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Abstract: Motivated by the frustration of translation of research advances in the molecular and cellular biology of cancer into treatment, 
this study calls for cross-disciplinary efforts and proposes a methodology of incorporating drug pharmacology information into drug 
therapeutic response modeling using a computational systems biology approach. The objectives are two fold. The first one is to involve 
effective mathematical modeling in the drug development stage to incorporate preclinical and clinical data in order to decrease costs 
of drug development and increase pipeline productivity, since it is extremely expensive and difficult to get the optimal compromise of 
dosage and schedule through empirical testing. The second objective is to provide valuable suggestions to adjust individual drug dosing 
regimens to improve therapeutic effects considering most anticancer agents have wide inter-individual pharmacokinetic variability and 
a narrow therapeutic index. A dynamic hybrid systems model is proposed to study drug antitumor effect from the perspective of tumor 
growth dynamics, specifically the dosing and schedule of the periodic drug intake, and a drug’s pharmacokinetics and pharmacodynam-
ics information are linked together in the proposed model using a state-space approach. It is proved analytically that there exists an 
optimal drug dosage and interval administration point, and demonstrated through simulation study.
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Introduction
The past three decades have seen spectacular advances 
in our understanding of the molecular and cellular 
biology of cancer. However, data suggest that the 
overall success rate for oncology products in clinical 
development is ∼10%, and the cost of bringing a new 
drug to market is over US $1 billion.1 Oncology drug 
development is such an expensive and prolonged 
process, typically, a new drug requiring on average 
10 years.2,3 New tools are needed to accelerate the 
drug discovery process and increase productivity.4,5 
While producing information both at the basic and 
clinical level is no longer the issue,6 the effective inte-
gration of data and knowledge from many disparate 
sources will be crucial to future cancer research.7,8 
Systems biology approaches promise to have a 
profound impact on medical practice by bringing 
together efforts from cross disciplinary scientists and 
permitting a comprehensive evaluation of underlying 
predisposition to disease, disease diagnosis, disease 
progression and disease treatment.9–11

While providing the right drug for the right patient 
is very important, finding the right dose for each 
patient is also critical but tricky.12 Finding a dose and 
dose range of a drug candidate that are both effica-
cious and safe is a fundamental objective through 
the drug discovery process.13 Dose finding happens 
throughout the long process of drug discovery, from 
non clinical development to multi-phase clinical trials. 
Even after the drug is approved and available on the 
market, new drug doses are still studied carefully 
and the level of investigation depends on responses 
observed from the general patient population. When 
necessary, dose adjustment based on post-marketing 
information is still a common practice. However, it is 
extremely expensive and difficult to get the optimal 
compromise of dosage and schedule through empiri-
cal testing. Modeling and simulation analysis, which 
can evolve and be continuously updated throughout 
different stages to incorporate relevant new data, 
will help to make crucial decisions earlier, with more 
certainty, and at lower cost, and hence can add value 
in all stages of drug development.5,14

The complexity of cancer itself and the heteroge-
neity of therapeutic responses may make dosing study 
more complicated. For example, most anticancer 
agents have wide inter-individual pharmacokinetic 
(PK) variability and a narrow therapeutic index.15 

Recent works have shown that many patients who are 
currently being treated with 5-fluorouracil (5-FU) are 
not being given the appropriate doses to achieve opti-
mal plasma concentration. Of note, only 20%–30% 
of patients are treated in the appropriate dose range, 
approximately 40%–60% of patients are being under-
dosed, and 10%–20% of patients are overdosed.16 
Traditionally, the standard approach for calculating 
5-FU drug dosage, as with many anticancer agents, 
has been done by normalizing dose to body surface 
area (BSA), which is calculated from the height and 
weight of the patient;16 however, studies have shown 
that this is inadequate.17 For example, dosing based 
on BSA is associated with considerable variability 
in plasma 5-FU levels by as much as 100-fold,15,17 
and such variability is a major contributor to toxic-
ity and treatment failure.16 Since there are many fac-
tors collaboratively affecting drug effect variability,18 
a general approach is needed to facilitate quantita-
tive thinking to drug administration regimens. Drug 
dosing regimens could be tailored to each individual 
patient based on feedback information from the 
treatment. One challenge of such modeling is how to 
link relevant biomarkers19 or surrogate endpoints to 
treatment outcome as feedback information in order 
to give valuable dosing suggestions.

Traditional design of the dosing regimen based 
on achieving some desired target goal such as rela-
tively constant serum concentration may be far from 
optimal owing to the underlying dynamic biologi-
cal networks. For example, Shah and co-workers20 
demonstrate that the BCR-ABL inhibitor dasatinib, 
which has greater potency and a short half-life, can 
achieve deep clinical remission in CML patients 
by achieving transient potent BCR-ABL inhibition, 
while traditional approved tyrosine kinase inhibitors 
usually have prolonged half lives that result in con-
tinuous target inhibition. A similar study of whether 
short pulses of higher dose or persistent dosing with 
lower doses have the most favorable outcomes has 
been carried out by Amin and co-workers21 in the 
setup of inactivation of HER2-HER3 signaling. For 
best results, models should be selected based on the 
underlying mechanism of drug action. For example, 
detailed dynamic signal transduction models are 
needed to accommodate target-receptor interaction 
and feedback loops for analyzing dosing effect in the 
above examples.
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Computational systems biology is emerging 
as a valuable tool in therapeutics to address these 
challenges.10,22–25 This approach provides functional 
understanding of disease-drug interaction and marks 
a shift from the traditional “black-box” approach. 
In this study, a general methodology incorporating 
dynamic drug pharmacology information into drug 
therapeutic response modeling using computational 
systems biology is proposed. The process begins with 
building a quantitative model of a biological system. 
Then, by incorporating related pharmacology infor-
mation relevant to the target system, a new computa-
tional model under drug perturbation can be built. We 
believe that with the help from the theoretical model-
ing proposed in this study and through an iterative 
process with experimentalists to refine the model, the 
proposed methodology has the potential to supply 
better recommendations for dosage and frequency.

