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Is transcription in sperm stationary or dynamic?
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Abstract.  Transcriptional activity is repressed due to the packaging of sperm chromatins during spermiogenesis. 
The detection of numerous transcripts in sperm, however, raises the question whether transcriptional events exist 
in sperm, which has been the central focus of the recent studies. To summarize the transcriptional activity during 
spermiogenesis and in sperm, we reviewed the documents on transcript differences during spermiogenesis, 
in sperm with differential motility, before and after capacitation and cryopreservation. This will lay a theoretical 
foundation for studying the mechanism(s) of gene expression in sperm, and would be invaluable in making better 
use of animal sires and developing reproductive control technologies.
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The development of haploid spermatids into 
mature spermatozoa requires a lengthy 

duration and entails a series of complex physi-
ological changes. During spermiogenesis, 
the spermatid-specific H2B variants are 
specifically synthesized and expressed in 
round spermatids to replace the canonical his-
tones. H2B variants have the capacity to open 
chromatin and form unstable nucleosomes, 
which facilitates histone acetylation; In the 
enlongated spermatids, the Brdt proteins 
combined with hyperacetylation histone 
mediate the histones removal, leading to 
the replacement of histones by transition 
proteins. Finally, the transition proteins are 
replaced by the smaller protamines [1–4]. In 
this way, the chromatin of sperm is condensed 
gradually and develops ultimately into a 
highly concentrated structure [5–13]. At 
the same time, the cytoplasm and ribosome 
of sperms slowly disappeared, accompany-
ing the gradual differentiation of the other 
organelles, such as mitochondria and Golgi 
apparatus. As a result, spermatids become 
elongated cells and develop into tadpole-like 

cells with a head and tail. They enter the 
epididymis for maturation and eventually 
become sperms capable of movement with 
the potential for fertilization [6, 14]. This 
ordered maturation process is completed 
within a single sperm cell under conditions 
that exist in testis and epididymis, suggesting 
that gene transcription and translation play 
an important role in the regulation of this 
process. Since condensation of chromosomes 
occurs in spermatids, many scholars believe 
that transcription is terminated gradually with 
the compaction of chromosomal structure, 
presumably no transcription present in mature 
sperm [15–18]. For example, the transcription 
of few genes was detected in post meiosis 
phase in Drosophila [19], and the transcription 
was even undetected in late spermatids in 
mouse [20]. However, an increasing number 
of studies showed that sperm carry thousands 
of different types of RNA, including messen-
ger RNAs (mRNA), microRNAs (miRNA), 
interference RNAs (IRNA), antisense RNAs, 
etc. [8, 11, 20–30]. In fact, more than 4,000 
kinds of mRNAs were found in the studies of 

human sperm [11, 20, 31]. Due to the belief 
that gene transcription is silenced in sperm, 
the large quantity of RNA that nevertheless 
still remains is therefore hypothesized to 
exist as relics of spermatogenesis [11, 32]. 
Before terminating of nuclear transcription, 
the various mRNAs needed during the stages 
of spermiogenesis are transcribed in advance 
and retained for a long period of time; the 
mRNAs are then translated into proteins to 
ensure that all functions subsequent to nuclear 
transcription are normal and continuing 
[33–35]. Concerning that this hypothesis 
cannot explain the fact that a large number 
of rRNAs in the cytoplasm are removed 
or degraded, there are certainly different 
types of mRNAs left behind. In addition, 
studies also showed that the histones are not 
completely removed from nucleosomes in 
ejaculate spermatozoa, and they contributed 
to sperm chromatin approximately accounting 
for 1% in mouse [36], 15% in human [37], 
and 50% in some marsupial species [38]. 
As a result, some chromosomal regions of 
sperm manifest slacker conformations for 
the retained histones [17, 39], which may 
allow transcription factors to bind to specific 
gene sequences, providing transcriptional 
potential [35, 40–42]. In addition, a reverse 
transcriptase activity was observed in murine 
epididymal spermatozoa [43]. Here are the 
questions: are sperm RNAs the remnants from 
spermatogenesis before the end of nuclear 
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transcription, or is there timely expression 
from sperm chromosomes; or do both occur? 
In order to reveal the nature of sperm matura-
tion, improve the reproduction capability, and 
realize male contraception, the study on this 
topic is becoming more and more important.

