
INTRODUCTION

Penile erection, a response that occurs during sexual 
arousal, is a neurovascular phenomenon that depends 
upon interactions between smooth muscle cells, neu-

ronal cells and vascular endothelial cells [1,2]. It is 
mediated mainly by the nitric oxide/cyclic guanosine 
monophosphate (NO/cGMP) pathway. Although sev-
eral vasodilators are involved in this process, NO is the 
principal one [3,4]. In the penis, stimulation of para-
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Purpose:Purpose: Several studies have shown that zinc has a significant influence on erectile function. However, no studies evaluating 
the cellular distribution of free zinc in penile erectile tissue have been performed. Therefore, this study aimed to test whether 
free zinc is present in penile tissue and whether it may be involved in the electrical stimulation (ES)-induced penile erection.
Materials and Methods:Materials and Methods: The subjects for this study were 26 young (8-week-old) male C57BL/6J mice. After the cavernous 
nerve was exposed through a midline stomach incision, 14 mice received ES of the cavernous nerve (ES group), whereas 12 
mice did not (control group). Intracavernous pressure (ICP) (consisting of 10 V at a duration of 1 min, frequency of 12 Hz and 
a pulse width of 1 m/s) was recorded during ES. Immediately after ICP was recorded, penile tissues were harvested for histo-
logical and biochemical analysis, including analysis of zinc transporter 3 (ZnT3) and intracellular free zinc levels.
Results:Results: The expression of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in penile tissue was significantly 
greater in the ES group than in the control group (p=0.036 and 0.016, respectively). And then, ZnT3 and intracellular free zinc 
were present in the penile tissue of both groups. However, ZnT3 immunofluorescence in the ES group was more intense in the 
dorsal nerve bundle (22% increase, p=0.032). The ES group also showed higher intensity N-(6-methoxy-8-quinolyl)-para-tolu-
enesulfonamide (TSQ) fluorescence signals indicative of intracellular free zinc level in the penile tissue compared to the control 
group (49% increase in dorsal nerve bundle, p=0.001; 50% increase in corpus cavernosum, p=0.001).
Conclusions:Conclusions: The results of the study supported the expression and distribution of free zinc in penile tissue and increased levels 
after penile erection. Therefore, this study provides anatomical evidence for the potential role of free zinc in penile erection.

Keywords:Keywords: Electrical stimulation; Endothelial nitric oxide synthase; Neuronal nitric oxide synthase; Penile erection; Zinc

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Original Article

pISSN: 2287-4208 / eISSN: 2287-4690
World J Mens Health 2023 Jan 41(1): 155-163
https://doi.org/10.5534/wjmh.210168

Male sexual health and dysfunction

http://crossmark.crossref.org/dialog/?doi=10.5534/wjmh.210168&domain=pdf&date_stamp=2023-01-02
https://orcid.org/0000-0002-3411-8862
https://orcid.org/0000-0002-7492-579X
https://orcid.org/0000-0002-7331-302X
https://orcid.org/0000-0002-9579-3503
https://orcid.org/0000-0001-7172-0636


https://doi.org/10.5534/wjmh.210168

156 www.wjmh.org

sympathetic nerves inhibits noradrenalin release and 
encourages the release of acetylcholine (Ach), which 
binds to muscarinic receptors in endothelial cells; this 
increases endothelial NO synthase (eNOS) activation 
and subsequently, NO production [5].

NO is formed from the L-arginine by the enzymatic 
action of eNOS, neuronal NOS (nNOS), and inducible 
NOS (iNOS). All three NOSs are present in the penis, 
eNOS and nNOS are the essential composite active 
NOS enzymes expressed in penile tissues [6]. The in-
tracellular mechanisms for relaxing the cavernosal 
smooth muscle are caused by reduced Ca2+ concentra-
tion in the soluble guanylate cyclase (sGC)/cGMP and 
adenylate cyclase/cyclic adenosine monophosphate 
pathways by NOS. This interaction induces vasodila-
tion of penile arteries, leading to increased blood flow 
and penile erection.

