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Cell-surface signaling (CSS) in Gram-negative bacteria in-
volves highly conserved regulatory pathways that optimize gene
expression by transducing extracellular environmental signals
to the cytoplasm via inner-membrane sigma regulators. The
molecular details of ferric siderophore-mediated activation of
the iron import machinery through a sigma regulator are
unclear. Here, we present the 1.56 Å resolution structure of the
periplasmic complex of the C-terminal CSS domain (CCSSD) of
PupR, the sigma regulator in the Pseudomonas capeferrum
pseudobactin BN7/8 transport system, and the N-terminal sig-
naling domain (NTSD) of PupB, an outer-membrane TonB-de-
pendent transducer. The structure revealed that the CCSSD
consists of two subdomains: a juxta-membrane subdomain,
which has a novel all-�-fold, followed by a secretin/TonB, short
N-terminal subdomain at the C terminus of the CCSSD, a pre-
viously unobserved topological arrangement of this domain.
Using affinity pulldown assays, isothermal titration calorimetry,
and thermal denaturation CD spectroscopy, we show that both
subdomains are required for binding the NTSD with micromo-
lar affinity and that NTSD binding improves CCSSD stability.
Our findings prompt us to present a revised model of CSS
wherein the CCSSD:NTSD complex forms prior to ferric-sid-
erophore binding. Upon siderophore binding, conformational
changes in the CCSSD enable regulated intramembrane prote-
olysis of the sigma regulator, ultimately resulting in transcrip-
tional regulation.

Cell-surface signaling (CSS)3 pathways allow Gram-negative
bacteria to provide a rapid and efficient response to environ-

mental stimuli through transcriptional activation. Key con-
served components of CSS pathways are 1) an outer membrane
transducer/transporter, which transduces the extra-cytoplas-
mic signal to the periplasm and also imports extracellular
metabolites; 2) an inner membrane sigma regulator, also known
as an anti-sigma factor, which transfers the signal from the
periplasm to the cytoplasm; and 3) an extra-cytoplasmic func-
tion sigma factor that is released from the inner membrane to
initiate expression of a target response gene (1). CSS systems
are associated with biofilm formation, intercellular interac-
tions, and release of virulence factors, in addition to metabolite
transfer and regulation (2). One such CSS pathway involves
iron import in Gram-negative bacteria. The best characterized
CSS iron import systems are the ferric citrate (fec) transport
system from Escherichia coli, the ferric pyoverdine (fpv) import
system from Pseudomonas aeruginosa, and the ferric pseudo-
bactin BN7/BN8 (pup) system from Pseudomonas capeferrum
(formerly Pseudomonas putida WCS358). Each of these
homologous pathways involves a TonB-dependent transport-
er/transducer, an inner membrane sigma regulator, and an
extra-cytoplasmic function sigma factor (Table 1).

Sigma regulators are central in the iron import CSS path-
ways. Sigma regulators are proteins of �325 amino acids con-
sisting of three domains, 1) an N-terminal anti-sigma domain
(3, 4), which regulates the sigma factor; 2) a single-pass trans-
membrane helix; and 3) a C-terminal periplasmic domain of
�200 residues, responsible for interacting with the transducer
(5, 6). The periplasmic domain of the sigma regulator FecR has
been shown to interact with the N-terminal signaling domain
(NTSD) of its cognate transporter/transducer, FecA (5, 7), and
mutation of conserved hydrophobic residues to proline within
this periplasmic domain disrupted binding to the NTSD (7).
The structure of the periplasmic domain of sigma regulators
has not been described.

Current studies suggest that signal activation involves reg-
ulated intramembrane proteolysis of the sigma regulator (6,
8–11). Siderophore uptake triggers a signal, presumably a
protein interaction event between the transducer and the
sigma regulator, which results in cleavage of the sigma reg-
ulator by an unidentified site-1 protease such as Prc, as
shown for both FecR and FpvR, followed by intramembrane
cleavage by a site-2 protease such as RseP (6, 8–11). Prc, a
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site-1 serine protease, was shown to proteolyze the periplas-
mic sigma regulator domain in IutY from P. putida KT2440,
although fragments of IutY are present in non-CSS condi-
tions (8). Alternatively, initial cleavage of the sigma regulator
has also been proposed to include an autoproteolytic event
via N-O acyl rearrangement through the nonconserved res-
idues Gly191 and Thr192 of FoxR from P. aeruginosa (8, 12,
13). Therefore, the role of Prc in classical CSS pathways has
not been fully established.

Here, we report the 1.56 Å resolution X-ray crystal struc-
ture of the periplasmic domain of the CSS sigma regulator,
PupR, in complex with the NTSD of the transducer, PupB,
revealing a unique fold and topological arrangement of
domains. This is the first report describing the structure of
the periplasmic region of a CSS sigma regulator, hereafter
referred to as the C-terminal cell-surface signaling domain
(CCSSD). The CCSSD comprises two subdomains: residues
110 –238 that we call the C-terminal juxta-membrane sub-
domain (CJM) and residues 250 –324, comprising a Secretin/
TonB, short N-terminal subdomain (STN). The CJM has a
novel-fold, whereas the STN is structurally homologous to
the PupB NTSD. This structure, together with affinity pull-
down assays, indicates that both subdomains are necessary
to define the binding surface for the PupB NTSD. Further-
more, our biochemical and biophysical experiments demon-
strate that the PupR CCSSD is highly unstable in the absence
of PupB NTSD. Together, these results help to establish the
molecular details of this cell-surface signaling interaction
and provide a structural rationale for how CSS is triggered
through the interaction of the sigma regulator with the outer
membrane transducer.