However, the transcript number in sperm 
is relatively low [44], and all types of the 
germ line cells mix together. It is difficult 
to capture cell samples and obtain enough 
RNA samples for exploring the dynam-
ics of sperm transcription. Currently, the 
combination of the technology of frozen 
sections and laser capture microdissection 
(LCM) overcomes the difficulty of sampling 
spermatids from different developmental 
stages during spermiogenesis [45, 46]. In 
addition, RNA amplification and RNA-Seq 
are now widely applied. The development of 
all these techniques is expecting to promote 
the discovery of the theme.

The transcripts in spermatids 
vary during post-meiotic

After meiosis, there are some morpho-
logical changes, including nuclear shaping 
and chromatin compaction as well as major 
cytoplasmic transformations in sperm [47, 
48]. These post-meiotic events are considered 
to be driven by translation, as transcripts 
are considered originating from primary 
spermatocytes and stored in spermatids 
and translated during elongation. However, 
transcripts were detected in round spermatids 
[49] and elongated spermatids [50], and 
transcription of ram sperm chromatin was 
also examined by two electron micro-
scopic techniques [51]. In 2006, Welch 
et al. analyzed the mRNA expression of 
glyceraldehyde-3-phosphate dehydrogenase 
gene (Gapds) in rat spermatogenic cells at 
different maturational time-periods using 
northern blot. They detected Gapds mRNA 
in round and condensing spermatids but 
not in primary spermatocytes [52], and 
demonstrated that the spermatogenetic cell-
specific Gapds gene is inactivated in primary 
spermatocytes, whereas is expressed in the 
postmeiotic phase of spermatogenesis, and 
number of Gapds transcripts in condensing 
spermatids was significantly greater than in 
round spermatids. The detection of 24 comet 
and cup genes’ transcripts during Drosophila 
spermatogenesis and spermiogenesis using in 
situ hybridization showed that the transcript 

number for hale-bopp (hale), schumacher-levy 
(schuy), davis-cup (d-cup), presidents-cup 
(p-cup), tetleys-cup (t-cup), flyer-cup (f-
cup), sungrazer (sunz), and other genes in 
elongated spermatids was significantly higher 
than that of in round spermatids. In addition, 
the transcript number for these genes during 
the transformation of histones to protamine 
including complete replacement of histones 
by protamine shows a significant upward 
trend, which was proved by Q-RT-PCR [50]. 
According to post-meiotic transcription of 
these genes, authors drew a conclusion that 
transcription in Drosophila stops in late 
primary spermatocytes, then is reactivated 
by two pathways for a few loci just before 
histone-to-transition protein-to-protamine 
chromatin remodeling in spermiogenesis. 
Moreover, a surprisingly strong 5-bromouri-
dine (BrU) signal was observed near sperma-
tid nuclei in developing spermatid bundles 
during postmeiosis, and the BrU signal was 
reduced in the presence of actinomycin D, a 
general inhibitor of RNA synthesis [53]. They 
implied that the BrU signal in spermatids was 
dependent on RNA synthesis. Study showed 
that there are two categories of post-meiotic 
transcriptional regulation: methylation and 
trans-acting factors that bind to the TATA-box, 
the CRE-box, or other specific DNA sequence 
in the promoter region of nucleoproteins [49]. 
Since these genes are trancriptionally active 
only before the chromatin remodeling, how 
will the transriptional activity be after the 
histones are replaced by the protamines? It 
is still a highly debatable issue.

The transcripts in sperm vary 
with different sperm motilities

Motility is necessary for sperms to be 
able to penetrate cervical mucus, enter the 
fallopian tube, and eventually bind to the 
oocyte. Since the motility of sperms may 
vary among different animals and even among 
different sperms from the same sire, here we 
focus upon transcript variation among sperms 
with different motilities. The androgens/es-
trogens balance is essential for normal sexual 
development and reproduction in mammals. 
The P450 aromatase (P450arom) encoded by 
cyp19 regulates the balance of androgens and 
estrogens by catalyzing the demethylation 
of androgen to be oxidated to estrogen [54, 
55]. Recently, the P450arom transcripts were 
found to be significantly different between 

