Chapter 3 )
Endemic Disease Models Check for

In this chapter, we consider models for disease that may be endemic. In the
preceding chapter we studied S7S models with and without demographics and
S1R models with demographics. In each model, the basic reproduction number %
determined a threshold. If Zy < 1 the disease dies out, while if % > 1 the disease
becomes endemic. The analysis in each case involves determination of equilibria
and determining the asymptotic stability of each equilibrium by linearization about
the equilibrium. In each of the cases studied in the preceding chapter the disease-free
equilibrium was asymptotically stable if and only if Zy < 1 and if Zy > 1 there was
aunique endemic equilibrium that was asymptotically stable. In this chapter, we will
see that these properties continue to hold for many more general models, but there
are situations in which there may be an asymptotically stable endemic equilibrium
when %y < 1, and other situations in which there is an endemic equilibrium that is
unstable for some values of %y > 1.

In Sect.2.3 we analyzed the SIR model for diseases from which infectives
recover with immunity against reinfection:

S = AN) — BSI — uS
I'=8SI —ul —al —dI 3.1
N = A(N) —dI — uN.

The following basic result holds for (3.1).

Theorem 3.1 The basic reproduction number for the model (3.1) is given by

K K
Ry = p = —.
nta  Se

If Zy < 1, the system has only the disease-free equilibrium and this equilibrium is
asymptotically stable.
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64 3 Endemic Disease Models

Here, K is the population carrying capacity and S, is the susceptible population
size at the endemic equilibrium. The theorem says that the disease-free equilibrium
is locally asymptotically stable. We recall that this means that solutions with initial
values close to this equilibrium remain close to the equilibrium and approach the
equilibrium as ¢+ — oo. In fact, it is not difficult to prove that this asymptotic stability
is global, that is, that every solution approaches the disease-free equilibrium. If the
quantity % is greater than one, then the disease-free equilibrium is unstable, but
there is an endemic equilibrium that is (locally) asymptotically stable.

In fact, these properties hold for some endemic disease models with more
complicated compartmental structure . We will describe some examples.

3.1 More Complicated Endemic Disease Models

3.1.1 Exposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before these
potential infectives develop symptoms and can transmit infection. To incorporate
an exposed compartment with mean exposed period 1/« we add an exposed class E
and use compartments S, E, I, R and total population size N =S+ E+ 1+ R to
give a generalization of the epidemic model (3.1)

S" = A(N) — BSI — uS
E' =BSI — (k + nE (3.2)
I' =«kE — (« + p)l.
A flow chart is shown in Fig. 3.1.
The analysis of this model is similar to the analysis of (3.1), but with I replaced
by E + I. That is, instead of using the number of infectives as one of the variables

we use the total number of infected members, whether or not they are capable of
transmitting infection.

Fig. 3.1 Flow chart for the SE I R endemic model (3.2)
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3.1.2 A Treatment Model

One form of treatment that is possible for some diseases is vaccination to protect
against infection before the beginning of an epidemic. For example, this approach
is commonly used for protection against annual influenza outbreaks. A simple way
to model this would be to reduce the total population size by the fraction of the
population protected against infection.

In reality, such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. This may be modeled by dividing the population into two groups with
different model parameters which would require some assumptions about the
mixing between the two groups. This is not difficult but we will not explore this
direction until Chap. 5 on heterogeneous mixing.

If there is a treatment for infection once a person has been infected, this may be
modeled by supposing that there is a rate y proportional to the number of infectives
at which infectives are selected for treatment, and that treatment reduces infectivity
by a fraction §. Suppose that the rate of removal from the treated class is 5. This
leads to the SI7T R model, where T is the treatment class, given by

S = uN — BS[I +8T]—uS
I'=BS +8T]— (@+y+wl (3.3)
T'=yl—0+mwT.
A flow chart is shown in Fig. 3.2. In this model, we assume that the natural birth and
death rates are equal so that the total population size remains constant.