Results

The PupR CCSSD comprises two subdomains, both of which
are required for binding the PupB NTSD

The domain boundaries of PupR, based on predictions of
secondary structure using JPRED (14) and transmembrane
helix(ces) using HHMTOP (15) are: a cytoplasmic N-termi-
nal anti-sigma domain (ASD), comprising residues 1– 82 (3);
a single-pass transmembrane helix, residues 86 –104; and
a periplasmic CCSSD, residues 110 –324 (Fig. 1A). The
CCSSD has two potential subdomains: residues 110 –238,
which constitute a subdomain named the CJM subdomain,
and a second subdomain, comprising residues 250 –324, that
belongs to the STN domain family (SMART accession num-
ber SM00965) (16, 17). However, when purified separately,
these subdomains degrade rapidly and can only be individu-
ally purified as maltose-binding protein (MBP) fusion pro-
teins, with the MBP-tagged STN still being very unstable.

PupB residues 45–130 comprise the NTSD (Fig. 1A) (18).
The role of each CCSSD subdomain in binding the NTSD was
delineated by affinity pulldown assays using MBP-tagged
CJM (PupR110 –238 or PupR110 –250) or STN (PupR238 –324 or
PupR250 –324) subdomains and GSH S-transferase (GST)-
tagged NTSD (PupB49 –128) fusion proteins. Although the com-
plete CCSSD clearly binds to the NTSD (Fig. 1B), neither the
isolated CJM nor STN subdomains associate with the NTSD
(Fig. 1B). This indicates that individually, either the sub-
domains are insufficient for binding the NTSD, or that the sub-
domains are unfolded and binding-incompetent. Isothermal
titration calorimetry (ITC) measurements indicate that the
CCSSD and the NTSD bind in a 1:1 stoichiometry with an affin-
ity (KD) of 0.69 �M with a 68.3% confidence interval of [0.42,
1.11 �M] (values in square brackets indicate a 68.3% confidence
interval (�1 standard deviation) for the mean value presented)
(Fig. 2, Table 2). Our binding model includes a local incompe-
tent fraction parameter during isotherm analysis due to CCSSD
precipitation during ITC measurements and presence of resid-
ual MBP. The local incompetent fraction range was 0 –12.8%
among the triplicate experiments.

Table 1
Protein components of the most well-studied CSS iron import systems
from P. capeferrum, E. coli, and P. aeruginosa

TonB-dependent
transducer

Sigma
regulator

Sigma
factor

P. capeferrum PupBa PupRa PupI
E. coli FecA FecR FecI
P. aeruginosa FpvA FpvR FpvI, PvdS

a This study.

Figure 1. A, domain organization of PupR (an ASD, transmembrane region
(TM), and CCSSD)) and PupB (a signal peptide (SP), NTSD, TonB box (region
that interacts with the TonB complex), plug, �-barrel, and C-terminal TonB
box)). Regions included in the expression constructs are colored. B, affinity
pulldown assays to detect interaction of GST-tagged PupB NTSD and differ-
ent MBP-tagged PupR CCSSD fragments as indicated. Equivalent aliquots of
the clarified lysate from a co-expression of the two component proteins were
applied to either amylose affinity agarose or GSH-Sepharose resins. Each resin
was washed, then protein was eluted and analyzed by Coomassie-stained
SDS-PAGE. The � sign above each lane indicates which resin was used for
each experiment. The masses (kDa) of molecular weight markers are indi-
cated in the first lane.
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Interaction of the PupR CCSSD with the PupB NTSD stabilizes
the sigma regulator

Analyses of the circular dichroism (CD) spectra of the iso-
lated CCSSD reveal it has significant secondary structure
(Table 3, Fig. 3). The secondary structure content estimated
from the CD spectra of the CCSSD:NTSD complex is compa-
rable with the sum of secondary structure content estimated
from the CCSSD and NTSD separately (Fig. 3A), suggesting
that these domains do not undergo substantial secondary struc-
ture transitions upon binding (Table 3).

The thermal denaturation CD curve of the CCSSD, recorded
at the spectral minima of 216 nm, indicates it has a melting
temperature (Tm) of 40.2 °C (Fig. 3B); however, the CCSSD pre-
cipitates during cooling renaturation. The thermal denatur-
ation CD curves of the NTSD indicate it has a Tm of 52.8 (heat-
ing) and 62 °C (cooling) (Fig. 3C) and its thermal denaturation is
reversible. Strikingly, when the CCSSD is complexed with the
NTSD, thermal denaturation of the whole complex is reversible
and the Tm of the complex increases to 51.4 or 52.9 °C for heat-
ing or cooling, respectively (Fig. 3D), demonstrating that bind-
ing of the NTSD stabilizes the CCSSD.

The X-ray crystal structure of the PupR CCSSD:PupB NTSD
reveals a unique fold and topological arrangement of
subdomains within the PupR CCSSD

A high-quality electron-density map of the CCSSD:NTSD
complex was obtained by single-wavelength anomalous diffrac-
tion (SAD) phasing using selenium atoms incorporated into the
CCSSD. Refinement of the final atomic model was completed at
1.56 Å resolution with Rwork � 15.0% and Rfree � 18.3% (Table
4). The final Se-Met and native models include residues 111–
323 of PupR, residues 49 –128 PupB, 20 tartrate molecules, and
355 or 319 water molecules, respectively. The Se-Met and
native proteins have practically identical structures, although
there are some differences in interacting residues at the com-
plex interface.