immotile and motile sperms. Compared with 
motile sperm fraction from the same sample, a 
28–30% decrease of the amount of P450arom 
mRNA is observed in immotile sperms [56]. 
While for the genes of the protamines PRM1, 
the opposite was observed. Lambard et al. 
(2004) found the number of PRM1 transcripts 
in low-motility sperms was significantly 
higher than that in high-motility sperms 
[57]. On the contrary, Ganguly et al. (2013) 
found that the amount of PRM1 mRNA in 
normal-motility sperms was significantly 
higher than in low-motility sperms [58]. It 
appears that the quantity of PRM1 transcripts 
varies according to the sperm motility, and 
further evidence is needed. Evaluation of 
endothelial nitric oxide synthase (eNOS) gene 
and neuronal nitric oxide synthase (nNOS) 
gene showed that the two transcripts were 
undetectable in most of the high-motility 
sperms, and only detected in low-motility 
sperm samples [57]. The high levels of eNOS 
and nNOS transcripts in low motile sperms 
may result in the excessive production of 
NO, which is responsible for the inhibition 
of sperm motility [59]. Genes of sperm cation 
channel-like protein family play important 
roles in different aspects of mammalian sperm 
functions, such as sperm motility, capacitation 
and the acrosome reaction [60, 61]. Their 
transcripts’ quantity is different in sperms 
with different motility. For instance, the 
transcript level of CatSper2 and CatSper3 in 
high-motility sperms was significantly higher 
than that of in low-motility sperms [62]. Jing 
et al. revealed a positive correlation between 
CatSper1 transcript level and sperm motil-
ity [63]. Additionally, Chen et al. unveiled 
that the number of expressed nuclear factor 
erythroid 2-related factor 2 (NFR2) gene in 
low-motility sperms was significantly lower 
than in high-motility sperms [64].

The transcript number of genes in sperm 
appears to vary with different motilities, at-
tributing to an increase of the transcriptional 
activity, a decrease at the translational level 
or a longer half-life of the RNAs [56, 65]. 
Nevertheless for the same amount of RNA 
analyzed, the level of specific P450arom 
transcript was significantly lower in the 
immotile sperm cells, as also reported for 
the PAF-receptor mRNA [66]. A recent study 
showed that the transcript quantity of the 
mitochondrial NADH dehydrogenase 2 (MT-
ND2) gene in asthenospermic sperms was 
significantly lower than in normal-motility 
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sperms, as was the transcript number of three 
genes annexin A2 (ANXA2), bromodomain 
containing 2 (BRD2), and ornithine decar-
boxylase antizyme 3 (OAZ35). Among them, 
the transcripts of ANXA2 and BRD2 were 
positively correlated with sperm motility 
[67]. The quantity of transcripts is different in 
sperms with different motility, and this differ-
ence leads to a series of discussion questioning 
the presence of sperm transcriptional activity. 
Detection of low level transcription in sperms, 
especially under certain conditions such as 
capacitation, and acrosome reaction, has been 
documented [52, 68]. Further verification is 
needed to support the idea.

The transcripts in sperm vary 
with capacitation

Unless they undergo capacitation, mam-
malian epididymal and ejaculated sperms do 
not have the ability to fertilize the oocyte in 
vitro [69, 70]. It has been confirmed that sperm 
proteins change after capacitation [21, 71]. 
Lambard et al. (2004) found that protamine 
transcripts did not significantly change, but 
the c-myc transcripts partially or completely 
disappeared in the sperm of healthy humans 
four hours after capacitation. Lee et al. (2011) 
analyzed the transcripts of Myc, CYP19A1 
encoding aromatase, domain-containing 
protein 2 (ADAM2), PRM1 and PRM2 in 
pig sperms before and after capacitation by 
RT-PCR and quantitative real-time PCR. Their 
results showed that the transcriptional level 
of PRM1 and PRM2 did not significantly 
change, but MYC, CYP19A1, and ADAM2 was 
significantly down-regulated after capacita-
tion [72]. The decrease of some transcripts 
after capacitation might result from the 
increase of the translational activities during 
capacitation for more protein synthesis [54, 
73]. Transcriptional activities in the head and 
midpiece regions of sperm during capacitation 
had been detected, although the studies on 
transcript increase had not yet been reported 
[68]. It needs to be further verified whether 
the transcriptional activity increase or not 
after capacitation.

