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P
rogressive renal fibrosis is a common outcome of
almost all forms of renal damage, including di-
abetic nephropathy. Fibrosis leads to chronic
kidney failure and, eventually, dialysis or trans-

plantation (1–3). Although much is known about the mo-
lecular background and mediators that prompt fibroblasts
or transdifferentiated kidney cells to release collagen and
matrix (4–6), the search for a unique event that initiates
the process remains inconclusive. Targeting this putative
key signal would enable researchers to “switch off” fibro-
sis and, perhaps, the progressive loss of renal function
that plagues millions of individuals worldwide (1–6). The
intermediate/small-conductance Ca2+-activated K+ channel
(KCa3.1; KCNN4; SK4) is one intriguing candidate for such
function because it promotes fibrogenesis in target tissue
by altering the membrane potential of cells, thus enhanc-
ing extracellular Ca2+ entry (7,8). Subsequent Smad2/3 or
mitogen-activated protein kinase (MEK)–dependent phos-
phorylation upregulates profibrotic genes and collagens in
human and animal fibroblasts (7–9).

BACKGROUND

KCa3.1 Ca2+-activated channels regulate K+ outflow, in-
creasing the driving force for Ca2+ entry through hyper-
polarization of the plasma membrane (7,10). In KCa3.1, four
identical subunits are gathered as a symmetric homote-
tramer. Six hydrophobic a-helical domains are inserted into
the cell membrane in each subunit (Fig. 1). A five-residue
loop between the fifth and sixth transmembrane domain
confers K+ selectivity. K+ channels are usually tightly as-
sociated with calmodulin, the regulatory protein that ac-
counts for the Ca2+ sensitivity of these channels, usually
activated by [Ca2+]i slightly below 1 mmol/L (7–10) (Fig. 1).
In turn, KCa3.1-mediated Ca2+ influx has been linked to
vascular inflammation, atherogenesis, and proliferation of
several cell types, including endothelial cells, T lympho-
cytes, macrophages, vascular smooth muscle cells, and
fibroblasts (7–10). Cell proliferation is believed to result
from Ca2+-dependent growth factor gene expression,
along with activation of cyclins and kinases involved in
cell division. However, proliferation is limited by enhanced
apoptosis, resulting from cell shrinkage upon K+ efflux
(apoptotic volume decrease), and by activation of caspases,
directly inhibited by cytosolic K+ (7–10). KCa3.1 have also
been implicated in transcellular chloride secretion and cyst

growth in autosomal-dominant polycystic kidney dis-
ease (11).

In addition to diabetes, mouse unilateral ureteral ob-
struction (UUO) has often been used as a model of renal
tubulointerstitial fibrosis (12). Robust upregulation of
KCa3.1 was always detectable in ligated kidneys. KCa3.1
knockout mice showed reduced expression of fibrotic
markers, less chronic tubulointerstitial damage, colla-
gen deposition, and a-smooth muscle+ cells after UUO,
with better preservation of functional tissue. The selec-
tive KCa3.1 blocker, TRAM-34, attenuated progression of
UUO-induced renal fibrosis in wild-type mice and rats
(12,13).

OVERVIEW

In this issue, Huang et al. (14) provide multiple lines of
evidence that KCa3.1 triggers renal scarring in diabetes.
First, they evaluated the role of KCa3.1 in mice rendered
diabetic by streptozotocin, showing that gene knockout/si-
lencing or TRAM-34 suppressed development of renal fi-
brosis. Second, they reported increased expression of
KCa3.1 in humans with diabetic nephropathy as well as in
diabetic mice. Third, several genes linked to inflammation
(monocyte chemoattractant protein-1, intracellular adhe-
sion molecule-1, the macrophage marker F4/80) or fibrosis
(plasminogen activator inhibitor 1, collagen types III and IV,
transforming growth factor-b1 [TGF-b1], TGF-b receptor II)
were turned off upon KCa3.1 silencing or knockdown. In
other models, blocking gene expression of TGF-b1, bone
morphogenic protein-1, or platelet-derived growth factor
similarly blunted fibrosis and tissue scarring (12,13,15–17).
Finally, in human proximal tubular cells, inhibition of
KCa3.1 also suppressed fibrotic markers and Smad2/3
phosphorylation.

IMPORTANCE AND DISCUSSION

That KCa3.1 is involved in renal fibrosis, and particularly
diabetic nephropathy, has been extensively proven in ear-
lier studies. Besides UUO, angiotensin II (ANG II) enhances
KCa3.1 expression and proliferation of rat cardiac fibro-
blasts, an effect blocked by TRAM-34, silencing RNAs,
kinase inhibitors, and ANG II receptor antagonists (RA)
(12,18). Recent work focused on advanced glycation end
products (AGE), an in vitro model of the diabetic milieu,
which also upregulate KCa3.1 in cardiac fibroblasts and
vascular smooth muscle, once again triggering cell pro-
liferation and migration (19,20). These effects of AGE were
blocked by anti-AGE receptor antibodies, KCa3.1 gene si-
lencing, and pharmacologic inhibitors (19,20).

The KCa3.1/fibrosis theory has some drawbacks, how-
ever. First, is the uniqueness of the fibrotic stimulus. A re-
cent review by Boor et al. (5) identified no less than 17
distinct mechanisms involved in kidney fibrosis, success-
fully counteracted by nearly 80 different experimental ap-
proaches, including blocking antibodies, inhibitors, and
RAs. The likelihood of a “master switch” mechanism is low,
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based on current understanding of the complexity of tissue
healing (1,2,13).

Second, blocking fibrosis might not suffice to rescue
a kidney from progressive failure. Unless the cause of re-
nal cell apoptosis or necrosis is reversed, tissue disruption
would tend to progress, with collagen just “filling in the
void.” Diabetes is a typical example of continuing injury to
vascular and tubulointerstitial components of the kidney.
Similarly, in immune/inflammatory forms of renal injury,
such as glomerulonephritis, cutting off the deposition of
collagen would leave untouched the primary process that
yields nephron loss over months to years.

Finally, because the kidney of higher mammals has a
much longer lifespan and a slower rate of collagen fiber
deposition, compared with the rodents in this study, in-
hibition of KCa3.1 would have to last for years to ward
against fibrosis in diabetic subjects, with unpredictable
effects on excitable tissue and extrarenal organs expressing
this channel.

In conclusion, it seems that the time is yet to come for
clinical nephrologists to selectively suppress the fibro-
sclerotic evolution of renal diseases (5,13). To date, the
only proven approach to slow the decay of renal function
in diabetes is blockade of the renin-angiotensin system
with ACE inhibitors, ANG II-RA, or renin inhibitors (5),
possibly in combination. An alternative option would be
welcome, in view of the known adverse effects of renin-
angiotensin system blockers, including acute impairment
of renal hemodynamics and hyperkalemia, among others.
Work like this by Huang et al. (14) could eventually shed
light on novel mechanisms of diabetic injury to the kidney
and vasculature that may be eventually targeted to prevent
or delay progression of renal failure (21).
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