Zinc is the most important trace elements. It is pres-
ent in all organs and fluids in the body. The zinc is 
composed of approximately 1.5 to 2.0 g or about 0.003% 
of the total weight of the human body. Zinc is involved 
in immune function, synthesis of DNA and protein, en-
zyme activity, cell division, tissue growth, wound heal-
ing, bone mineralization, cognitive function, and sperm 
motility. In the nervous system, zinc has a role as a 
neuromodulator or cofactor, and it is highly concen-
trated in the synaptic vesicles of some glutamatergic 
nerve terminals [7]. The release of this vesicular zinc 
creates signaling pathways that impact physiological 
function, including synaptic plasticity, long-term poten-
tiation, and NOS activity [8-10].

In terms of eNOS and nNOS which are the key fac-
tor in penile erection, they are known to be active only 
as a homodimer. The dimer interface of nNOS and 
eNOS is formed between two N-terminal heme-binding 
oxygenase domains and is further stabilized by the 
coordination of zinc bound to two cysteine thiols from 
each monomer [11-14]. NO and NOS containing zinc 
are involved in the cardiovascular or renal physiol-
ogy, including vasodilator effects [15]. In addition, it is 
broadly known that zinc also plays an important role 
in male sexual function, such as in the testicular, pros-
tate glandular epithelium, generation of testosterone, 
erectile function, and sexual behavior [7,16-19]. How-
ever, although several studies have examined the vari-
ous roles of zinc in male health, there are no studies to 
date that evaluate the cellular expression and distribu-
tion of free zinc in penile erectile tissue.

Therefore, the present study examined the presence 
of free zinc in mouse penile tissue and whether it may 
be involved in the electrical stimulation (ES)-induced 
penile erection.

MATERIALS AND METHODS

1.  Ethics statement about experimental 
animals

The present study was performed in accordance 
with the protocols of the Guidelines for the Use and 
Care of Laboratory Animals, allowed by the National 
Institutes of Health. Animal studies were approved by 
Institutional Animal Care and Use Committee (IACUC) 
at Hallym University (protocol # Hallym 2019-2; Date 
of approval: April 29, 2019). This study was written up 
according to the ARRIVE (Animal Research: Report-
ing of In Vivo Experiments) guidelines [19]. We used 
twenty-six C57BL/6J male mice (aged 8 weeks, weight 
20–25 g), which were bought from Daehan Biolink 
(DBL., Eumseong, Korea). Mice were housed three to 
four mice per cage under conditions of temperature- 
(20°C±2°C) and humidity-controlled (55%±5%). Food 
(Purina rodent chow 38057) and water were provided 
to the mice ad libitum and cages were changed weekly. 
The lights of the room were managed automatically; 
they were switched on and off in a 12-hour cycle (on at 
6:00 a.m. and off at 6:00 p.m.).

2.  Electrical stimulation and measurement of 
erectile function

Mice were anesthetized by inhaling a 25:75 mixtures 
of nitrous oxide and oxygen and 3% isoflurane. The 
cavernous nerve was exposed through a midline stom-
ach incision. Fourteen mice received ES of the cavern-
ous nerve (ES group), whereas 12 mice did not (control 
group). In the ES group, we inserted bipolar platinum 
wire electrodes around the cavernous nerve. Stimula-
tion parameters were 10 V at a duration of 1 minute, a 
frequency of 12 Hz and a pulse width of 1 m/s (Fig. 1A). 
During expansion, the maximal intracavernous pres-
sure (ICP) was observed. And then, the total ICP was 
confirmed through the area under the curve from the 
beginning of electric stimulation to a point 20 seconds 
after stimulus termination [20]. Mice were euthanized 
after ICP measurement using isoflurane as an anes-
thetic.
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3. Penis sample preparation
After ICP measurement, the harvested penis was 

fixed for 1 hour in 4% paraformaldehyde. After fixa-
tion, we soaked penile tissue overnight into a 30% su-
crose solution for cryoprotection. Penile tissue was fro-
zen for 10 minutes and then cut with a cryostat at 12 
μm thickness. The sections were placed on the gelatin 
coated slides (Fisher Scientific, Pittsburgh, PA, USA) 
and stored in a deep freezer at -80°C until used for im-
munofluorescence and immunohistochemistry staining.