The two subdomains are clearly delineated in the CCSSD
structure (Fig. 4). The first subdomain, the CJM, comprising
residues 110 –238, has a novel all-�-fold that can be described
as a twisted �-solenoid–like motif. A search through the PDB
using DALI (19) did not reveal any structure with a Z-score
�5.6 that has been previously described in literature. The CJM
is comprised of two 7-stranded �-sheets linked by loops or
�-arches: strands �2, �3, �6, �9, �10, �13, and �14 form an
anti-parallel sheet, whereas strands �1, �4, �5, �7, �8, �11, and
�12 form a mixed �-sheet (Fig. 5A). The hydrophobic packing
of the side chains from the two �-sheets stabilizes the core of
the CJM subdomain. As expected from sequence analyses, the
second subdomain, comprising residues 250 –324, belongs to
the STN domain family (16, 17). It shares a common-fold,
including two ���-repeat structural motifs, with the PupB
NTSD (Fig. 5, B and C). A search of the SMART nonredundant
database identifies over 8,000 proteins with STN domains, yet
surprisingly, all these STN domains are arranged N-terminal to
other domains within their respective proteins. Thus, the pres-
ence of an STN at the extreme C terminus of PupR (Figs. 1A and
4) represents a new architectural arrangement of this domain
type. Sequence conservation suggests that the CCSSD-fold is
common among periplasmic sigma regulator proteins (Fig. S1).

The CJM and STN are connected via an 11-residue linker
that is primarily unstructured, apart from a single helical turn.
The total buried surface area between the two subdomains is
821.9 Å2 with the interface stabilized by salt bridges between
residues STN Arg268 and Asp265 to CJM Arg192 and Glu159,
respectively (Fig. S2), and includes several partly or fully buried
residues (Table S1).

The PupR CCSSD:PupB NTSD interaction interface

The PupB NTSD shares 37.1% sequence identity with the
PupA NTSD, 30.5% sequence identity with the FecA NTSD,
and 28.4% sequence identity with the FpvA NTSD. As expected,
the PupB NTSD structure in the CCSSD:NTSD complex is sim-
ilar to the P. capeferrum PupA NTSD and E. coli FecA NTSD
structures, determined using NMR (20, 21), and found in the
structures of the complete P. aeruginosa FpvA transducer (22,
23). These NTSDs superimpose with root-mean-square devia-
tions (RMSD) ranging from 1.29 to 2.58 Å over 72– 80 C�
atoms.

Figure 2. Global analysis of ITC isotherms for PupR CCSSD titrated into
PupB NTSD. The heats of binding (top panel), the isotherms with the curves
for the global model (middle panel), and residuals of the global model fit
(bottom panel) for the triplicate experiments are shown in black, gray, and
light gray.
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The interface between the CCSSD and the NTSD has a sub-
stantial buried surface area of �1438.6 Å2 and involves residues
from the linker, �17 and �2 of the CCSSD and �1 and �2 of the
NTSD (Fig. 4). The interface is stabilized by salt bridges
between NTSD His72 and Glu83 to CCSSD Glu292 and Arg284,
respectively (Fig. S3, A and B), as well as an extensive hydrogen-
bonding network (Fig. S3, C–E, Table S2). Hydrophobic inter-

actions at the interface include two extensively buried residues,
NTSD Leu74 (84% buried) and CCSSD Met251 (98% buried)
(Fig. S3, F and G).

Previously, residues 247–268 within the periplasmic domain
of the homologous sigma regulator, FecR, were named the
LLLV region as this region includes conserved leucine and
valine residues (Fig. S1) (7). Mutation of these conserved hydro-
phobic residues to proline was shown to abrogate binding to the
FecA NTSD (7). Our structure shows that this LLLV region
corresponds to the hydrophobic core of the PupR STN sub-
domain (Fig. 5B) and does not directly mediate the interaction
with the NTSD. Rather, our structure indicates that these resi-
dues are essential for the structural integrity of the STN and
that mutation of these residues to proline likely disrupts sec-
ondary structure and causes unfolding of the subdomain, pre-
venting it from binding to the NTSD.

Small angle X-ray scattering coupled to size exclusion
chromatography (SEC-SAXS) indicates the PupR CCSSD is
partially flexible

SEC-SAXS was used to determine and compare low-resolu-
tion structure and solution properties such as molecular mass
and oligomeric states of the CCSSD and CCSSD:NTSD com-
plex (Fig. 6, Table S3), and were performed concurrently with
crystallographic experiments. Given the instability of the
CCSSD alone in solution and secondary structure estimates
from CD analysis, we hypothesized that the CCSSD is confor-
mationally heterogeneous with multiple orientations between
the subdomains when not bound to the NTSD. Linearity of the
Guinier plot in the 0 � q � 0.003 Å verifies the absence of
aggregation in the samples (Fig. 6A, Fig. S4). The radius of gyra-
tion (Rg), calculated from the Guinier region (Fig. 6A), is 22 Å
for the CCSSD and 26 Å for the CCSSD:NTSD complex,
whereas the distance distribution function, P(r), indicates a
Dmax of 75 Å for the CCSSD and 87 Å for the complex (Fig. 6B).
These values are in agreement with the theoretical Rg calculated
from a CCSSD-only model, and for the CCSSD:NTSD complex
crystal structure. The Kratky plots indicate that both samples
are partially flexible in solution (Fig. 6, C and D). The molecular
mass of the CCSSD, estimated from the SAXS data is 23–29
kDa (theoretical mass � 24 kDa), indicating that the CCSSD

Table 2
Comparison of secondary structure content estimated from CD spectra analyses using CDPro and from DSSP assignments within PyMOL of the
X-ray crystal structure

CD analyses (Nres) X-ray structure (Nres)
Protein Helix Strand Coil � turn Total Helix Strand Coil � turn Totala

CCSSD 16 89 113 218 31 112 76 219
NTSD 16 30 36 82 25 24 33 82
Complex 55 100 145 300 56 136 109 301

a Total number of residues indicates the full expressed protein, including any additional residues remaining after cleavage of affinity tags.