Modeling
A good model should be based on a sound under-
standing of the biological problem, hold a realistic 
mathematical representation of the biological phe-
nomena, and possess a tractable solution.26 A bio-
logical interpretation of the deductions resulting from 
such a model can yield non-intuitive insights, as well 
as provide a predictive framework,10 a vital issue in 
cancer treatment. In recent years it has become clear 
that carcinogenesis is a complex process, both at the 
molecular and cellular levels.25,27 Modeling biologi-
cal systems to develop computer models of disease 
that can be used to understand disease mechanisms 
and to test in silico approaches for treating disease is 
a key issue in moving forward. Recent mathematical 
advances have made it more feasible to model cancer 
from a mathematical viewpoint. There are numerous 
works modeling cancer at multiple levels and scales, 
ranging from molecules to cells to tissues.7,28 For 
example, multi-scale models have been developed 
that can capture interactions across different spatial 
and temporal scales.8 A number of researchers have 
recommended hybrid or hierarchical systems to com-
bine the strengths of both discrete and continuous 
approaches.8,29,30

Biological systems are naturally nonlinear; however, 
purely nonlinear continuous models of biological sys-
tems can be too large and complex for simulation and 
analysis. On the other hand, a linear continuous model 

or a fully discrete approximation of the model can 
sometimes lose crucial and pertinent information.31 
Hybrid systems32 provide a rigorous foundation for 
modeling biological systems at desired levels of 
abstraction, approximation, and simplifications.33 For 
example, systems that exhibit multi-scale dynamics 
can be simplified by replacing certain slowly changing 
variables by their piecewise constant approximations. 
Additionally, sigmoidal nonlinearities are commonly 
observed in biology and the corresponding models 
often use sigmoidal functions. These can be approxi-
mated by discrete transitions between piecewise-linear 
regions. In some instances, nondeterministic upper 
and lower bounds are more useful than determinis-
tic approximations because they capture all critical 
behavior of the system.33–35 The hybrid systems model 
encapsulates a broad space of models and systems. For 
example, the Lac operon system has been well studied 
both experimentally and using continuous models.36,37 
A hybrid model and use of a reachability algorithm 
were validated by comparison with experimental data 
and continuous models.38 Other biological hybrid sys-
tems analyzed in similar ways include the Delta-Notch 
decision process,39,40 genetic regulatory networks of 
carbon starvation,41 nutritional stress response42 in 
E. coli, and our previous work on drug effect model-
ing under genetic regulatory networks.43 In this study, 
we adopt hybrid systems models to accommodate the 
hybrid nature of disease progression and therapeutic 
responses. Specifically, a tumor growth model under 
drug perturbation is studied to demonstrate how to 
integrate diverse data and ultimately predict outcomes 
for clinical purposes.

Tumor growth model using hybrid 
systems
Cancer research has been a fertile ground for mathe-
matical modeling.44 A number of mathematical tumor 
growth models have been reported in the literature, 
reflecting different paradigms. Empirical models use 
mathematical equations to describe the tumor growth 
curve without in-depth mechanistic description of the 
underlying physiological processes. Initially, models 
were used to conceptualize the simple exponential 
growth of solid tumors.45–47 Subsequently, sigmoi-
dal functions such as logistic, Verhulst, Gompertz, 
and von Bertalanffy were used for the description 
of reduced growth in the later stages as the tumor 
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cells outgrew their blood supply, producing central 
necrosis.48–51 A drawback of this model class is 
that it is not straightforward to predict modifica-
tion of the growth curve under drug perturbation. 
Functional models, conversely, are based on mecha-
nistic descriptions of biological processes underlying 
tumor growth. Such models require a set of assump-
tions involving cell cycle kinetics (proliferating vs. 
quiescent cells) and biochemical processes, such as 
those related to antiangiogenic and/or immunologi-
cal responses.52,53 Owing to the biological complexity 
they try to capture, these models have a much larger 
number of parameters compared with the empirical 
models. Hence, in addition to the standard tumor 
growth measurements, further data are needed, such 
as flow cytometry analysis and measurements of bio-
chemical and immunological markers, to avoid iden-
tification problems due to the over parametrization.53 
The situation becomes even more complex when the 
effect of treatment with an anticancer drug is consid-
ered on account of the incomplete knowledge of the 
mode of action in vivo.

It is important to realize that all models have limi-
tations, including those in oncology: simple models 
may produce insights and describe existing data, but 
they risk oversimplification and oversight of critical 
variables; on the other hand, it is generally difficult to 
fit functional models versus experimental data since 
over parametrization can be avoided only if further 
“microscopic” observations are available. Hence, it 
is a challenge to achieve a correct balance between 
empirical and functional models. In this paper, we 
adopt a model that is a compromise between empiri-
cal and mechanism-based approaches.54,55 The model 
is based on a system of ordinary deferential equations 
that link the dosing regimen of a compound to the 
tumor growth in xenograft mice, with tumor growth 
in untreated animals being described by exponential 
growth followed by a linear growth phase. In treated 
animals, the tumor growth rate decreases proportion-
ally to both drug concentration and the number of 
proliferating tumor cells. It relies on a few identifiable 
parameters, the estimation of which requires only the 
data typically available in the preclinical setting. 
There are two parameters related to drug effect: c(t), 
the drug concentration, and k2, a constant measuring 
drug potency.55 In their later study,56 good correlation 
was achieved with a novel approach proposed to 

predict the expected active dose in humans from the 
studies mentioned above.54,55