In order to calculate the basic reproduction number, we observe that an infective
in a totally susceptible population causes SN new infections in unit time, and the

S = I

Fig. 3.2 Flow chart for the ST R endemic model (3.3)
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mean time spent in the infective compartment is 1/(«¢ + y + w). In addition, a
fraction y /(@ + v + u) of infectives are treated because (y + o + ) is the rate at
which the number of infectives decreases overall while y is the rate at which these
infectives are selected for treatment. While in the treatment stage the number of new
infections caused in unit time is §8N, and the mean time in the treatment class is
1/(n + w). Thus

BN 14 SN

= + . (3.4)
at+y+pn at+y+untp

Ho

It is possible that if § < 1 and « > 1 the treatment may increase the reproduction
number. However, since @« > n would mean that treatment prolongs the infection,
this is quite unlikely.

The equilibrium conditions for the model (3.3) are

uUN = BS[I +6T]+ nS
BSII+6T)=(+y+wl (3.5)

vl =m+mT.
Substitution of the last of these equilibrium conditions into the second gives

Sy +n+
ﬂswlz(a—ky—ku)l’
n+u

and this implies that either / = 0 (disease-free equilibrium) or

_ (@+y+wmwmn+uw

S
p Sy +n+nu

(endemic equilibrium). An endemic equilibrium exists if and only if the value of S
given by this condition is less than N, and this is equivalent to Zp > 1.

The Jacobian matrix or matrix of the linearization of (3.3) at an equilibrium
(S,1,T)is

—B(I +58T) — —BS —8BS
B +6T) BS—(a+y+un 88S ,
0 Y —(n+ )

and at the disease-free equilibrium (N, 0, 0) this is

—u —-BN —388N
0 BN —(a+vy+mun) 68BN
0 4 —(n+ )
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The eigenvalues of this matrix are —u and the eigenvalues of the 2 x 2 matrix
[ﬂN—(a—i—y—f-,u) BN ]
¥ —(m+w]

The eigenvalues of a 2 x 2 matrix have negative real part if and only if the matrix
has negative trace and positive determinant. The condition that the determinant is
positive is

- m+w(ae+y+pwn

N , 3.6
p n+u+3dy (3-6)

and the condition that the trace is negative is
BN <(@+y+w+O+p. (3.7

Then, since

m+wW+y+w <@+y+wh+u+dy)+M+u+dy)mn+wn),

if (3.6) is satisfied (3.7) is also satisfied. Thus the condition Zy < 1 is equivalent
to (3.6) and the asymptotic stability of the disease-free equilibrium.

To show that the endemic equilibrium is asymptotically stable if it exists, that is,
if Zy > 1, we must make use of the four conditions [26, 37] introduced in Chap. 2.
A somewhat complicated calculation shows that this is indeed the case.

3.1.3 Vertical Transmission

In some diseases, notably Chagas’ disease, HIV/AIDS, hepatitis B, and rinderpest
(in cattle), infection may be transferred not only horizontally (by contact between
individuals) but also vertically (from an infected parent to a newly born offspring)
[8]. We formulate an S/R model with vertical transmission by assuming that a
fraction ¢ of the offspring of infective members of the population are infective at
birth. For simplicity, we assume that there are no disease deaths so that the total
population size N is constant, and our model is based on (3.1). The birth rate in
this model is A = wN, and we assume that births are distributed proportionally
among compartments. Thus the rate of births to infectives is @/, the rate of newborn
infectives is g/, and the rate of newborn susceptibles is u N — g 1. This leads to
the model

S =uN —qgul — BSI — uS

, (3.8)
I'=qul +BSI —pnl —al.
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From the second equation, we see that equilibrium requires either / = 0 (disease-
free) or BS = u(l — g) + . At the disease-free equilibrium, S = N, I = 0, and
the matrix of the linearization is

[—M —qu — BN }
0 BN —p(l—¢q) —a]’

Thus the disease-free equilibrium is asymptotically stable if and only if
BN < u(l —¢q) +a.
This suggests that

_ BN +nq

X
0 u+o

To see that this is indeed correct, we note that the term SN /(u + «) represents
horizontally transmitted infections at rate BN over a death-adjusted infective period
1/(n + «), and the term % represents vertically transmitted infections per
infective. It is not difficult to verify that the endemic equilibrium, which exists if

and only if Zy > 1 is asymptotically stable.