Table 3
Thermodynamic parameters of the CCSSD:NTSD interaction as determined from ITC data using a global analysis in SEDPHAT
Mean values were determined from a global fit to a set of three ITC experiments.

NTSD (�M) CCSSD (�M) LIFa Kd (�M) �H (kJ/mol) �S (J/mol�K) �G (kJ/mol)

Set 1 (3 runs) 28 220 0.128 0.69 [0.42, 1.11]b �73.99 [�80.99, �68.27]b �138.83 [-158.94, �122.93]b �33.990 [�35.196, �32.843]b

27.5 220 0.00
42 235 0.051

a Local incompetent fraction (LIF).
b Values in square brackets indicate a 68.3% confidence interval (�1 S.D.) for the mean value presented.

Figure 3. CD spectra and melting curves. A, CD spectra of PupB NTSD
(dashes), PupR CCSSD (dots), and the complex (solid); B, PupR CCSSD melting
curve; C, PupB NTSD melting curve; and D, the complex melting curve.
Unfolding (heating; black squares) and refolding (cooling; open circles) data
points are shown. The Boltzmann fits to the melting curves are shown.

Structural basis of cell-surface signaling

5798 J. Biol. Chem. (2020) 295(17) 5795–5806

https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1
https://www.jbc.org/cgi/content/full/RA119.010697/DC1


is monomeric in solution (Fig. 6E, Table S3). The molecular
mass of the CCSSD:NTSD complex, estimated from the
SAXS data is 33– 40 kDa (theoretical mass � 32.3 kDa), sug-
gesting that the primary species in solution is a 1:1 complex
(Fig. 6F, Table S3), consistent with the crystal structure and
ITC data.

SAXS is also useful for evaluating the internal flexibility of
multidomain proteins. The experimental SAXS curve of the
CCSSD exhibited weak agreement with the theoretical curve
calculated from the CCSSD crystal structure alone (Fig. 6E).
The possibility of conformational heterogeneity of the PupR
CCSSD in solution was explored using MultiFoxS to generate
�10,000 conformers, maintaining the CJM and STN sub-
domains of the CCSSD as rigid bodies and defining residues
232–250 as a flexible linker. The experimental data best fit a
two-state model, wherein the predominant conformation has a
Rg of 21.7 Å and comprises 87% of the solution state, and the
secondary species has a Rg of 18.7 Å and is sampled in 13% of
conformations. The predominant species of the best-fitting
conformers from each model improved the � value to 1.24, and
significantly improved the goodness of fit around q � 0.2 Å�1,
indicating structural flexibility between the two subdomains of
the CCSSD (Fig. S5). Similarly, whereas the scattering curve
calculated from the complex fits better than that for the CCSSD
alone, the fit of the complex is not perfect (Fig. S6), suggesting

Figure 4. The X-ray crystal structure of the PupR CCSSD:PupB NTSD com-
plex. Ribbon and transparent surface representations are colored purple for
the PupR CCSSD and green for the PupB NTSD. The two CCSSD subdomains,
the CJM and STN, are indicated.

Table 4
X-ray data collection, phasing, and refinement statistics for the PupR CCSSD:PupB NTSD complex
Values in parentheses pertain to the highest resolution shell.

Native Se-Met derivative

Data collection
Beamline 24-ID-E 24-ID-C
Wavelength (Å) 0.9792 0.9792
Space group P212121 P212121
Unit-cell parameters (Å, deg) 43.4, 44.6, 141.0 �, �, � � 90 43.6, 44.7, 141.3 �, �, � � 90
Resolution range (Å) 42.5–1.76 (1.767–1.761) 141.34–1.51 (1.53–1.51)
Total observations 190,024 (1895) 258,089 (2,816)
Unique observations 27,078 (2741) 43,910 (1,511)
Multiplicity 7.0 (6.9) 5.9 (1.9)
Completeness (%) 96.9 (99.3) 98.0 (70.2)
CC(1/2) 0.999 (0.966) 0.999 (0.765)
Rmerge

a (%) 5.6 (26.8) 5.2 (40.1)
Rmerge (anom, %) – 4.5 (42.9)
Mean I/�I 25.2 (6.8) 18.9 (1.6)
Data processing program AutoPROC HKL2000

Refinement
Refinement program PHENIX PHENIX
Resolution range (Å) 42.5–1.76 (1.82–1.76) 42.6–1.56 (1.614–1.558)
Molecules per asymmetric unit 2 2
Rwork (%) 16.0 15.3
Rfree (%) 20.9 18.4
RMSD stereochemistry

Bond lengths (Å) 0.011 0.018
Bond angles (deg) 1.21 1.96

No. of atoms 2670 2787
PupR CCSSD:PupB NTSD 2331 2412
Ligands (tartrate) 20 20
Waters 319 355
Total average B (Å2) 20.2 18.1
PupR CCSSD 19.1 16.1
PupB NTSD 23.4 18.6
Tartrate 23.5 20.0
Waters 28.8 27.4
Ramachandran plot (%)

Preferred 98 98
Allowed 2 2
Outliers 0 0

PDB code 6OVK 6OVM
a Rmerge � 	hkl	j�Ihkl,j � 
Ihkl��/	hkl	jIhkl,j.
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there could be inter-subdomain or inter-protein flexibility not
accounted for by the crystal structure (Fig. 6F). MultiFoxS was
used to assess various regions of potential flexibility and only
marginally improved the fit (X � 1.2–1.8).