Although modeling in tumor growth has attracted 
a lot of attention, most of the aforementioned efforts 
have not explored the impact of drug effects. There 
is some work assuming the system is at steady state, 
which means that the concentrations of active drugs 
at the active site are constant. In some drug effect 
models,55,57,58 drug effect is assumed to be related 
to drug concentration and number of tumor cells; 
however, if we would like to compare drug effects 
for different dosing regimens to consider issues as 
whether we give patient frequent small or infrequent 
large drug dosage given fixed total drug intake, more 
realistic and dynamic drug effect models are needed. 
This study proposes a model dynamically linking dis-
ease progression, in which hybrid systems are adopted 
to accommodate disease progression and therapeutic 
responses. Specifically, we adapt the tumor growth 
model proposed in54 to hybrid systems model to 
accommodate the tumor growth dynamics in different 
stages and augment it with a drug effect model related 
to PK and pharmacodynamics (PD). In this proposed 
framework, PK and PD are linked by a state-space 
approach, where drug concentration will fluctuate 
between dosages and drug efficacy will change with 
drug concentration. Our main aim is to model drug 
effect on tumor growth for different treatment dosing 
regimens given related pharmacology information.

Unperturbed growth model  
(without drug treatment)
Following the same biology setup as Magni et al,54 
unperturbed and perturbed growth models are formu-
lated to model tumor growth dynamics without treatment 
and with treatment, respectively. Tumor growth is mod-
eled by an exponential growth phase followed by a linear 
growth phase for the unperturbed growth model. A hybrid 
systems model is proposed to accommodate tumor growth 
dynamics in different stages. It takes the form

	 w w s w s wu u u u w= +−β θ β θ1 0( , ) ( , ) ,w
+ 	 (1)

where wu denotes unperturbed tumor weight, β1 
and β0 are parameters characterizing the rates of 
exponential and linear growth. s+(.) is the unit step 
function defined by
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s−(.) = 1 − s+(.), and θw is the corresponding threshold 
value at which tumor growth switches from expo-
nential to linear growth. To assure the continuity of 
derivatives in equation (1) at θw, θw  =  β0/β1 can be 
derived. Given current progress in tumor growth 
modeling, the tumor growth characteristics might be 
quite different in different situations. The proposed 
model based on hybrid systems can be extended to 
accommodate more complicated cases, such as more 
growth stages with different growth rates.

Perturbed growth model  
(with drug treatment)
All the tumor cells are assumed to be proliferating 
in the unperturbed model. With drug treatment, it is 
assumed that cells affected by drug action stop pro-
liferating and pass through different stages character-
ized by progressive degrees of damage and eventually 
they die.55 A transit compartment model is used for 
the cells’ progression to death under drug treatment:
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s w xp w
p

p w
u

1 1 1 0
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	 x1(0) = w0� (9)

	 x2(0) = x3(0) = … xn(0) = 0� (10)

where x1 indicates the portion of proliferating cells 
within the total tumor weight wp with drug treatment. 
x1(t) will go through exponential and then linear 

growth similar to the unperturbed tumor model, 
where β1 and β0 denote the respective growth param-
eters. In these equations, wp is the total tumor weight, 
represented by the sum of cells in the various stages, 
and w0 is the tumor weight at the inoculation time 
(t = 0). Since not all cells are proliferating, the linear 
growth rate is slowed down by the ratio of the pro-
liferating cells over the total tumor cells x wp1/ . The 
model assumes that the drug elicits its effect related 
to the number, x1, of proliferating cells and γ 1

u
. γ 1

u is 
the drug effect coefficient and will be defined in the 
next section (drug treatment model), which is closely 
related to drug efficacy (PD) and fluctuates based on 
changes of drug concentration (PK). The damaged 
tumor cells proceed through progressive degrees of 
damage through n different stages with rate constant 
k1. The term k1xn represents the weight of cells that die 
in each unit of time.

Drug treatment model
The basis of clinical pharmacology is the fact that the 
intensities of many pharmacological effects are func-
tions of the amount of drug in the body and, more 
specifically, the concentration of drug at the effect 
site.59 For a long time, PK and PD had been consid-
ered as separate disciplines; however, the information 
provided by these disciplines is limited if regarded 
in isolation. On one hand, PK is characterized as 
what the body does to the drug, and it denotes the 
concentration-time course of drugs in different body 
fluids. On the other hand, PD is assessed as what the 
drug does to the body, and it characterizes the intensity 
of effects resulting from certain drug concentrations at 
the assumed effect site. In order to describe the time 
course of drug effect in response to different dosing 
regimens, the integrated PK/PD model is indispens-
able, which builds the bridge between these two clas-
sical disciplines of pharmacology.60 Following each 
dosing regimen, instead of a two dimensional dose-
concentration (PK) and concentration-effect (PD) rela-
tionship, our proposed approach enables a description 
of a three dimensional dose-concentration-effect rela-
tionship. Specifically, PK and PD are linked through 
a state-space approach to facilitate the description and 
prediction of the time course of drug effects resulting 
from different drug administration regimens.

PK/PD modeling is an active research area in 
pharmacology.5,59 Application of such concepts has 
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been identified as potentially beneficial in all phases 
of preclinical and clinical drug development.61,62 
This work is our first attempt in the direction of 
quantitative drug effect modeling. Although we 
make some assumptions about concentration-effect 
and dose-concentration curves in this paper, the 
methodology proposed is flexible enough such that 
many specific PK/PD data can be accommodated in 
the proposed framework. If the mathematical for-
mulation becomes too complicated and theoretical 
analysis is not possible, an extensive simulation 
study can be carried out for available PK/PD data.

