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Diffusive and arrested transport of atoms under
tailored disorder

Fangzhao Alex An!, Eric J. Meier® ! & Bryce Gadway® '

Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven
phenomena. While static disordered site potentials have been explored in a number of
experiments, a more general, dynamical control over site-energy and off-diagonal tunnelling
disorder has been lacking. The use of atomic quantum states as synthetic dimensions has
introduced the spectroscopic, site-resolved control necessary to engineer more tailored
realisations of disorder. Here, we present explorations of dynamical and tunneling disorder in
an atomic system by controlling laser-driven dynamics of atomic population in a momentum-
space lattice. By applying static tunnelling phase disorder to a one-dimensional lattice, we
observe ballistic quantum spreading. When the applied disorder fluctuates on time scales
comparable to intersite tunnelling, we instead observe diffusive atomic transport, signalling a
crossover from quantum to classical expansion dynamics. We compare these observations to
the case of static site-energy disorder, where we directly observe quantum localisation.
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ver the past two decades, dilute atomic gases have
become a fertile testing ground for the study of locali-
sation phenomena in disordered quantum systems'. They
have allowed for some of the earliest and most comprehensive
studies of Anderson localisation of quantum particles®%,
strongly interacting disordered matter” ' and many-body loca-
lisation'>~18, Still, the emulation of many types of disorder rele-
vant to real systems—e.g., crystal strain and dislocation, site
vacancies, interstitial and substitutional defects, magnetic dis-
order and thermal phonons—will require types of control that cigo
beyond traditional methods based on static disorder potentials’.
The recent advent of using atomic quantum states as synthetic
dimensions has broadened the cold atom toolkit with the spec-
troscopic, site-resolved control of field-driven transitions!”~24,
This technique has aided the study of synthetic gauge fields'*~2!
2427 and its spatial and dynamical control offers a prime way to
implement specifically tailored, dynamical realisations of disorder
that would otherwise be difficult to study. However, current
studies based on internal states?” 21 =27, have been limited to a
small number of sites along the synthetic dimension, inhibiting
the study of quantum localisation in the presence of disorder.
Here, we employ our recently developed technique of
momentum-space lattices”® 28, to engineer tailored and dyna-
mical disorder in synthetic dimensions. Our approach introduces
several key advances to cold atom studies of disorder: the
achievement of pure off-diagonal tunnelling disorder, the dyna-
mical variation of disorder, and site-resolved detection of popu-
lations in a disordered system. For the case of tunnelling disorder,
we examine the scenario in which only the phase of tunnelling is
disordered. As expected for a one-dimensional (1D) system with
only nearest-neighbour tunnelling, these random tunnelling
phases are of zero consequence when applied in a static manner.
When this phase disorder fluctuates on time scales comparable to
intersite tunnelling, however, we observe a crossover from bal-
listic to diffusive transport’®. We compare to the case of static
site-energy disorder, observing Anderson localisation at the site-
resolved level.

Results

Implementation. Our bottom-up approach?? 28, to Hamiltonian
engineering is based on the coherent coupling of atomic
momentum states to form an effective synthetic lattice of sites in
momentum space (see Fig. 1). This approach may be viewed as
studying transport in an artificial dimension'?, of discrete spatial
eigenstates>® (as opposed to a bounded set of atomic internal
states’” 21) through resonant or near-resonant field-driven
transitions.

Starting with 8’Rb Bose-Einstein condensates of ~5x 10%
atoms, we initiate dynamics between 21 discrete momentum
states by applying sets of counter-propagating far-detuned laser
fields (wavelength 4 = 1064 nm, wavevector k = 27/1), specifically
detuned to address multiple two-photon Bragg transitions, as
depicted in Fig. la, b. Our spectrally resolved control of the
individual Bragg transitions permits a local control of the system
parameters, similar to that found in photonic simulators®!~3°, We
can tune the strength, phase and detuning from Bragg resonance
of each frequency component to control the tunnelling amplitude,
tunnelling phase and site energy of each lattice link/site,
respectively. This control is enabled by creating a multi-
frequency beam (Laser 2 in Fig. la) with tailored spectral
components. This is achieved by passing a single frequency laser
through an acousto-optic modulator (AOM) that is driven by a
tailored rf spectrum. Unique to our implementation is the direct
and arbitrary control of tunnelling phases®?, and the realised
tight-binding model is depicted in Fig. 1c. Here, we use this
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Fig. 1 Spectroscopic control of lattice dynamics. a An atomic Bose-Einstein
condensate (BEC) illuminated by two counter-propagating lasers, one of
which (Laser 2) contains multiple discrete spectral components. b Energy
diagram of free-particle-like momentum states coupled by counter-
propagating, far-detuned Bragg laser fields (characterised by nearly
identical wavevectors k). The spectral components ;.1 of laser 2 are used
to separately address individual Bragg transitions between momentum
states j and j + 1. ¢ Cartoon depiction of the effective tight-binding lattice
model when all two-photon Bragg resonance conditions are matched,
resulting in a flat site-energy landscape. The amplitudes and phases of the
tunnelling elements tjef‘/’r are independently controlled through the spectral
components of laser 2. The lattice site energies & may also be
independently controlled through the detunings from two-photon Bragg
resonances
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capability to explore the dynamics of cold atoms subject to
disordered and dynamical arrangements of tunnelling elements.
Specifically, we explore disorder arising purely in the phase of
nearest-neighbour tunnelling elements. In higher dimensions,
such disordered tunnelling phases would give rise to random flux
patterns that mimic the physics of charged particles in a random
magnetic field**3%, In 1D, however, the absence of closed
tunnelling paths renders any static arrangement of tunnelling
phases inconsequential to the dynamical and equilibrium proper-
ties of the particle density. Time-varying phases, however, can
have a nontrivial influence on the system’s dynamical evolution.