Confirmation of the PupR CCSSD:PupB NTSD interaction
interface

The importance of key residues at the complex interface
identified from the structure was qualitatively assessed by gen-
erating the following point mutations: NTSD residues Q69K,
H72D (Fig. S3A), and L74A (Fig. S3G), and CCSSD residues
M251A (Fig. S3F), S286A (Fig. S3D), and T288A (Fig. S3E).
Residues Gln69 and His72 were mutated to the corresponding
residues of the homologous, but signaling incompetent, PupA
NTSD. The pulldown assays show that the H72D, L74A, and
M251A mutations completely disrupt the CCSSD:NTSD inter-
action, whereas S286A and T288A appear to limit, but not com-
pletely abrogate, the interaction (Fig. 7).

Interestingly, a polar interaction linking NTSD His72 and
CCSSD Glu292 is critical for interaction between the two pro-
teins, but the atoms involved are variable. In the native crystal
structure, the N�2 of the His72 imidazole ring forms a salt
bridge with Glu292 O�1 and O�2 (Fig. S4A). However, in the
Se-Met– derivative crystals, the interaction is indirect, with the
Glu292 side chain being replaced by a bridging water molecule
that links the N�2 of the His72 imidazole ring to the back-
bone amide of Leu291, the backbone amide of Glu292, and the
backbone carbonyl of Gly250. The Glu292 side chain adopts a
different conformer with the closest atom, O�2, shifting 4.7 Å
from His72. These results suggest that in addition to the com-
plementary surfaces, a polar interaction at this position is crit-
ical to the interaction.

Discussion

Our structure of the CCSSD:NTSD complex and our bio-
physical data answer several outstanding questions about the
mechanism of CSS and help resolve conflicting hypotheses for
the interaction between a sigma regulator and a TonB-depen-
dent transducer. Our results reveal the CCSSD is comprised of
two structured subdomains, the CJM and STN, which are
linked by an 11-residue, conformationally-flexible linker. Fur-
thermore, our structure and pulldown assays using various

PupR CCSSD truncations indicate that the CJM and STN are
both required for binding the PupB NTSD in vitro. Notably,
PupR STN residues analogous to the FecR LLLV region, com-
prising residues 247–268, that were previously reported to be
critical for binding to the FecA NTSD (7), correspond to the
PupR STN subdomain hydrophobic core essential for structure
integrity (Fig. 5) and do not directly mediate the interaction
with the NTSD.

In contrast to the information provided here, a recent NMR
study investigating the interaction of the C-terminal domain
(CTD) of sigma regulator HasS with the NTSD of its cognate
transducer HasR, members of the heme acquisition system
(Has) of Serratia marcescens, suggests that the HasS CTD is
partially disordered and contains a region that may interact
with the inner membrane (24). However, the HasS CTD is anal-
ogous to the structured STN subdomain defined here. Our
studies show that the STN subdomain is unstable in the absence
of the CJM, and when not bound to the NTSD. Consistent with
our observations, purification of the HasS CTD involved refold-
ing of protein expressed into inclusion bodies. In the same
study, chemical shift changes on the HasR NTSD were thought
to indicate a “disordered wrapping mode” brought about by
interaction with a partially disordered region of HasS (24). Our
CD and SAXS data both indicate that whereas the PupR CCSSD
in solution displays some flexibility in the 11-residue linker
between the CJM and STN subdomains, the domain is largely
folded even in the absence of NTSD binding. CD analyses of the
isolated CCSSD in solution indicates the secondary structure
content estimated is comparable with that of the CCSSD crys-
tallized in complex with the NTSD. Indeed, comparison of sec-
ondary structure content of the isolated CCSSD and NTSD
estimated via CD to that of the CCSSD:NTSD crystal content
confirms that there are no dramatic changes in secondary
structure upon complex formation. Last, �2 of the STN sub-
domain of the CCSSD packs against the NTSD. Hence, it is
unlikely this region interacts with the inner membrane.
Thus, our data appears to preclude the proposed disordered
wrapping mode for association, and instead demonstrates
that both the CCSSD and NTSD are ordered, and identifies
the specific structural elements of each domain responsible
for the interaction.

Figure 5. Unique structural features of the PupR CCSSD. All structures are displayed in ribbon, rainbow color-ramped from blue at the N terminus to red at
the C terminus. A, the CJM subdomain has a novel all-�-fold. B, the STN subdomain of the CCSSD is shown with the conserved residues L252, L259, L274, L266,
L305, and F289 from the “LLLV” region in stick. C, the PupB NTSD, displayed in a superimposable orientation to the STN subdomain in B.
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NTSD residues involved in the interaction are on a surface
defined by �2 and �2 (PupB residues 60 – 80). Our site-directed
mutagenesis of residues in this region, particularly His72 and
Leu74, confirm the role of this region in binding. This is in
contrast to previous studies with homologous NTSDs that sug-
gest a region defined by the C terminus of �1 and the �3-�2
loop (5, 25, 26), which does not map to the CCSSD:NTSD inter-
face in our crystal structure, is involved in interaction with the
sigma regulator.