Periodic drug intake: pharmacokinetics (PK) 
model
We consider a periodic drug intake scenario. One 
could use a detailed theoretical or empirical pharma-
cokinetic description of time dependent drug concen-
tration at the site of action in a simulation study. We 
prefer to keep the model mathematically tractable so 
that we can perform a strict theoretical analysis and 
thereby gain insights. Thus, we assume the concentra-
tion has exponential decay. Since we are using hybrid 
systems, the PK model can be extended to include 
more complicated cases, such as the case where the 
drug concentration will first exponentially increase, 
then slowly change (equilibrium), and then expo-
nentially decrease.63 The model used for drug intake 
and concentration levels is illustrated in Figure 1. We 
denote the period of drug intake for the two cases as 
τ1 and τ2, respectively. Without loss of generality, it 
is assumed that τ1 = Mτ2, where M . 1 is an integer. 
It is also assumed that u1(kτ1) = ζ1 = Mu2(lτ2) = Mζ2, 
where k and l are non-negative integers, and ζ1 and 
ζ2 are dosages in cases 1 and 2, respectively. This 
means that, in the long run, the patient takes the same 

total drug amount in both cases. It is assumed that 
the concentration level of the drug at the effect site 
follows exponential decay during each period, ie,
ui ( ) ( )t ei

t kd i= − −ζ λ τ , where kτi #  t #  (k + 1)τi and λd 
is the degradation factor. Note that Figure 1 does not 
show the case where there is “leftover” from the pre-
vious dosage when the patient is taking the current 
dosage.

Drug efficacy and potency: pharmacodynamics 
(PD) model
The PK model provides the concentration time 
course resulting from the administered dose and the 
continuous description of concentration will serve 
as input function for the PD model, which relates 
the concentration to the observed effect. Generally, 
the magnitude of pharmacological effect increases 
monotonically with increased dose, eventually 
reaching a plateau level where further increases in 
dose have little additional effect.13 The classic and 
most commonly used concentration-effect model 
is the Hill equation,64 also called the sigmoidal 
Emax model65 or logistic model.66 The relationship 
between the concentration of the drug candidate and 
its effect is most often nonlinear. In some cases, the 
curve even looks like a “roller coaster”, which is 
referred to as the “double Hill Model”.67 One com-
mon method is to replace certain slowly changing 
variables by their piecewise linear approximation. 
In this study, we use hybrid systems to approximate 
the sigmoidal Emax PD model (see Fig. 3). The Emax 
model has the general form:

	
E E C

EC C

m

m m=
+

max

50

, 	 (11)

where Emax is the maximum effect, C is the concentra-
tion, EC50 is the concentration necessary to produce 
50% of Emax, and m represents a sigmoidity factor or 
steepness of the curve.

We assume a threshold of concentration below 
which the drug candidate is ineffective (such dose is 
often called the minimum effective dose (MinED)). We 
assume another threshold called the maximum effec-
tive dose (MaxED), above which there is no clinically 
significant increase in pharmacological effect. We use 
a linear curve to approximate the concentration-effect 

τ1 τ1 τ1

τ2 τ2 τ2τ2τ2τ2 time

Drug concentration level

u1

u2

Figure 1. The concentration level of drug under periodic drug intake. Two 
cases are shown: (1) large dose with longer period; (2) small dose with 
shorter period.
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curve between MinED and MaxED. We assume that 
the drug effect coefficient γ1

u  is related to the con-
centration u through a sigmoid function and can be 
approximated by the curve shown in Figure 2. The 
corresponding relationship can be expressed as

γ1
u u

u

u
q u u
q u

=
<

− ≤ ≤
− >







0

1

1

θ
θ θ θ

θ θ θ
( )
( )

, 	 (12)

where qu
1  is the ratio between the drug effect coeffi-

cient and the drug concentration (in the linear range). 
This reflects the fact that the drug only starts to take 
effect when its concentration level is above a lower 
threshold (θ , corresponding to MinED) and its effect 
saturates when its concentration level exceeds an upper 
threshold (θ , corresponding to MaxED). Note that the 
sigmoidal Emax model can be well approximated by the 
proposed PD model. By taking the derivative of E with 
respect to C and evaluating it at EC50, we obtain the 
slope as q mEu

1 = max /4 50EC . The upper and lower 
bound should satisfy qu

1 = − =( )θ θ Emax. An exam-
ple of the sigmoidal Emax model when m = 4 and our 
proposed PD model are plotted together in Figure 3, 
where it is observed that our proposed model closely 
resembles the sigmoidal Emax model. Furthermore, by 
tuning the parameters in the proposed model, we may 
approximate many different types of PD models in 
the literature.

Drug effect analysis
Based on the proposed perturbed growth model 
(Eqs. (3) to (7)), the drug effect is related to the 
number of proliferating tumor cells x1 and drug 
effect coefficient γ1

u. Since the changes of the num-
ber of the proliferating cells dominate the changes 

of all the cells under drug treatment (please refer to 
Appendix  A for proof), we will study the drug effect 
on the number of proliferating cells in our analytical 
study. We first decouple the growth phase into two 
stages based on tumor weight.55 In the first stage of 
the tumor growth, when tumor weight x1 , θw, the 
model with drug treatment is given by

	 x x x1 1 1 1= −β γ1
u 	 (13)

where γ1
u is defined by Eq. (12). Based on the pre-

ceding assumptions, the hybrid systems model can be 
updated by incorporating Figures 1 and  2 into Eq. 13. 
We consider a realistic setting where a patient takes the 
drug periodically. For each period kτi # t # (k + 1)τi, 
i = 1, 2, ..., representing different dosage and schedule 
arrangements,

	 x x q u s u s u x q s u xu
i i i

u
i1 1 1 1 1 1 1= − − − −+ − +β θ θ θ θ θ θ( ) ( , ) ( , ) ( ) ( , ) 	 (14)

	 u t ei i
t kd i( ) ( )= − −ζ λ τ 	 (15)

where ui(t) is the drug concentration level at the 
assumed effect site.