The transcripts in sperm vary 
with cryopreservation

Semen cryopreservation promotes the 
application of artificial insemination (AI) in 
livestock breeding, and draws more attention 

to the impacts of cryopreservation on sperm 
transcripts. Ostermeier et al. (2005) tested the 
expression of the expressed sequence tags 
(ESTs) from human sperm samples exposed 
to different freezing-thawing cycles [74]. 
The authors found that the number of ESTs 
in fresh semen was highest and there were 
59 more ESTs in sperms treated with one vs 
three freezing-thawing cycles. Garcia-Herrero 
et al. detected the transcripts in fresh and 
frozen sperms used for intracytoplasmic 
sperm injection (ICSI) and analyzed the 
differential expression between sperms 
that resulted in pregnancy and those that 
didn’t (2011). Transcripts of 19,229 genes 
were detected in fresh semen, while 18,095 
were found in frozen semen. The transcript 
difference was also found in fresh sperms 
between pregnancy and nonpregnancy 
groups, while no difference was detected 
in frozen spermatozoa between pregnancy 
and nonpregnancy groups [75]. In addition, 
Valcarce et al. (2013) found that the transcript 
number in sperms after freezing treatment 
was significantly reduced [76]. Therefore, 
frozen treatment significantly decreased the 
number of transcripts in sperms, and the more 
frequent the freezing-thawing treatments, 
the fewer the number of transcripts. Among 
these transcriptional variations, different 
trends for different genes were observed. 
The transcript number of an RNA-binding 
protein gene CIRBP in bovine frozen sperm 
was reduced, while the transcript levels of 
genes encoding cold shock protein A (CspA), 
heat shock protein 60 (HSP60), and heat shock 
protein 10 (HSP10) were increased after 
freezing and thawing [77]. These two trends 
were also detected in Chen’s study (2015). 
Transcripts of 16 genes were significantly 
increased and transcripts of 3 other genes were 
significantly reduced after cryopreservation. 
The up-regulation of PRKCE and unknown 
gene R1G7 after cryopreservation may be 
related to anti-oxidation and strengthening of 
the acrosome reaction [78]. Recently, a study 
on boar spermatozoa found that the expres-
sion level of 3 microRNA in cryopreserved 
spermatozoa are higher than in fresh ejaculate 
[79]. This variation of transcript quantity 
between frozen and fresh sperm may be 
induced by the freezing-thawing treatment, 
which maybe affect mRNA–protein interac-
tion and make mRNA more susceptible to 
degradation [76]. The increase of transcript 
may be due to the freezing stress which led 

to the transcriptional activity increasing [80].

Discussion

Sperm constitutes the only vector that can 
convey and perpetuate life for male. As a 
single haploid cell, sperms perform all of their 
vital processes within the female reproductive 
tract, including capacitation, movement, and 
recognition and binding with the ovum.

Sperm can adapt to the external environ-
ment so as to complete this series of crucial 
events requisite for life, and a series of 
transcriptional and translational events may 
thereby play an important role. Transcripts 
vary with spermiogenesis and capacitation 
state, and they also vary with differential 
sperm motilities, the freezing-thawing cycle 
(Table 1), and different sex chromosomes 
the sperm carries [80]. However, chromatin 
structure is compacted in sperms, it deserves 
further study to investigate whether it has 
the potential for transcription to successfully 
regulate the viability of this single reproduc-
tive cell.

There are different RNA populations in 
mature sperms from fertile and infertile 
men, and some highly associated with sperm 
motility, capacitation, and other parameters 
[57, 59]. Another important point is that 
some sperm RNAs are present in zygotes 
and early embryos, and regulate epigenetic 
events affecting embryonic development or 
function as a regulator participating in cell 
signaling processes during development 
of the zygote and embryo [81]. Thus, the 
study of sperm transcript may have profound 
clinical implications in the diagnosis of male 
infertility as well as in the practice of assisted 
reproductive technologies. Are the sperm 
RNAs which play important roles the remnant 
of spermatogenesis or the result of sperm 
transcription? It is not clear at present and 
needs to be further studied.
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