Finally, data showing activation of CSS by regulated
intramembrane proteolysis indicate fragments of sigma regula-

tors are present even under nonsignaling conditions (6, 8). Our
research on the PupR sigma regulator provides a rationale for
this phenomenon. It demonstrates that the CCSSD alone is
highly dynamic and consequently, sensitive to proteolysis, but
is stable when in complex with the NTSD. Therefore, until a
transducer is located and bound, and the CCSSD stabilized, it
may be nonspecifically proteolyzed. Together, our data leads us
to propose a new model for the mechanism of the sigma regu-
lator in CSS: this CSS system may be “primed” for activation,
meaning the CCSSD must be stabilized by interacting with the
NTSD so that it cannot be nonspecifically degraded (6, 8) (Fig.

Figure 6. SEC-SAXS analysis of the CCSSD and CCSSD:NTSD complex. A, Guinier plot of the low q region. B, distance distribution P(r) for the experimental
data (black lines), the theoretical curve calculated from the CCSSD crystal structure (purple line), and the CCSSD:NTSD complex (gray dashed line). Kratky plots
of the (C) CCSSD and (D) the CCSSD:NTSD complex are shown. E, experimental scattering profile for the CCSSD, fit with the theoretical scattering profiles
calculated from the rigid crystal structure of the CCSSD only (purple) and the flexible model derived from MultiFoxS, generated by structural conformation
sampling (dark purple). F, experimental scattering profile for the complex, fit with the theoretical scattering profiles calculated from crystals structures of the
CCSSD only (purple) and the CCSSD:NTSD complex (gray). � values for each fit are indicated.
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8). Binding of siderophore to PupB induces conformational
changes in the CCSSD:NTSD complex, causing the CCSSD to
be recognized by a site-1 protease such as Prc, leading to initi-
ation of regulated intramembrane proteolysis and subsequent
cleavage by a site-2 protease (RseP) to release the ASD:sigma
factor complex (Fig. 7).

Materials and methods

Cloning of PupR CCSSD constructs

Potential PupR domains were identified using secondary and
tertiary structure predictions. Five expression constructs were
made, comprising PupR residues 110 –324, 110 –238, 110 –250,
238 –324, or 250 –324 cloned separately between NcoI and
XhoI sites of the pMBP-Parallel1 vector (27).

Protein expression and purification of PupB NTSD, MBP-
tagged PupR CCSSD, and PupR CCSSD

The PupB NTSD was purified as described previously (18).
Chemically-competent E. coli C41(DE3) cells (Lucigen) were

transformed using the pMBP-Parallel1-PupR CCSSD (PupR
residues 110 –324) plasmid for purification of MBP-tagged
PupR CCSSD or PupR CCSSD. Transformed cells were grown
at 37 °C in LB medium supplemented with 100 �g/ml of ampi-
cillin to an OD600 of 0.7– 0.9, and expression was induced with
0.5 mM isopropyl 1-thio-�-D-galactopyranoside at 20 °C for
20 h. Cells were harvested by centrifugation and stored
at �80 °C. At each subsequent stage of purification, protein
purity was analyzed by SDS-PAGE and protein concentration
determined by absorbance at 280 nm using the molar extinc-
tion coefficient �280 � 29,450 M�1 cm�1 and a theoretical
molecular weight of 24,067 g/mol.

The cell pellet was thawed and resuspended in chilled lysis
buffer (25 mM HEPES, pH 7.5, 400 mM LiCl, 10% glycerol, 2 mM

DTT), then lysed with a Nano DeBEE homogenizer (BEE Inter-
national). The crude extract was clarified by centrifugation at

20,000 � g for 45 min. The clarified supernatant was loaded
onto amylose affinity resin equilibrated with lysis buffer,
washed with lysis buffer, and fusion protein eluted with lysis
buffer containing 20 mM maltose. Elution fractions were pooled

Figure 7. Affinity pulldown assays to detect interaction between different GST-tagged PupB NTSD and MBP-tagged PupR CCSSD mutants. Wild-type
interaction between the PupR CCSSD and the PupB NTSD (second and third lanes). Residues stabilizing the PupR CCSSD:PupB NTSD interface were mutated as
follows PupB Q69K (fourth and fifth lanes), PupB H72D (sixth and seventh lanes), PupB L74A (eighth and ninth lanes), PupR M251A (10th and 11th lanes), PupR
S286A (12th and 13th lanes), and PupR T288A (14th and 15th lanes). The Coomassie-stained SDS-PAGE gel is shown. The � sign above each lane indicates which
affinity resin was used for each experiment, as in Fig. 1. The masses of molecular weight markers are indicated in the first lane.

Figure 8. Schematic of the proposed CSS activation model. The proposed
model starts with 1) the CSS system being primed by the TBDT NTSD:CCSSD
sigma regulator interaction that stabilizes the sigma regulator; 2) ferric sid-
erophore binding triggers signals for, 3), a and b, regulated intramembrane
proteolysis, resulting in 4) release of the sigma regulator:sigma factor com-
plex to activate transcription of iron import genes.
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and concentrated with a 30-kDa MWCO centrifugal filter unit
(Millipore). The final step was SEC over a 16/60 Superdex 200
column (GE Lifesciences) equilibrated with lysis buffer without
DTT. Fractions containing pure, homogeneous MBP-tagged
PupR CCSSD were pooled, concentrated to 18 mg/ml, flash
frozen in liquid nitrogen, and stored at �80 °C. MBP-tagged
PupR CJM and MBP-tagged PupR STN were purified in a man-
ner similar to the MBP-tagged PupR CCSSD.