4. Immunofluorescence analysis
To analyze the expression of  eNOS, nNOS, zinc 

transporter 3 (ZnT3), and synaptophysin, we performed 
immunofluorescence staining. ZnT3 is one of the zinc 
transporters localized in the synaptic vesicles of zinc 
secreting neurons [21], and synaptophysin is an abun-
dant polytopic synaptic vesicle protein [22]. Antibodies 
against synaptophysin and ZnT3 were used to deter-
mine the cellular localization and changes in the pro-
tein expression levels of ZnT3 on penile tissue.

Some of the primary antibodies used in this study 
were goat anti-nNOS (diluted 1:1,000; Abcam, Cam-
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Fig. 1. Both neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) were increased in the penile tissue after electrostimulation-
induced erection. (A) Timeline showing the experimental design for the penile erection after electrical stimulation (ES) of the cavernous nerve. (B) 
Physiograph represented the intracavernous pressure (ICP) of mice during ES of the cavernous nerve. Representative images showing sections of 
the dorsal nerve bundle (D.Nb) and dorsal artery (D.A) (C), and corpus cavernosum (D) immunostained for eNOS (green) and nNOS (red). Nuclei 
are counterstained with DAPI (blue). Scale bar, 50 µm. Western blot analysis of eNOS (E) and nNOS (G) in the penile tissue of control and ES group. 
Quantification of eNOS (F) and nNOS (H) protein levels from the penile tissue. Data are mean±SEM (n=3 per group). *p<0.05 vs. the control group 
(unpaired Student’s t-test).
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bridge, UK), rabbit anti-eNOS (diluted 1:100; Invitro-
gen, Grand Island, NY, USA), rabbit anti-ZnT3 (diluted 
1:200; Synaptic Systems, Göttingen, Germany), and 
mouse anti-synaptophysin (dilution 1:200; Cell signaling 
technology, Danvers, MA, USA). Following incubation 
in 0.01 M PBS containing 0.3% TritonX-100 (PBS-T), 
we left it in the shaker in a 4°C incubator overnight. 
And then, penile tissue washed for 10 minutes through 
0.01M PBS. To visualize the primary antibody, a cor-
responding fluorescent-conjugated secondary antibody 
was used: Alexa fluor 488 and 594 (both dilute 1:250; 
Invitrogen, Grand Island, NY, USA). The tissues were 
counterstained with DAPI (diluted 1:1,000; 4,6-diamid-
ino-2-phenylindole; Invitrogen, Carlsbad, CA, USA). 
After placing the fluorescence-stained tissues on the 
gelatin-coated slide, it was dried in a dry oven and cov-
ered with dibutyl phthalate polystyrene xylene (Sigma-
Aldrich, St. Louis, MO, USA). We identified fluores-
cence signals through a confocal microscope (LSM 710; 
Carl Zeiss, Oberkochen, Germany) with a sequential 
scanning mode for Alexa 594, 488, and DAPI. And 
then, stacks of images (512×512 pixels) from consecu-
tive slices of 0.56 μm in thickness were conducted by 
averaging 20 to 25 scans per slice, and slices were pro-
ceeded using ZEN 2 (blue edition; Carl Zeiss). Images 
were taken from the penile cross-section. Through the 
ZEN 2 software, we were confirmed the quantification 
of mean intensity.