Diffusive transport under annealed disorder. We engineer
annealed, or dynamically varying, disorder®*~*! of the tunnelling
phases and study its influence through the atoms’ nonequilibrium
dynamics following a tunnelling quench. Our experiments begin
with all population restricted to a single momentum state (site).
We suddenly turn on the Bragg laser fields, quenching on the (in
general) time-dependent effective Hamiltonian

() ~ 7tz (ei‘”"(f)fl+1en + h.c.) + Ze,,f:;e,,, (1)
n n

where 7 is the time variable,  is the (homogeneous) tunnelling
energy, and ¢, (EL) is the annihilation (creation) operator for the
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Fig. 2 Atomic quantum walks in regular and disordered momentum-space lattices. a-d Nonequilibrium quantum walk dynamics of 1D atomic momentum
distributions vs. evolution time for the cases of a uniform tunnelling, b random static tunnelling phases, € random, dynamically varying tunnelling phases
characterised by an effective temperature kgT/t = 0.66(1) and d pseudorandom site energies for A/t =5.9(1). e-h Integrated 1D momentum distributions
(populations in arbitrary units; symmetrised about zero momentum) for the same cases as in a-d, after evolution times == (2.96(2)h/t, 2.51(2)h/t, 3.80(3)~/t,
and an average over the range 5.1(1) to 6.4(1)A/t) for e-h. For e, f, we compare to quantum random walk distributions of the form P, o \Jn(ZTt/ﬁ)|2, for g we

. . N . _n2 2
compare to a Gaussian distribution P, oc e~/

" for 6, = /2tt/h, and for h we compare to an exponential distribution P, o< e~I"/¢. i Annealed disorder

realised with tunnelling phases ¢(z) that vary dynamically with time z. Phases contain N =50 frequency components w that sample an ohmic spectrum S(w),
shown here peaked at effective temperature kgT/t =1. j Transport under pseudorandom site energies following the form &, = A cos(2zbn + ¢) of an
incommensurate cosine potential (dashed line). As in h, 1D momentum distributions are shown for varying pseudodisorder strengths A/t

momentum state with index n (momentum p, =2nkhk). The
tunnelling phases ¢,, and site energies ¢, are controlled through
the phases and detunings of the two-photon momentum Bragg
transitions, respectively. After a variable duration of laser-driven
dynamics, we perform direct absorption imaging of the final
distribution of momentum states, which naturally separate during
18 ms time of flight. Analysis of these distributions, including
determination of site 2populations through a multi-Gaussian fit, is
as described in ref. 22,

As a control, we first examine the case of no disorder, with all
site energies set to zero and uniform, static tunnelling phases
(1) = @. Figure 2a shows the evolution of the 1D momentum
distribution, obtained from time-of-flight images integrated along
the axis normal to the imparted momentum, displaying ballistic
expansion characteristic of a continuous-time quantum walk. For
times before the atoms reflect from the open boundaries of the
21-site lattice, we find good qualitative agreement between the
observed momentum distributions and the expected form P, =|
J.(9)1, where J, is the Bessel function of order n and 9 = 2zt/h.
Figure 2e shows the (symmetrised) momentum profile at time 7
=2.96(2)h/t along with the Bessel function distribution for 9 =
5.4. The discrepancy between the measured evolution time and
the argument of the Bessel distribution stems from the
uncertainty in the measured tunnelling time #/t, which is
dependent on local laser intensity and prone to variations.