State-space analysis
In our proposed model, there are both continuous 
quantitative changes (eg, the drug concentration 
level) and discrete transitions (eg, PD model). As is 
common in hybrid systems, there are both continu-
ous and discrete states. The entire state space may 
be divided into different domains according to the 
value of the discrete state. When the quantitative 
change of the continuous state meets certain criteria, 
it will cause a discrete transition from one domain 

0 2 4 6 8 10 12 14 16 18 20
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EC50
θ θ
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Figure 3. Sigmoidal Emax model (m = 4), and approximation by our PD 
model.
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Figure 2. The Concentration-effect curve.
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to another. Specifically, after each drug intake, the 
drug concentration at the effect site is dynamically 
changing following the PK model, with the changing 
concentration falling into different ranges (domains). 
The tumor growth dynamics will change according to 
different PD model at each domain. A state space and 
trajectory plot of the state of the proliferating tumor 
growth and drug concentration level under periodic 
drug intake are illustrated in Figure 4. There are 
five domains in the state space, with D1, D3, D5 not 
being transient.

The figure shows the case when the drug is effec-
tive and the initial drug concentration level is larger 
than the upper threshold θ  (that means the state tra-
jectory starts from Domain D5) and the sample trajec-
tory of the state corresponds to two periods of drug 
intake. We observe that, when the state transits in 
each period under periodic drug intake, it may pass 
through different domains (depending on the drug 
concentration decay along time). When the drug con-
centration is higher than θ  (MinED), the drug has an 
anti-tumor effect. The tumor weight may decrease 
(the tumor growth level is pushed to the left) depend-
ing on drug efficacy and concentration during the 
transit time through domains D5 and D3; however, 
the tumor will grow during the transit time through 
domain D1, where the drug is not effective because its 
concentration is below MinED. In order for the drug 
to be effective, the push to left side should be stronger 
than the push to the right side. This means that we 
should have x1((k + 1)τ) # x1 (kτ), so that after each 
treatment period the number, x1, proliferating tumor 
cells will decrease.

Depending on the initial drug intake, the state 
trajectory may start from different domains. For example, 
if the initial conditions are x1 = x1(kτi) and ui = ζi . θ  (as 
in Fig. 4), then the state trajectory starts from domain D5 
(Case 1). If the initial condition is θ  , ui = ζi , θ , then 
the state trajectory starts from domain D3 (Case 2). The 
state trajectory starting from D1 corresponds to the case 
where the drug concentration is too low to be effective, 
and therefore has no therapeutic effect.

Case 1: state trajectory starts from domain D5
We define t1 as the traveling time from the initial condi-
tion to the boundary between D5 and D3, and t2 as the 
traveling time from the initial condition to the bound-
ary between D3 and D1. The traveling time within D3 
is therefore t2 −  t1. Since we are considering the case 
that state trajectory starts from domain D5, the initial  
conditions are x1  =  x1(kτi) and ui  =  ζi  .  θ . 
For kτi # t # (k + 1)τi, i = 1,2., the corresponding equa-
tions and solutions in each domain are given by
− D5 (from time kτi to t1, ie, kτi # t # t1):
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In order to reduce x1, we need
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-D3 (from time t1 to t2, ie, t1 # t # t2):
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Figure 4. The trajectory of the state (tumor weight growth and drug con-
centration level) under periodic drug intake ζi  .  θ . δ is a very small 
positive number.
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	 u t ei
d t t( ) ( )= − −θ λ 1

	 (21)

In order to reduce x1, we need

	
(β1 1 1

1 1 1 0− − + − <− −q t t q
d

eu
u

d t tθ θ
λ

λ) ( ) ( )( ) 	 (22)

-D1 (from time t2 to (k + 1)τi, ie, t2 # t # (k + 1)τi):

	 x x x t x t e t t
1 1 1 1 1 2

1 2= ⇒ = −β β, ( ) ( ) ( ) 	 (23)

	 u t ei
d t t( ) ( )= − −θ λ 2 	 (24)

Since the drug dosage is below the effective level (θ ), 
the drug is not effective on the tumor, as expected. 

For the drug to be effective, both the inequalities 
(22) and (19) must be satisfied; however, they are just 
loose bounds. We could deduce the necessary and 
sufficient condition for the effectiveness of the drug 
by expressing the inequality x1((k + 1)τ) # x1(kτ) in 
terms of the dose period τ and unit dose ζ, so that 
after each treatment period the number of proliferat-
ing tumor cells x1 will decrease. When the initial con-
ditions are x1 = x1(kτi) and ui i= ζ θ>   , the equations 
governing the state trajectory from time kτi to time 
(k + 1)τi are given by

x t x k ei
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�
(29)

and can be simplified to
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For the drug to be effective, we need Ψ , 0, so 
that the number of proliferating tumor cells x1 will 
decrease following each period of drug intake.

Case 2: state trajectory starts from domain D3
When the drug dosage is below θ  but is above θ
the initial conditions are given by x1  =  x1(kτi) and 
ui = θ  , ζi , θ . In this case, for kτi # t # (k + 1)τi, 
i = 1, 2., the corresponding equations and solutions of 
the domains are given by
-D3 (from time kτi to t2):
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-D1 (from time t2 to (k + 1)τi):
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The equations governing the state trajectory from 
time kτi to time (k + 1)τi are given by
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For the drug to be effective, we need Ψ , 0, so that 
the number of proliferating tumor cells will decrease 
following each period of drug intake.