5. Zinc staining (TSQ method)
To analyze the expression of intracellular free zinc, 

we detected N-(6-methoxy-8-quinolyl)-para-toluenesul-
fonamide (TSQ) staining [23]. The penile tissues were 
harvested after ICP measurement and then imme-
diately frozen in powdered dry ice. Penile tissue was 
sectioned at 10 μm thicknesses in a -15°C cryostat. The 
sections were placed on gelatin-coated slides, air dried, 
dyeing in a solution of 4.5 mmol/L TSQ (Enzo Life Sci-
ence, Enzo Biochem, Inc., Farmingdale, NY, USA) for 
1 minute, and then washed for 1 minute in saline. The 
sections were confirmed with a 500 nm long-pass filter 
using an INFINITY3-1 CCD-cooled digital color camera 
(Lumenera Co., Ottawa, ON, Canada) and a microscope 
(Olympus upright microscope, epi-illuminated with 360 
nm UV light) with the INFINITY Analyze software 
(release version 6.0). We performed the quantification 
of average intensity through the ImageJ (National In-
stitues of Health, Bethesda, MD, USA).

6. Western blot
The penile tissue was homogenized in RIPA buffer 

containing 150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 1% 
Nonidet p-40, 0.5% sodium deoxycholate, 0.1% SDS. The 
homogenate was separated at 14,000×g for 20 minutes 
at 4°C through a centrifuge. After centrifugation, the 
supernatant was separated and preserved at -80°C. 
Through the Bradford protein assay, the protein con-
centration was confirmed. The proteins were diluted in 
SDS electrophoresis sample buffer, separated on a 6% 
or 8% SDS-PAGE gel, and then transferred to PVDF 
membranes (Millipore, Billerica, MA, USA). Nonspecific 
binding was blocked using a mixture of Tris-buffered 
saline (TBS) containing 0.1% Tween 20 (TBS-T) and 5% 
skim milk for 1 hour at room temperature. And then, 
the membrane was incubated overnight with rabbit 
anti-nNOS (diluted 1:500; Abcam) and rabbit anti-eNOS 
(diluted 1:1,000; Invitrogen, Grand Island, NY, USA) in 
TBS-T and 5% skim milk at 4°C. The membrane was 
washed 3 times for 10 minutes using TBS-T. And, we 
incubated for 1 hour with secondary anti-rabbit IgG 
(diluted 1:5,000; Invitrogen) conjugated with horserad-
ish peroxidase. Immunoreactivity was confirmed with 
increased chemiluminescent autoradiography (ECL 
kit; GE Healthcare, Amersham, UK), according to the 
manufacturer’s instructions. The immunoreactivity as-
sessments was normalized to beta-actin loading control 
and evaluate by densitometry using ImageJ.

7. Statistical analysis
Data were expressed as the mean±SEM. Comparisons 

between the control and ES groups were confirmed us-
ing a two-tailed unpaired Student’s t-test and a non-
parametric Mann–Whitney U-test with SPSS Statistics 
v25 (IBM Corp., Armonk, NY, USA). A p-value less 
than 0.05 was considered to be statistically significant 
(p<0.05).

RESULTS

1.  Electrical stimulation of cavernous nerve 
and expression of nNOS and eNOS in the 
penile tissue

The ICP was increased during ES of the cavernous 
nerve (Fig. 1B). To test whether ES increased the ex-
pression of eNOS and nNOS in the penile tissue, we 
used immunofluorescence staining and western blot-
ting. Immunofluorescence analyses showed that eNOS 
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and nNOS were higher in the corpus cavernosum and 
dorsal nerve bundle (D.Nb) of penile tissue in the ES 
group than in the control group (Fig. 1C, 1D). Western 
blot also showed a significant increase in the level of 
each of these proteins in the penile tissue in the ES 
group compared to the control group (eNOS, p=0.036; 
nNOS, p=0.016; Fig. 1E-1H).