3.2 Some Applications of the SI R Model

3.2.1 Herd Immunity

In order to prevent a disease from becoming endemic, it is necessary to reduce
the basic reproduction number % below one. This may sometimes be achieved
by immunization. If a fraction p of the A(N) newborn members per unit time of
the population is successfully immunized, the effect is to replace N by N(1 — p),
and thus to reduce the basic reproduction number to Zy(1 — p). The requirement
Fo(l — p) < lgivesl — p < 1/%, or

1

p>1 e’

A population is said to have herd immunity if a large enough fraction has been

immunized to assure that the disease cannot become endemic. The only disease

for which this has actually been achieved worldwide is smallpox for which %y

is approximately 5, so that 80% immunization does provide herd immunity, and
rinderpest, a cattle disease.

For measles, epidemiological data in the USA indicate that %, for rural

populations ranges from 5.4 to 6.3, requiring vaccination of 81.5-84.1% of the



3.2 Some Applications of the SI R Model 69

population. In urban areas %, ranges from 8.3 to 13.0, requiring vaccination of
88.0-92.3% of the population. In Great Britain, %y ranges from 12.5 to 16.3,
requiring vaccination of 92-94% of the population. The measles vaccine is not
always effective, and vaccination campaigns are never able to reach everyone. As
a result, herd immunity against measles has not been achieved (and probably never
can be). An additional issue is that an anti-vaccination movement has developed,
partly because of a fallacious belief that there is a link between the measles-mumps-
rubella vaccine and the development of autism and partly because of a general
opposition to vaccines.

Since smallpox is viewed as more serious and requires a lower percentage of
the population be immunized, herd immunity was attainable for smallpox. In fact,
smallpox has been eliminated; the last known case was in Somalia in 1977, and
the virus is maintained now only in laboratories. The eradication of smallpox was
actually more difficult than expected because high vaccination rates were achieved
in some countries but not everywhere, and the disease persisted in some countries.
The eradication of smallpox was possible only after an intensive campaign for
worldwide vaccination [22].

3.2.2 Age at Infection

In order to calculate the basic reproduction number % for a disease modeled by a
system (3.1), we need to know the values of the contact rate § and the parameters
w, K, and «. The parameters u, K, and « can usually be measured experimentally
but the contact rate § is difficult to determine directly. There is an indirect method
of estimating % in terms of the life expectancy and the mean age at infection which
enables us to avoid having to estimate the contact rate. In this calculation, we will
assume that 8 is constant, but we will also indicate the modifications needed when
B is a function of total population size N. The calculation assumes exponentially
distributed life spans and infective periods. The result is valid so long as the life
span is exponentially distributed, but if the life span is not exponentially distributed
the result could be quite different.

Consider the “age cohort” of members of a population born at some time #y and
let a be the age of members of this cohort. If y(a) represents the fraction of members
of the cohort who survive to age (at least) a, then the assumption that a fraction u of
the population dies per unit time means that y'(a) = —uy(a). Since y(ty) = 1, we
may solve this first order initial value problem to obtain y(a) = e~#“. The fraction
dying at (exactly) age a is —y’(a) = uy(a). The mean life span is the average age
at death, which is fooo a[—Y'(a)]da, and if we integrate by parts we find that this life
expectancy is

/ [~ay' @]da = [~ay(@)] + / V@) da = / v(@)da.
to fo

fo
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Since y(a) = e~ "4, this reduces to 1/u. The life expectancy is often denoted by L,
so that we may write

1
L=—.
"

The rate at which surviving susceptible members of this cohort become infected
at age a and time #y + a is B1 (ty + a). Thus, if z(a) is the fraction of the age cohort
alive and still susceptible at age a, 7'(a) = —[u + BI (o + a)]z(a). Solution of this
first linear order differential equation gives

2a) = o—lna+f§ BIGo+b)db] _ y(a)effé‘ﬂl(toer)db.