In comparison, Fig. 2b shows the case of zero site energies and
static, random tunnelling phases ¢,€[0,27). The dynamics are
nearly identical to the case of uniform tunnelling phases. This is
consistent with the expectation that any pattern of static
tunnelling phases in 1D is irrelevant for the dynamics of the
effective tight-binding model realised by our controlled laser
coupling, since these phases can be gauged away with local
transformations. For this case, Fig. 2f shows the (symmetrised)
momentum profile at 7=2.52(2)h/t along with the Bessel
function distribution for 8 =5.35.

While static phase disorder has little impact on the quantum
random walk dynamics, we may generally expect that controlled
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random phase jumps or even pseudorandom variations of the
phases should inhibit coherent transport, mimicking random
phase shifts induced through interaction with a thermal
environment. To probe such behaviour, we implement dynamical
phase disorder by composing each tunnelling phase ¢, from a
broad spectrum of oscillatory terms with randomly defined
phases 6,,; but well-defined frequencies w;, the weights of which
are derived from an ohmic bath distribution. Specifically, the
dynamical tunnelling phases take the form

N

N
@, (1) =4n Z S(wi)cos(wit + 6,)/ Z S(wy),

i=1 i=1

(2)

where S(w) = (hw/kgT)exp[- (hw/kgT)], the 8,; are randomly
chosen from [0, 2x), and T is an artificial temperature scale that
sets the range of the frequency distribution. In this discrete
formulation of ¢,(r), we include N=50 frequencies ranging
between zero and 8kgT/h. The frequency spectrum and dynamics
for one tunnelling phase ¢,,(7) are shown in Fig. 2i for the case of
kgT/t=1.

Figure 2c displays the population dynamics in the presence of
this dynamical disorder, characterised by an effective temperature
kpT/t=0.66(1) and averaged over three independent realisations
of the disorder using different phase distributions 8, ;. We note
that the population spreads asymmetrically because we do not
average over a large range of 0, ; distributions. The dynamics no
longer feature ballistically separating wavepackets, instead
displaying a broad, slowly spreading distribution peaked near
zero momentum. A clear deviation of the (symmetrised)
momentum distribution from the form P, =1],(9)I describing
the previous quantum walk dynamics can be seen in Fig. 2g.
Instead, this more diffusive behaviour is better described by a
Gaussian distribution characterised by a width ¢, = \/27t/h. We
find excellent agreement with a Gaussian distribution at our
measured evolution time of 7=3.80(3)A/t, consistent with
spreading governed by an effectively classical or thermal random
walk.
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Fig. 3 Expansion dynamics in static and dynamical disorder. a Momentum width o, (standard deviation, units of 2hk) vs. evolution time (z, units of h/t) for
random static tunnelling phases (red data, labelled kgT/t =0) and random dynamical tunnelling phases (blue data, labelled kgT/t = 0.66(1)). Overlaid as

black lines are the predicted dynamics for ballistic (ap

= \/ir) and diffusive transport (o, = /27, shifted by 0.35h/t). b Momentum-width dynamics for the

cases of static site-energy pseudodisorder and uniform equal-phase tunnelling. The data curves relate to disorder strengths of A/t=0 (red data), A/t=
0.98(1) (blue data), A/t =2.47(3) (black data) and A/t =5.9(1) (green data). ¢ Double logarithmic plot of the momentum variance (0[2), in units of 4h2k2) for

the random phase data in a, fit to the form V(z) =

at’. The fit-determined values of y are shown for each case. d Double logarithmic plot of the momentum

variance for the static disorder data in ¢, along with power-law fits and extracted expansion exponents y. e The fit-determined expansion exponents y
plotted vs. the effective annealed disorder temperature (kgT/t, blue squares) for dynamical disorder and vs. the disorder strength (A/t, red circles) for static
pseudodisorder. The solid blue line is a fit to numerical simulations (open black circles) for the case of dynamically varying phase disorder, and the solid red
line represents numerical simulations for static pseudodisorder. All error bars denote one s.e.m