2.  Electrical stimulation-induced changes in 
protein expression of ZnT3

In both groups, immunofluorescence staining con-
firmed the expression of synaptophysin and ZnT3 in 
the D.Nb of penile tissue. Double labeling with anti-
ZnT3 antibodies and antibodies directed against syn-
aptophysin revealed that ZnT3 staining overlapped in 
synaptophysin staining, indicating that these proteins 
were localized in the presynaptic nerve terminals (Fig. 
2A). There were no important differences in synapto-
physin immunoreactivity between the control and ES 
groups (control, 15,843.73±329.63; ES, 14,767.56±442.9; av-
erage gray-scale intensities; p<0.095; Fig. 2B). However, 
interestingly, more intense ZnT3 immunofluorescence 
was observed in the D.Nb of the penile tissue of the ES 
group compared to that of the control group (control, 
7,832.15±536.5; ES, 10,077±541.11; a 22% increase; aver-
age gray-scale intensities; p=0.032; Fig. 2C). These find-
ings suggest an upregulated expression of ZnT3 in the 

presynaptic terminals of D.Nb after ES of the cavern-
ous nerve.

3.  Increased level of intracellular free 
zinc in the penile tissue after electrical 
stimulation-induced erection

To investigate the level of intracellular free zinc 
in the penile tissue after ES of cavernous nerve, we 
stained penile sections of the control and ES groups 
with TSQ stating, zinc-specific fluorescent dye. TSQ 
fluorescence signals were observed in both groups (Fig. 
3A, 3C). However, the ES group showed higher inten-
sities of TSQ fluorescence signals in the penile tissue 
compared to the control group (D.Nb: control, 24.1±2.01; 
ES, 47.4±2.86, a 49% increase, corpus cavernosum: con-
trol, 25.37±0.87; ES, 50.52±1.22, a 50% increase; average 
gray-scale intensities; each p=0.001; Fig. 3B, 3D). Collec-
tively, these results indicate upregulation of intracel-
lular free zinc levels in the penile tissue after ES.

DISCUSSION

Zinc, which is existent in all organs and fluid of the 
body, is one of the most important trace elements. It is 
noted that NO and NOS are the most important factor 
in physiology of penile erection. However, there have 
been no studies to date that evaluate the expression 
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and distribution of zinc in penile erectile tissue, al-
though zinc has traditionally been known to be a main 
factor in sexual function including penile erection [7,11-
14,24,25].

In this study, we first demonstrated that free zinc 
is present in mouse penile tissue and that its expres-
sion and distribution increase after ES-induced erec-
tion. Using the zinc-specific histofluorescence TSQ and 
ZnT3 immunofluorescence, we displayed that ES of the 
cavernous nerve markedly augments the ZnT3 expres-
sion and intracellular free zinc levels in the D.Nb and 
corpus cavernosum of the penis.

Under the erectile condition, it is caused by the re-
lease of NO through nNOS from parasympathetic and 
non-adrenergic non-cholinergic nerve [3,26]. Stimulation 
of parasympathetic nerves inhibits noradrenalin re-
lease and encourages the release of Ach, which binds to 
muscarinic receptors in endothelial cells and increases 
eNOS activation [5]. It is noted that these NOSs are 
active only as a homodimer [11]. The dimer interface 
of nNOS and eNOS is formed between two N-terminal 
heme-binding oxygenase domains and is further stabi-
lized by the coordination of zinc bound to two cysteine 
thiols from each monomer [11-14,27]. A zinc-thiolate 
cluster is formed by a zinc ion which is tetrahedrally 
coordinated to two CysXXXXCys motifs at the NOS di-

mer interface [15]. Moreover, several studies have dem-
onstrated that NO production leads to the release of 
vesicular zinc from presynaptic terminals to extracellu-
lar space [28,29]. Here, we found that ES of the cavern-
ous nerve induced the increased expression of nNOS 
and eNOS from nerves and endothelial cells, thereby 
causing the release of NO in the penis. Furthermore, 
using a specific antibody to ZnT3 and zinc-specific TSQ 
fluorescent sensor to detect vesicular zinc, we observed 
that the expression of ZnT3, which is a transporter of 
zinc into synaptic vesicles of zinc-secreting neurons, 
and level of vesicular zinc had improved in penile 
erectile tissue. We speculate that the increase in the 
expression of these proteins and levels of vesicular zinc 
give rise to the release of NO and zinc in the penis.

