglucose (FDG)-
positron emission tomography (PET)/CT, low-dose CT scan, or
whole-body magnetic resonance imaging (MRI) without
contrast, as clinically indicated for follow-up. The NCCN also rec-
ommend using the same imaging modality as used for the initial
assessment.

Prevention and treatment of MBD

Several guidelines from international organizations, including
the American Society of Clinical Oncology (ASCO),"™ British
Committee for Standards in Haematology,”''® European Mye-
loma Network,""® European Society for Medical Oncology,"”
International Myeloma Working Group (IMWG),®* and NCCN"'”
recommend initiating BP therapy in all MM patients who require
systemic chemotherapy regardless of presence of underlying
bone disease. Here we focus on the ASCO and IMWG recommen-
dations.®*""¥ They recommend initiating BP therapy in active
myeloma requiring systemic chemotherapy with or without lytic
bone lesions or compression fractures seen on imaging. The use
of BPs is not recommended in patients with solitary plasmacy-
toma, smoldering (asymptomatic) MM, and in patients with
monoclonal gammopathy of undetermined significance unless
they have osteopenia or osteoporosis.

The ASCO guidelines recommend the use of pamidronate
(90 mg administered over a minimum of 2 h) or zoledronic acid

(4 mg administered over a minimum of 15 min) every 3 to
4 weeks. Alternatively, they recommend using denosumab
given its non-inferior efficacy when compared to zoledronic acid
in a large phase llI study,W) in the section of the Treatment of
BMD, Table 1. The IMWG preferred options include zoledronic
acid (with or without MBD present on imaging) and denosumab
(only when MBD present on imaging) and also should be consid-
ered for patients with renal impairment. A second option would
be pamidronate when zoledronic acid or denosumab are not
available or contraindicated.

In patients with mild to moderate renal impairment (defined
as an estimated creatinine clearance between 30 and 60 ml/
min), a reduced dosage of zoledronic acid with no changes in
infusion time or interval is recommended. Zoledronic acid is
not recommended in patients with severe renal impairment. In
patients with existing severe renal impairment (serum creatinine
level greater than 3.0 mg/dl (265 mmol/L) or an estimated creat-
inine clearance of <30 ml/min), pamidronate (90 mg adminis-
tered over 4 to 6 h), or denosumab are recommended.

The ASCO guidelines recommend treatment with bone-
modifying agents for a period of up to 2 years. In patients in
whom BPs are withdrawn, the BPs should be resumed upon
new onset of SREs. Less frequent dosing (every 3 months rather
than every 3 to 4 weeks) has been evaluated“®''® and should
be considered in patients with stable or responsive disease.
The IMWG recommends zoledronic acid monthly during initial
therapy and in patients with less than a very good partial
response (VGPR) as per IMWG response criteria. However, if
patients achieve at least a VGPR after receiving monthly admin-
istration for =12 months, then a decreased frequency of every
3-6 months, or yearly based on osteoporosis dosing, or stopping
zoledronic acid can be considered. If discontinued, zoledronic
acid should be reinitiated at the time of biochemical relapse. If
denosumab is used, it should be administered monthly and
should not be discontinued abruptly given its reversible mecha-
nism of action and risk of rebound osteoporosis. Data on the
optimal approach to discontinue denosumab is lacking, and cur-
rent recommendations are to either administer a single dose of
zoledronic acid at least 6 months after the last dose of denosu-
mab or continue denosumab every 6 months after discontinua-
tion of the monthly injection.

Regular monitoring of patients receiving BPs is needed.
Serum creatinine should be evaluated prior to each dose of BP
therapy, serum calcium should be monitored regularly, and vita-
min D should be monitored intermittently. Every 3 to 6 months,
patients should be evaluated for the presence of albuminuria in
a spot urine sample, and if albuminuria is detected, the BP
should be discontinued, and a 24-h urine collection should be
obtained. The use of biochemical bone metabolism markers to
monitor the effects of bone-modifying agents has not been well
studied and there is no formal recommendation at this time.
Finally, prior to initiation of BPs, all patients should have a com-
prehensive dental exam and be advised to maintain excellent
oral hygiene and to avoid dental extractions while on BP
therapy.

Conclusion

The overall survival of MM patients has improved significantly
over the last two decades with the incorporation of new drugs
to the MM therapeutic armamentarium. However, MBD is a com-
mon complication of MM that significantly contributes to patient
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morbidity and mortality. The mainstay of treatment of MBD has
been with antiresorptive agents including BPs and denosumab,
which have been proven to be efficacious. However, these ther-
apies are not without adverse events, which need to be recog-
nized and treated appropriately. Newer agents for the
management of MBD are under development and could poten-
tially change the treatment landscape in patients with MM and
MBD. A higher fracture rate above the general population is
observed in MM patients, even those who achieve and maintain
deep remissions after systemic chemotherapy. Moreover, with
longer durations of response and overall survival as well as
greater exposure to corticosteroids as part of myeloma therapy,
osteoporotic insufficiency fractures relative to pathologic frac-
tures from new lytic lesions will likely becoming increasingly rel-
evant for patients in long-term survivorship. Future directions in
managing MBD include (i) targeting specific MM patient popula-
tions for aggressive MBD therapy who are at high-risk for pro-
gressive MBD such as genetically defined high-risk MM
patients; (ii) potentially validating the use of bone-turnover
markers in larger studies to optimize the use of MBD therapy in
MM patients; and (iii) exploring the use of novel osteoporosis
agents such as the anti-sclerostin monoclonal antibody romoso-
zumab in MBD.
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