The mean length of time in the susceptible class for members who may become
infected, as opposed to dying while still susceptible, is

0 a
f o= i Blo+bYab g,
0

and this is the mean age at which members become infected. If the system is at
an equilibrium I, this integral may be evaluated, and the mean age at infection,
denoted by A, is given by

o0 1
A:/ e Plotqyg — —
0 B

Ioo

For our model the endemic equilibrium is

_ K e
o] Lt a '3 s
and this implies
L I
—=ﬂ—“=%0—1. (3.9)
A 2

This relation is very useful in estimating basic reproduction numbers. For example,
in some urban communities in England and Wales between 1956 and 1969 the
average age of contracting measles was 4.8 years. If life expectancy is assumed
to be 70 years, this indicates %y = 15.6.

If B is a function B(N) of total population size and K is the carrying capacity,
the relation (3.9) becomes

BK)[. L
Ry = 14+ —1.
0 ﬂ(No)[ +A}
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If disease mortality does not have a large effect on total population size, in particular
if there is no disease mortality, this relation is very close to (3.9).

The relation between age at infection and basic reproduction number indicates
that measures such as inoculations, which reduce %y, will increase the average age
at infection. For diseases such as rubella (German measles), whose effects may be
much more serious in adults than in children, this indicates a danger that must be
taken into account: While inoculation of children will decrease the number of cases
of illness, it will tend to increase the danger to those who are not inoculated or
for whom the inoculation is not successful. Nevertheless, the number of infections
in older people will be reduced, although the fraction of cases which are in older
people will increase.

3.2.3 The Inter-Epidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken pox,
diphtheria, and rubella, exhibit variations from year to year in the number of cases.
These fluctuations are frequently regular oscillations, suggesting that the solutions
of a model might be periodic. This does not agree with the predictions of the
model we have been using in this section; however, it would not be inconsistent
with solutions of the characteristic equation, which are complex conjugate with
small negative real part corresponding to lightly damped oscillations approaching
the endemic equilibrium. Such behavior would look like recurring epidemics. If
the eigenvalues of the matrix of the linearization at an endemic equilibrium are
—u + iv, where i2 = —1, then the solutions of the linearization are of the form
Be " cos(vt + ¢), with decreasing “amplitude” Be "' and “period” 27”

For the model (3.1) we recall that at the endemic equilibrium we have

Bloo + 1 = %o, BSoo =1 +a
and the matrix of the linearization is

[ A —(/H-Oé)}
w(Zo — 1) 0 '

The eigenvalues are the roots of the quadratic equation
A2 4 nZoh + n( Ry — (n + o) =0,

which are

| hI 1A — AR~ D+ )
_ g |
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If the mean infective period 1/« is much shorter than the mean life span 1/u,
we may neglect the terms that are quadratic in p. Thus, the eigenvalues are
approximately

—uURy £ A%y — Da
2 9

and these are complex with imaginary part /(%o — 1)a. This indicates oscilla-
tions with period approximately

2
i@y — Da’

We use the relation u(%Zp — 1) = wL/A and the mean infective period 7 = 1/« to
see that the interepidemic period 7' is approximately 27 +/At. Thus, for example,
for recurring outbreaks of measles with an infective period of 2 weeks or 1/26
year in a population with a life expectancy of 70 years with R( estimated as
15, we would expect outbreaks spaced 2.76 years apart. Also, as the “amplitude”
at time ¢ is e *R0'/2 the maximum displacement from equilibrium is multiplied
by a factor e~(19Z760)/140 — (744 over each cycle. In fact, many observations
of measles outbreaks indicate less damping of the oscillations, suggesting that
there may be additional influences that are not included in our simple model. To
explain oscillations about the endemic equilibrium a more complicated model is
needed. One possible generalization would be to assume seasonal variations in
the contact rate [13, 27]. This is a reasonable supposition for a childhood disease
most commonly transmitted through school contacts, especially in winter in cold
climates. Note, however, that data from observations are never as smooth as model
predictions and models are inevitably gross simplifications of reality which cannot
account for random variations in the variables. It may be difficult to judge from
experimental data whether an oscillation is damped or persistent.