Tumor growth minimization
We have proved mathematically that the reduction 
of the number of proliferating tumor cells, defined as 
x1((k +  1)τi) − x1(kτi), is a strictly convex function68 
of time interval τi. The detailed proof is given in the 
Appendix A. This implies that the function of tumor 
size reduction, which should be negative for a success-
ful treatment, has a “U” shape and has a unique global 
minimum point,68 where x1((k + 1)τi)−x1(kτi) , 0 is 
the smallest that corresponds to the maximum reduc-
tion in tumor size (where |x1((k + 1)τi)−x1(kτi)| is the 
largest).

Results
In order to validate the analytical results on drug effect 
for different dosing regimens, we firstly perform 
numerical simulations using predefined parameters to 
validate the analytical results. Then we proceed with 
parameter estimation on synthetic data sets generated 
based on the experimental study.54,55 This second step 
is critical to facilitate the use of hybrid mathematical 
model to biologist. We also demonstrate that simi-
lar conclusion on drug efficacy region can be drawn 
based on the synthetic data sets generated using the 
parameters from real experiments.

Simulations using predefined parameters
In order to validate the analytical results on drug 
effect, we firstly perform numerical simulations 
using MATLAB/SIMULINK, based on the detailed 
transit compartment model presented from Eqs. (3) 
to (7). The cells affected by drug action stop prolif-
erating and pass through four different stages, x1, 
x2, x3, and x4, characterized by progressive degrees 
of damage, where x1 indicates the portion of pro-
liferating cells and wp is the total tumor weight. 
Specifically, the parameters in the simulation are 
β1  =  1.0, β0  =  0.2, k1  =  1.0, θw  =  40. For the PD 
model, we follow Eq. (12) and set the parameters as 
qu

1 0 21 1 0 21= = =. , . ,θ θand . For the PK model, we 
consider periodic drug intake and the drug concen-
tration level follows an exponential decay during 
each period, as illustrated in Figure 1. The decay 
rate is λd = 0.5.

Observation 1: To compare the effect of different 
dosages and frequencies given a certain total drug 
intake, we define the density of drug intake as α = ζi/τi, 
where ζ is the dosage and τ is the dosing period. In prac-
tice, α is related to drug toxicity level. The time course 
of responses of the tumor weight change (including 
the 4 different stages based on damages) under three 
different dosing regimens (all with total drug intake 
α  =  3.0) are compared: small frequent dosage (dos-
age = 15 and period (τ) = 5), medium and less frequent 
dosage (dosage  =  24, and period (τ)  =  8), and large 
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Observation 3: There are many factors that 
affect drug response, inter-individual PK vari-
ability being one of them. Thus, it is important to 
check how different PK parameters change drug 
effect. In this study, we plot the percentage of tumor 
weight change versus τ for different PK decay rates 
(λd = 0.42, 0.44, 0.46, 0.48, 0.5) in Figure 9. It is 
observed that the effect of PK (specifically, the 
decay rate λd) on tumor reduction is significant. 
When the drug decay is slow, say λd  =  0.42, the 
tumor weight will decrease much faster than when 
drug decay is fast, say λd = 0.5. This confirms our 
hypothesis that the drug effect is closely related to 
the PK parameters, which is one reason for the het-
erogeneity of therapeutic responses. Hence, if we 
could estimate inter-individual PK variability based 
on accurate measurement and interpretation of drug 
concentration in biological fluids and perform cor-
responding therapy assessment to model disease 
progression, then it is possible that we could adjust 
dosing regimens during treatment based on such 
feedback information for each individual following 
the methodology presented in this study, thereby 
improving the drug’s therapeutic effect.

Simulations using synthetic data 
generated from experimental study
In this part of the study, synthetic data sets are pro-
duced from experimental study conducted by Magni, 
Simeoni and et al54,55 firstly. Then we perform param-
eter estimation based on the synthetic data sets using 

infrequent dosage (dosage = 45 and period (τ) = 15). 
These are shown in Figures 5–7, respectively.

Figures 5–7 show the responses of tumor under 
three dosing regimens (all with same total drug intake 
α = 3.0). The left figure (Fig. 5) corresponds to the small 
frequent dosing, the right figure (Fig. 7) corresponds 
to the large infrequent dosing, and the case of interme-
diate dosing in between (Fig. 6). Other parameter set-
ting for the above figures: β1 = 1.0, β0 = 0.2, k1 = 1.0, 
θw = 40, qu

1 0 21 1 0 21 0 5= = = =. , . , , .θ θ λand d .
We observe that the changes of total tumor weight 

wp follow similar patterns with the changes of the 
number of proliferating cells x1, which confirms our 
theoretical analysis. Moreover, the results clearly 
show that dosing regimens play a critical role in 
disease treatment, even when the total drug in take 
remains the same. Both the small frequent dosing 
(Fig. 5) and large in frequent dosing case (Fig. 7) do 
not reduce the tumor size effectively. Only in the case 
with moderate dosage and interval (Fig. 6), are both 
the number of proliferating cells and the total tumor 
weight reduced effectively. At the same time, the 
results demonstrate what is predicted in the analytical 
results: we need Ψ , 0 so that the tumor will degrade 
following each period of drug intake.

Observation 2: To further verify that the change 
of tumor weight between treatments, ∆x1 = x1((k + 1)
τ)  −  x1(kτ), is a strictly convex function of time 
interval, we plot the percentage of tumor weight 
change versus dosing period τ in Figure 8 for 
different total drug intakes with α =  2.8, 2.9, 3.0, 
3.1, 3.2. For each curve with fixed total drug intake, 
it can be seen that ∆x1 is indeed convex, and an 
optimal choice of drug administration can be made 
based on the point of maximum tumor reduction. 
There exist some “sweet spots” (defined as “drug 
efficacy regions”) of drug administration that will 
satisfy the condition Ψ  ,  0. The three special 
dosing cases (Figs. 5–7, with α = 3.0) can be tested 
in the curve and it is easily confirmed that only 
the moderate dosage and interval case with τ  =  8 
falls into the drug efficacy region. Furthermore, 
Figure 8 illustrates the tradeoff between efficacy 
and toxicity. When the total drug intake α increases, 
the drug efficacy region gets larger accordingly. At 
another extreme, the drug efficacy region may not 
exist when α gets too small.
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nonlinear least square method.69 Finally we show that 
similar observations on drug efficacy can be obtained 
using these synthetic data sets.