Localisation under site-energy disorder. Lastly, while no influ-
ence of static tunnelling phase disorder is expected in 1D, the
effect of static site-energy disorder is dramatically different. Here,
with homogeneous static tunnelling terms, we explore the influ-
ence of pseudorandom variations of the site energies governed by
the Aubry-André model® % 12 16, With an irrational periodicity
b= (v/5—1)/2, the site energies &, = A cos(2zbn + ¢) do not
repeat, and are governed by a pseudorandom distribution. For an
infinite system, this Aubry-André model with diagonal disorder
features a metal-insulator transition at the critical disorder
strength A =2t. The expansion dynamics for the strong disorder
case A/t=5.9(1) are shown in Fig. 2d, with population largely
restricted to the initial, central momentum order. The exponen-
tially localised distribution of site populations (symmetrised and
averaged over all profiles in the range 7=5.1(1) to 6.4(1)A/t) is
shown in Fig. 2h, along with an exponential distribution with
decay length £=0.6 lattice sites. The theoretically 2predlc‘[ecl
localisation length can be described by 1/& = In(A/2t)*, giving a
value of £=0.9 lattice sites that deviates from the Value we fit
from the short-time dynamics. Analogous population distribu-
tions (again symmetrised and averaged over the same time range)
are shown for the cases of weaker disorder [A/t = 0.98(1), 1.96(3),
3.05(4), 4.02(9)] in Fig. 2j. Because atoms in different lattice sites
(momentum states) eventually separate spatially, we have a lim-
ited experimental timescale to observe localisation. Close to the
critical point, we cannot accurately describe the population dis-
tributions with localisation lengths, though they still exhibit an
apparent transition to exponential localisation for A/t 2 2.

Comparison of expansion dynamics. For all of the explored
cases, we study these expansion dynamics in greater detail in
Fig. 3. Figure 3a examines the momentum-width (o,) dynamics of
the atomic distributions for the cases of static and dynamic
random phase disorder. For static phase disorder, we observe a
roughly linear increase of o, until population reflects from the

4
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open system boundaries, while dynamical phase disorder leads to
sub-ballistic expansion. In particular, for time 7 measured in units
of i/t and momentum-width o, in units of the site separation 2/k,
these two cases agree well with the displayed theory curves for
ballistic and diffusive expansion, having the forms o, = V2t and
6, = /21, respectively (with the latter curve shifted by 0.354/%).
To explore these two different expansions more quantitatively, we
fit the momentum variance V, = ap to a power-law
V,(7) = ar’*, performing a linear fit to variance dynamics on
a double logarithmic scale as shown in Fig. 3c. The fit-determined
expansion exponents y for the cases of static and dynamically
disordered tunnelling phases are 2.05(2) and 1.27(2), respectively.
These values are roughly consistent with a coherent, quantum
random walk for the case of static tunnelling phases (y =2) and
an incoherent, nearly diffusive random walk for the case of
dynamical phase disorder (y =1).

The observed transport dynamics cross over from ballistic to
diffusive as the effective thermal energy scale kg T approaches the
coherent tunnelling energy f, matching our expectation that
randomly varying tunnelling phases can mimic the random
dephasing induced by a thermal environment. We note that
similar classical random walk behaviour has been seen previouslg
for both atoms and ghotons, due to irreversible decoherence*4~
and dissipation*® 4, and thermal excitations®’. However, this
observation is based on reversible engineered noise of a
Hamiltonian parameter. These observations of a thermal random
walk suggest that annealed disorder may provide a means of
mimickln% thermal fluctuations and studying thermodynamical
properties® of simulated models using atomic momentum-space
lattices, and by extension other nonequilibrium experimental
platforms such as photonic simulators.

We also analyse the full expansion dynamics for the case of
static site energy disorder in Fig. 3b, d. For homogeneous static
tunnellings and thus zero disorder (A/t=0), we observe
momentum-width dynamics similar to the case of static random
tunnelling phases, but with one distinct difference: while o,
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features a linear increase for random static phases, it increases in
a step-wise fashion for uniform tunnelling phases?. Because our
underlying implementation applies a comb of 20 discrete,
equally-spaced frequency teeth to the atoms (see Fig. 1), each
Bragg transition is addressed not only by an on-resonant
frequency tooth, but also by 19 other frequencies in an oft-
resonant fashion. These off-resonant couplings add up construc-
tively to generate jumps in the dynamics with a frequency that
exactly matches the spacing between frequency teeth. By
introducing random tunnelling phases onto the teeth, this
constructive behaviour is suppressed, resulting in smoother
dynamics. We note that the expected smooth behaviour emerges
in the limit where the tunnelling is far smaller than the spacing
between frequency teeth, though due to dephasing concerns we
cannot work at such low tunnelling rates.

Evolution of the momentum-width (o,) for the site-energy
disorder cases of A/t=0.98(1), 2.47(3), 5.9(1) are also shown in
Fig. 3b. We observe the reduction of expansion dynamics with
increasing disorder, with nearly arrested dynamics in the strong
disorder limit. More quantitatively, fits of the variance dynamics
as shown in Fig. 3d reveal sub-ballistic, nearly diffusive expansion
for intermediate disorder [y=1.00(2) for A/t=0.98(1)], giving
way to a nearly vanishing expansion exponent for strong disorder
[y=0.12(6) for A/t=5.9(1)].