PupR CCSSD was expressed and purified by amylose affinity
chromatography, as for MBP-tagged PupR CCSSD. However,
instead of eluting the purified fusion protein from the column,
it was subjected to on-column cleavage by addition of recom-
binant tobacco etch virus protease in a 1:10 mass ratio, followed
by a 16-h incubation at 4 °C, which yielded a 219-residue prod-
uct, comprising PupR residues 110 –324, preceded by a 4-resi-
due (GAMG) cloning artifact. Cleaved PupR CCSSD was
washed off the column and contaminating MBP removed by a
second pass over equilibrated amylose resin. The PupR CCSSD
was concentrated using a 10-kDa MWCO Millipore centrifugal
filter unit prior to SEC, performed as described for MBP-tagged
PupR CCSSD. Fractions containing PupR CCSSD were pooled,
concentrated to 10 mg/ml, and stored at �80 °C. Final protein
purity was estimated to be �90% by SDS-PAGE stained with
Coomassie Blue (28) as it had some MBP contamination.

Preparation of selenomethionine-derivatized PupR CCSSD

Selenomethionine (Acros Organics)-derivatized PupR
CCSSD was expressed using a modified protocol involving
methionine synthesis suppression (29, 30). E. coli C41(DE3)
cells transformed with pMBP-Parallel1-PupR CCSSD were
grown at 37 °C to saturation in 3 ml of LB medium with 100
�g/ml of ampicillin, then transferred to pre-warmed M9 mini-
mal medium containing 2 mM MgSO4, 0.1 mM CaCl2, 0.4%
(w/v) glucose, and 100 �g/ml of ampicillin and incubated at
37 °C. Once the OD600 nm reached 1.0, the medium was supple-
mented with Se-Met, Lys, Thr, Phe, Leu, Ile, and Val; and the
temperature lowered to 20 °C. Protein expression was induced
with 0.5 mM isopropyl 1-thio-�-D-galactopyranoside for 18 h.
Purification of Se-Met PupR CCSSD was performed as
described for native protein. The molecular mass of the final
protein samples and Se-Met incorporation were confirmed by
electrospray ionization MS.

Co-expression and affinity pulldown assays of PupR CCSSD:
PupB NTSD complexes

E. coli BL21(DE3)pLysS cells were co-transformed with
pMBP-Parallel1-PupR CCSSD and pET41-GST-PupB NTSD.
Co-transformants were selected by growing on LB agar
medium containing 100 �g/ml of ampicillin and 15 �g/ml of
kanamycin. Co-expression followed the same purification pro-
cedure as for the individual proteins. Harvested cells were lysed
and cell debris pelleted by centrifugation. The clarified super-
natant was divided into two equal aliquots and combined with
either 5 ml of amylose resin or 5 ml of GSH-Sepharose resin.
The columns were incubated for 30 min at 4 °C. Each column
was washed with 10 column volumes of lysis buffer, then eluted
with lysis buffer � 20 mM maltose or lysis buffer � 15 mM GSH
as appropriate. Total protein content was determined by Brad-

ford assay, and 20 �g of protein were loaded onto a 4 –20% TGX
SDS-PAGE gel (Bio-Rad). Gels were stained with Coomassie
Blue and qualitatively analyzed for protein association. This
protocol was repeated for all pulldown analyses. The identity
of the proteins in the pulldown assays was confirmed by
Western blotting, using commercially available anti-MBP-
HRP (New England Biolabs) or anti-GST-HRP (GE Health-
care) antibodies.

CD spectroscopy and thermal denaturation of PupR CCSSD,
PupB NTSD, and PupR CCSSD:PupB NTSD

PupR CCSSD, PupB NTSD, or PupR CCSSD:PupB NTSD
samples were dialyzed in 10 mM potassium phosphate, pH 6.8,
100 mM (NH4)2SO4 overnight at 4 °C and diluted to 50 �M

(0.204 mg/ml). Continuous scanning CD spectra were mea-
sured at 4 °C between 180 and 250 nm using a Jasco J-815 spec-
trometer with a PFD-425S Peltier cell holder and a 1-mm
quartz cell. The spectra were buffer subtracted, and the second-
ary structure content estimated using CONTIN and CDSSTR,
within the CDPro software suite (31).

CD melting and re-folding curves were recorded at 216 nm
with 50 �M PupR CCSSD, PupB NTSD, or PupR CCSSD:PupB
NTSD by increasing the temperature from 10 to 85 °C in 1 °C
increments with a slope of 1 °C/min. Protein unfolding was
monitored during both heating and cooling. Melting tempera-
tures were determined by fitting a standard Boltzmann sigmoi-
dal curve to the ellipticity in Origin 8 (OriginLab Corp., North-
ampton, MA). The final melting temperature was defined as the
inflection point after fitting.

ITC to quantify affinity of MBP-tagged PupR CCSSD binding to
PupB NTSD

ITC was performed using a Low Volume Nano ITC (TA
Instruments). Purified proteins were loaded into separate dial-
ysis cassettes, and co-dialyzed against 25 mM HEPES, pH 7.5,
400 mM LiCl, 10% glycerol. All ITC experiments were per-
formed at 15 °C, with 25 injections of 2 �l each. MBP-tagged
PupR CCSSD, concentrated to 220 –235 �M, was titrated into
27.5– 40 �M PupB NTSD. Titrations were repeated in triplicate.
The values from a buffer-into-buffer titration were subtracted
from the values of the protein-into-protein titration during
analysis. Data were analyzed with either NanoAnalyze (TA
Instruments) with an independent, single-site model, or NIT-
PIC (32) for data integration, followed by data processing with
SEDPHAT (33–36) and plotting of isotherms in GUSSI (34).
Processing included data refinement considering the local
incompetent fraction as a function of the concentration com-
pensation factor (37). To control for possible nonspecific inter-
actions between MBP and PupB NTSD, 186 –196 �M MBP was
titrated into 45–57 �M PupB NTSD and analyzed.