Generation of synthetic data
Although the experimental data sets54,55 are not pub-
licly available, the authors54,55 provided the parame-
ter values such that the tumor growth model in their 
papers matches their experimental data very well. 
Hence, we perform numerical simulation using the 
model given in the study54,55 to produce synthetic 
data sets. Specifically, the PK data (drug plasma 
concentration) is generated by using the model of 
c(t) given by Equations (17)–(19) on page 138 of 
Magni et al 54 and the corresponding parameter val-
ues given in Table 2 on page 140 of Magni et al.54 
The tumor growth data during the entire treatment 
process is generated by firstly using the unperturbed 
model given by Magni et al54 for the first 15 days, 
then using the perturbed model given by Magni et 
al54 with the input from the PK data for 32 days (day 
16 to day 47). Then the treatment is stopped from 
day 48 and on. In order to model the drug effect 
due to different drug plasma concentration, we also 
include the sigmoidal Emax model as given by Eq. 
(11) in our numerical simulation. The SIMULINK 
block diagrams for generating PK data and the 
entire treatment process are given in Figures 10 and 
11, respectively. The generated synthetic data of a 
typical run is plotted in Figure 12 for the case of 
taking drug every day from day 16 to day 47.

It is observed that the tumor grows exponentially 
for the first 15 days, then the weight of proliferating 

cells x1 dropsfrom 2 to 1.25 when drug is taken from 
day 16 to day 47. At the same time, the entire tumor 
starts growing slower and eventually reduced and 
stabilized. During each day, due to the PK/PD profile, 
x1 reduces sharply when the initial drug concentration 
is high, then x1 starts to increase because the drug 
concentration decreases exponentially.

Parameter estimation
Because of the nonlinear nature of the model, we 
applied nonlinear least square method69 for parameter 
estimation. Specifically, we use the “nlinfit” func-
tion in MATLAB statistical toolbox. nlinfit returns 
the least square parameter estimates, ie, it finds the 
parameters that minimize the sum of the squared dif-
ferences between the observed responses and their 
fitted values. It uses the Gauss-Newton algorithm 
with Levenberg-Marquardt modifications for global 
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Figure 12. The tumor growth data from a typical run for the case of taking drug every day from day 16 to day 47.

convergence. The detailed steps for parameter esti-
mation is illustrated below.

1.	 Use nlinfit function to estimate the exponential 
growth parameter β1 based on the measurements 
of the tumor size from the first 15  days and the 
unperturbed tumor growth model.

2.	 Now by plugging in the estimated values of β1, 
γ1
u kand 1 can be estimated using nlinfit function 

based on the measurements of the tumor size from 
day 16 today 47 (when drug is taken) and the per-
turbed tumor growth model.

Note that since xi(t) cannot be experimentally mea-
sured, it is not feasible to estimate the time-varying 
parameter γ1

u t( ) directly from tumor size measure-
ments using nonlinear least square method. Instead 
we consider the average effect of the drug and esti-
mate the average value of γ1

u t( ) so that nonlinear least 
square method is applicable. In case that the states xi(t) 
and the time-varying parameter γ1

u t( )  need to be esti-
mated, Kalman filter70 can be applied. Kalman filter-
ing provides minimum-mean-square-error estimation 
of the state of a stochastic system disturbed by Gauss-
ian white noise, since Gaussian white noise is added 
to the parameters for each treated subject when creat-
ing the synthetic data. This will be part of our future 
work.

The plot of nonlinear least square curve fitting 
for parameters β1 and k1 are given in Figures  13 
and 14, respectively. It can be seen that β1 can be 
accurately estimated without much error. The true 
value is β1 = 0.349 and the mean of the estimates is 

^
β = 0.344

1
. This is because the unperturbed tumor 

growth model for the first 15 days is a simple expo-
nential curve that can be easily fitted. However, the 
error for estimating k1 is large due to the complicated 
dynamics when drug is applied, and nonlinear curve 
fitting may give inaccurate estimates because only 
approximate expression can be obtained for the tumor 
growth, as also observed by Magni, Simeoni and  
et al.54,55 The true value of k1 is 0.405, while the mean 
of the estimates is ˆ .k1 0 616= .

Drug efficacy under different administrations
In order to obtain insights on the drug efficacy under 
various dosage and frequency schedules, we study 
the drug effect for 5 different dosing regimens with 
the same total drug intake, specifically, (1) once per 
day with the dosage given by Magni, Simeoni and 
et al54,55; (2) double dosage given every two days; (3) 
4 times dosage given every 4 days; (4) 8 times dos-
age given every 8 days; (5) 16 times dosage given 
every 16 days; respectively, during the 32-day (day 
16 today 47) treatment process. The detailed plots 
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for case (1) are given in Figure 12, the detailed plots 
for the rest cases are given in Figure 16 to 19 from 
Appendix B. The results are compared in Figure 
15. It is observed that taking drug every 4 to 8 days 
seems to reduce the tumor the most, and without 
much oscillations. Of course, which dosing regi-
men to choose is depending on many other practical 
considerations, including toxicity. It is demonstrated 
that although the total drug intake during the 32-day 
treatment process remains the same, different dosage 
and frequency schedules do have significant impact 
on the tumor growth, which is consistent with what 
we obtained analytically and observed before using 
predefined parameters.