NO activates sGC, which is a major receptor for NO. 
It leads to the relaxation of smooth muscle cells by in-
creasing intracellular cGMP, which inhibits the influx 
of calcium into the cells, primarily via the activation of 
potassium channels, thereby reducing the concentra-
tion of intracellular calcium [30]. Myosin light-chain 
(MLC) kinase activity is regulated by the intracellular 
calcium concentration. With higher calcium levels in 
the cell, it goes on to phosphorylate regulatory MLC. In 
contrast, MLC is dephosphorylated by MLC phospha-
tase, which leads to smooth muscle relaxation when 
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Fig. 3. Intracellular free zinc levels were 
elevated in the penile tissue after elec-
trical stimulation (ES) of the cavernous 
nerve. Representative images displaying 
regions of the dorsal nerve bundle (D.Nb) 
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Data are mean±SEM (n=4 from control 
group, n=6 from ES group). *p<0.05 vs. 
control group (Mann–Whitney U-test).
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calcium levels are low in the cell [31]. In addition, a 
recent study demonstrated that increased intracel-
lular zinc causes vasorelaxation by acting as a pore 
inhibitor of L-type voltage-gated calcium channels in 
smooth muscle cells [32]. As observed in the present 
study, free zinc was present in the corpus cavernosum 
of the penile tissue and its levels were higher in the 
penile erectile tissue after ES. The corpus cavernosum 
is composed of an endothelial-lined sinusoidal structure 
surrounded by smooth muscle cells. Therefore, we sug-
gest that increased free zinc in the corpus cavernosum 
of penile erectile tissue may affect the relaxation of 
smooth muscle (Fig. 4). Finally, smooth muscle relax-
ation causes vasodilation, which can lead to an increase 
in blood flow. It is possible that increased blood flow 

into the penis further triggers the production of NO by 
eNOS in the endothelial cells [33].

Nevertheless, the present study has some limitations 
that need to be addressed. Although our study focused 
on the expression and distribution of zinc during penile 
erection, voltage-dependent changes of free zinc may 
occur whether or not the penis is erect. In addition, this 
study showed increased levels of free zinc in penile tis-
sue after ES of cavernous nerve, but we cannot exclude 
the possibility that ES release different nerve factors 
and activate different mechanisms that could be re-
lated to the zinc presence and function.

CONCLUSIONS

To our knowledge, this study is the first to confirm 
the expression and distribution of free zinc in the pe-
nile tissue and the increased level of free zinc in the 
penile erectile tissue. Our findings provide anatomical 
evidence for the potential roles of free zinc in penile 
erection. The results of this study suggest that zinc 
may serve as an important modulator for penile erec-
tion. Further correlation with functional studies and 
confirmation of the associations observed in erectile 
dysfunction are needed to clarify these associations.
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Fig. 4. Schematic illustration showing the proposed mechanisms by 
which Zn2+ participate in penile erection. (1) ES of cavernous nerve 
induces neuronal nitric oxide synthase (nNOS) and endothelial NOS 
(eNOS) activation from nerves and endothelial cells, thereby caus-
ing the release of NO and Zn2+ in the penis. (2) NO and Zn2+ enter the 
smooth muscle cells. NO binds to soluble guanylyl cyclase catalyzing 
the conversion of guanosine 5’-triphosphate (GTP) in 3’-5’–cyclic gua-
nosine monophosphate (cGMP). Intracellular Zn2+ blocks the influx of 
calcium by inhibition of voltage-gated calcium channels (VGCC). (3) 
This interaction results in vasodilation of arteries, leading consequent-
ly to increased blood flow and the rigidity of penile erection.
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Data Sharing Statement

The data required to reproduce these findings cannot be 
shared at this time as the data also forms part of an ongoing 
study.
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