Crystallization, data collection, and structure solution of the
PupR CCSSD:PupB NTSD complex

PupR CCSSD and PupB NTSD were combined in a 1:1 molar
ratio. The MCSG crystallization suite (Anatrace) was used to iden-
tify initial crystallization conditions. Reproducible crystals were
grown by sitting drop vapor diffusion in 200 mM sodium tartrate or
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Na-K tartrate, 20–25% (w/v) PEG 3350. Single crystals were cryo-
protected with MiTeGen CryoOil and flash-frozen.

Diffraction data were collected at NE-CAT beamlines
24-ID-E and 24-ID-C at the APS under cryogenic conditions
(�100 K). The native PupR CCSSD:PupB NTSD diffraction
data set was processed using autoPROC (38) with components
POINTLESS (39) for space group determination, MOSFLM
(40) for indexing, and XDS (41) and SCALA (42) for scaling.
Diffraction data from a single, orthorhombic crystal of Se-Met
PupR CCSSD:PupB NTSD was processed with HKL2000 (43).
The structure was determined to 1.6 Å by SAD phasing. Three
of the four selenium sites per PupR CCSSD monomer were
located, and initial phasing was performed using AutoSol in
PHENIX (44). Initial electron density maps were interpreted by
automated model building using AutoBuild (45).

Refinement was carried out in PHENIX (46) with iterative
model building in COOT (47). The Se-Met PupR CCSSD struc-
ture was used for molecular replacement (MR) against the native
data set at 1.76 Å using Phaser-MR (48) followed by AutoBuild
(45). Automated TLS group determination (49) and individual
atomic B-factors were used during refinement in PHENIX for
both the Se-Met and native structures. The quality of the diffrac-
tion data and final refined structures are summarized in Table 3.

Model validation was performed using MolProbity (50) and
the PDB Validation Server (SCR_018135). Analyses of surface
areas, protein interfaces, assemblies, and interactions were per-
formed using the PISA server (SCR_015749) (51). RMSD com-
parisons were carried out in PyMOL (52). The DALI protein
structure comparison server (SCR_013433) using DaliLite v.5
was used to identify the fold, family, and superfamily of each
subdomain of the structure (19).

SEC-SAXS measurements and analysis

SAXS data were recorded in tandem with SEC at BioCAT
(beamline ID-18) at the Advanced Photon Source. Experimen-
tal details and structural parameters are summarized in Table
S3. Prior to measurements, an inline Superdex 200 Increase
10/300 column was equilibrated with 25 mM HEPES, pH 7.5,
400 mM LiCl, 10% (v/v) glycerol. PupB NTSD and PupR CCSSD
were combined at a 1:1 molar ratio and incubated for 30 min at
room temperature prior to loading. 800 �M complex or 400 �M

PupR CCSSD alone were injected onto the SEC column with a
flow rate of 0.6 ml/min, and scattering data recorded from a 1s
exposure every 3 s at ambient temperature. Scattering data
were collected at a wavelength of 1.03 Å (�12 keV), covering a
momentum transfer range (q) of 0.004 – 0.36 Å�1, using a Pila-
tus 3 1M detector at a distance of 3.5 m from the sample. Scat-
tering data were normalized to the incident X-ray beam, and
scattering from the SEC buffer was subtracted with Igor Pro
and BioCAT beamline extension programs.

SAXS data analyses were performed using the ATSAS suite
(53). PRIMUS was used for data merging, calculating the Rg
with a Guinier approximation, and evaluating protein order by
the Kratky plot (54). The absence of protein aggregation was
validated by examining the linearity of the Guinier region. The
pair distribution function, P(r), and maximum particle dimen-
sion, Dmax, were determined in GNOM (55). Molecular weight
was determined using the SAXS Molecular Weight webserver

(SCR_018137) (56). Theoretical scattering of the crystal struc-
tures was computed and fitted with the experimental data using
CRYSOL (57).

To evaluate the flexibility of the PupR CCSSD linker, the
HingeProt (58) webserver (SCR_018136) was used to identify
the optimal linker from the CCSSD structure. It identified two
possibilities, residues 239 –250 or 232–250, which were input
as flexible for multistate modeling with MultiFoXS (59). The
models with the lowest �-squared values and deviations from
experimental data were identified. Additionally, EOM 2.0 (60)
was utilized to generate PupR CCSSD flexible conformers that
align with the SAXS profile, using the two subdomains and full
PupR CCSSD sequence as the input files. Similarly, the CCSSD:
NTSD SAXS scattering curve was evaluated using MultiFoXS,
using various residues as being potentially disordered.

Site-directed mutagenesis of PupR CCSSD and PupB NTSD

Point mutations of WT PupR CCSSD or WT PupB NTSD
were created from the expression vectors described above
using a QuikChange II kit (Agilent). DNA sequencing veri-
fied the gene sequences of the mutant plasmids used for
transformation.
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The atomic coordinates and structure factors have been
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(SASBDB; https://www.sasbdb.org)4 under entries SASDGA5
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