Observation 4: Through this study based on syn-
thetic data generated from experimental study,54,55 it 
is clear that the parameters can be estimated by the 
measurements of tumor weights along the treatment 
process. This would enable the proposed hybrid sys-
tem model to be applied to study drug effects in real-
world experiments. We believe that it is feasible to 
refine the model with the experimentalist through an 
iterative process, then such model can be used to pre-

dict the drug effect and provide better recommenda-
tion for different dosing regimens.

Conclusion
A proof-of-concept study of quantitative drug effect 
modeling has been carried out using hybrid systems. 
Specifically, the PK/PD data are linked together with 
tumor growth dynamics in our analysis of therapeu-
tic effects. This is a small step towards quantitative 
modeling of drug effect and we have kept the exam-
ples simple so that they are mathematically tractable 
and valuable insights can be obtained from the ana-
lytical results. For example, we have demonstrated 
that drug effect is closely associated with different 
dosing regimens and individual PK/PD characteris-
tics, and the simulation results match the theoreti-
cal analysis. Although the examples in this paper 
are simple, the proposed framework for quantita-
tive modeling of drug effect is flexible enough to be 
able to incorporate many practical PK/PD data as 
well as different models for tumor growth if desired. 
Of course, when more complicated PK/PD data 
and tumor growth models are used in the proposed 
framework, analytical results may not be attainable 
and one may have to rely on a simulation tool built 
on the proposed framework to obtain the drug effect 
for different dosing regimens and individual PK/PD 
characteristics.
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Appendix A: Proofs of Theorems
Theorem 1. Changes of the number of proliferating 
cells x1 dominate the changes of all the tumor cells 
under drug treatment.

Proof. Firstly we express the equations of the 
tumor growth model under drug treatment (Eq. (3) to 
(7)) in matrix form 

A are negative, and the number of cells in all stages 
will decrease. On the contrary, when β1 > γ1

u , the 
first eigenvalue of A is positive, the solution will be 
exponentially increasing. Hence, the number of cells 
in all stages depends on the dynamics of number of 
proliferating cells x1. A similar conclusion can be 
drawn when wp . θw. Thus the theorem follows.

Theorem 2. The change of proliferating tumor size 
in one treatment, defined as x1((k + 1)τi) − x1(kτi), is a 
strictly convex function of time interval τi.

Proof. We define the reduction of proliferating 
tumor size in one treatment as

	 ∆x1 = x1((k + 1)τi) − x1(kτi)	 (44)

To show that ∆x1 is a strictly convex func-
tion of time interval τi, we need to prove that 
the second derivative of ∆x1 with respect to τi is 
positive for any τi. We show the case where the 
trajectory starts from domain D5; similar tech-
niques can be used to show it for the other case 
where the trajectory starts from domain D3. 
When the drug dosage is high enough, ie, ζ θi > ,  
we have

It can be seen that at any given time, the solution 
of the matrix Eq. (41) is completely determined by 
the eigenvalues of matrix A. To be more specific, sup-
pose that wp , θw, then A is reduced to
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It can be deduced that the diagonal terms, 
β1 1 1 1− − − −γ1

u , , ,k k k

, are the eigenvalues of matrix A. 
Since k1 is always positive, the solution is completely 
determined by β1− γ1

u . In other words, when the 
drug is effective, β1 < γ1

u, then all the eigenvalues of 
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	 ∆x1 = x1((k + 1)τi)−x1(kτi)

	 = x1(kτi) (e
Ψ-1)	 (45)

Now the first derivative of ∆x1 with respect to τi is 
given by

	

d x
d

x k e a a
i

i i
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1 1 1 3τ
τ β τ= −[ ]( ) / 	 (46)

where a qu
d1 1= / λ  and a3 = −θ θ . Then the second 

derivative of ∆x1 with respect to τi can be derived as
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Since both x1(kτi) and eΨ are positive, we only need 
to show that

	 β β τ τ1
2

1 1 3 1
2

3
2

1 3
22 0− + + >a a a a a ai i/ ( )/ 	 (48)

which is equivalent to

	 τ τ β βi ia a a a a a2
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3
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1 3 1
22 0− + + >/ ( )/ 	 (49)

It is straightforward to verify that the above 
inequality (49) is always true since a1 . 0, a3 . 0, 
β1 . 0. Then the theorem follows.

Appendix B: Detailed plots for Section 
“Parameter Estimation”
In order to demonstrate that drug effect is depend-
ing on the dosing regimens given the same total 
drug intake, detailed drug effect plot is showed in 
this appendix. While Figure 12 provides the case 
for taking drug every day from day 16 to day 47, 
the following figures are the detailed plots for: 
double dosage given every two days (Fig. 16); 4 
times dosage given every 4 days (Fig. 17); 8 times 
dosage given every 8 days (Fig. 18); 16 times dos-
age given every 16  days (Fig. 19); respectively, 
during the 32-day (day 16 to day 47) treatment  
process.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

W
ei

g
h

t

Total weight of tumor cells
x1: proliferating tumor cells
x2: damaged cells
x3: damaged cells
x4: dead cells

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
x 104

Day

C
o

n
ce

n
tr

at
io

n
le

ve
l

Drug concentration level

Figure 16. The tumor growth data from a typical run for the case of taking double dosage every two days from day 16 today 47.
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Figure 17. The tumor growth data from a typical run for the case of taking 4 times dosage every 4 days from day 16 today 47.
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Figure 18. The tumor growth data from a typical run for the case of taking 8 times dosage every 8 days from day 16 today 47.
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Figure 19. The tumor growth data from a typical run for the case of taking 16 times dosage every 16 days from day 16 today 47.
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