The extracted expansion exponents for all of the explored cases
are summarised in Fig. 3e. For static site-energy disorder (red
circles), while longer expansion times than those explored (v <
6.3h/t) would better distinguish insulating behaviour from sub-
ballistic and sub-diffusive expansion, a clear trend towards
arrested transport (y~0) is found for A/t > 1. Numerical
simulation (red curve) verifies this qualitative trend, but reaches a
finite value of y due to our fits taking into account transient
dynamics at short times (compared to the localisation time). The
deviation from this simulation curve can possibly be attributed to
the same off-resonant tunnelling terms that give rise to the step-
like behaviour in Fig. 3b. Combined with the observation of
exponential localisation of the site populations in Fig. 2h, j, these
observations are consistent with a crossover in our 21-site system
from metallic behaviour to quantum localisation for A/t > 2.

Our observations of a crossover from ballistic expansion (y ~ 2)
to nearly diffusive transport (y~1) for randomly fluctuating
tunnelling phase disorder are also summarised in Fig. 3e. In the
experimentally accessible regime of low to moderate effective
thermal energies (kgT/t S 1), our experimental data points (blue
squares) match up well with numerical simulation (open black
circles). For the magnitude of tunnelling energy used in these
experiments, we are restricted from exploring higher effective
temperatures (kgT/t> 1), as rapid variations of the tunnelling
phases introduce spurious spectral components of the Bragg laser
fields that could drive undesired transitions. Simulations in this
high-temperature regime suggest that the expansion exponent
should rise back up for increasing temperatures, saturating to a
value y ~2. This results from the fact that the time-averaged
phase effectively vanishes when the time scale of pseudorandom
phase variations is much shorter than the tunnelling time.

Discussion

The demonstrated levels of local and time-dependent control over
tunnelling elements and site energies in our synthetic
momentum-space lattice have allowed us to perform explorations
of annealed disorder in an atomic system. Such an approach
based on synthetic dimensions should enable myriad future
explorations of engineered Floguet dynamics®'~>* and uncon-
ventional disordered lattices® *°. Furthermore, the realisation of
designer disorder in a system that supports nonlinear atomic
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57, 58

interactions should permit us to explore aspects of many-
59

body localisation”.

Methods

Experimental set-up. As described in ref. 22, our experiment starts with the
preparation of a 8’Rb Bose-Einstein condensate containing ~5 x 10* atoms through
all-optical evaporation in a trap comprised of several optical dipole beams. The
condensate is then transferred to a trap formed mainly from one of these beams
(wavelength 4= 1064 nm), which we use as our lattice beam. To apply a desired
Hamiltonian for the atoms and initiate dynamics, we use AOMs to imprint on the
retro lattice beam multiple frequency sidebands w;;.;, which address Bragg tran-
sitions between atomic momentum states with momenta 2jhk and 2(j + 1)hk. By
addressing transitions between many adjacent momentum states, we create an
effective lattice of sites in a synthetic dimension. We control the detunings from
Bragg resonances as well as the amplitudes and phases of each frequency com-
ponent so as to tune the site energies, tunnelling amplitudes, and tunnelling phases
of each element in our lattice, respectively. We use this local parameter control to
generate the many realisations of disorder presented in this work.

In this work we create 21-site lattices, but in general we can reach lattice sizes of
over 50 sites. However, we cannot populate all of these sites in the experimental
timeframe, due to eventual decoherence from the spatial separation of atoms in
different momentum orders.

Mean field interactions in this system cause shifts in the Bragg resonance
frequencies from the single-particle resonances. By directly measuring this shift to
be 27 x 430(40) Hz%®, we find a peak mean-field energy of uo=gno="hx 2z x 760
(70) Hz, relatin§ to the peak atomic density no~ 10'* cm™ at the center of our
harmonic trap®®. Here, g = 47h?a/Mg, for Mg, the mass of Rubidium and a the
scattering length.

Calibrated tunnelling times. The tunnelling times for all data were calibrated
using two-site Rabi oscillations. These times are: i/t = 111.6(7) ps for the clean,
non-disordered data (Fig. 2a, e), i/t =115.3(9) ps for the random static tunnelling
phases data (Fig. 2b, f), i/t = 126.4(9) ps for the annealed disorder data (Figs. 2¢, g
and 3a, ¢) and A/t =158(7) ps averaged over all of the Aubry-André model data
(Figs. 2d, h and 3b, d).

Data availability. All data sets presented here are available from the corresponding
author upon request.
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