3.2.4 “Epidemic” Approach to Endemic Equilibrium

In the model (3.1) the demographic time scale described by the birth and natural
death rates ©K and w and the epidemiological time scale described by the rate «
of departure from the infective class may differ substantially. Think, for example,
of a natural death rate u© = 1/75, corresponding to a human life expectancy of 75
years, and epidemiological parameter « = 25, describing a disease from which all
infectives recover after a mean infective period of 1/25 year, or 2 weeks. Suppose
we consider a carrying capacity K = 1000 and take § = 0.1, indicating that an
average infective makes (0.1)(1000)= 100 contacts per year. Then %Zy = 4.00, and
at the endemic equilibrium we have S, = 250.13, Ioc = 0.40, R = 749.47. This



3.3 Temporary Immunity 73

equilibrium is globally asymptotically stable and is approached from every initial
state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the
introduction of a single infective into a susceptible population and solve the system
numerically we find that the number of infectives rises sharply to a maximum of 400
and then decreases to almost zero in a period of 0.4 year, or about 5 months. In this
time interval the susceptible population decreases to 22 and then begins to increase,
while the removed (recovered and immune against reinfection) population increases
to almost 1000 and then begins a gradual decrease. The size of this initial “epidemic”
could not have been predicted from our qualitative analysis of the system (3.1). On
the other hand, since u is so small compared to the other parameters of the model,
we might consider neglecting p, replacing it by zero in the model. If we do this, the
model reduces to the simple Kermack—-McKendrick epidemic model (without births
and deaths) of Sect.2.4.

If we follow the model (3.1) over a longer time interval we find that the
susceptible population grows to 450 after 46 years, then drops to 120 during a small
epidemic with a maximum of 18 infectives, and exhibits widely spaced epidemics
decreasing in size. It takes a very long time before the system comes close to the
endemic equilibrium and remains close to it. The large initial epidemic conforms
to what has often been observed in practice when an infection is introduced into a
population with no immunity, such as the smallpox inflicted on the Aztecs by the
invasion of Cortez.

If we use the model (3.1) with the same values of 8, K, and u, but take o = 0,
d = 25 to describe a disease fatal to all infectives, we obtain very similar results.
Now the total population is S 4 I, which decreases from an initial size of 1000
to a minimum of 22 and then gradually increases and eventually approaches its
equilibrium size of 250.53. Thus, the disease reduces the total population size to
one-fourth of its original value, suggesting that infectious diseases may have large
effects on population size. This is true even for populations which would grow
rapidly in the absence of infection, as we shall see in a later section (Sect. 3.7).

3.3 Temporary Immunity

In the SIR models that we have studied, it has been assumed that the immunity
received by recovery from the disease is permanent. This is not always true, as there
may be a gradual loss of immunity with time. In addition, there are often mutations
in a virus, and as a result the active disease strain is sufficiently different from the
strain from which an individual has recovered and the immunity received may wane.

Temporary immunity may be described by an S7RS model in which a rate of
transfer from R to S is added to an S/R model. For simplicity, we confine our
attention to epidemic models, without including births, natural deaths, and disease
deaths, but the analysis of models including births and deaths would lead to the
same conclusions. Thus we begin with a model
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S = —BSI+6R
I'=BSI —al
R =al —0R,

with a proportional rate 6 of loss of immunity.
Since N’ = (S + I + R)’ = 0, the total population size N is constant, and we
may replace R by N — S — I and reduce the model to a two-dimensional system

S'=—-BSI+6(N—-S—-1)

I'=BSI —al. (3.10)

Equilibria are solutions of the system

BSI +6S+06I =0N
al +6S+61 =06N,

and there is a disease-free equilibrium § = «/8, I = 0. If Zy = BN /a > 1, there
is also an endemic equilibrium with

BS=a, (ax+6)=06(N-279).
The matrix of the linearization of (3.10) at an equilibrium (S, 7) is

A [—(/31 +6) —(ﬂS+9)}
B BI BS —a |’

At the disease-free equilibrium A has the sign structure

|:0 BN — ai| '
This matrix has negative trace and positive determinant if and only if BN < «, or
Ho < 1. At an endemic equilibrium, the matrix has sign structure

L)

and thus always has negative trace and positive determinant. We see from this
that, as in other models studied in this chapter, the disease-free equilibrium is
asymptotically stable if and only if the basic reproduction number is less than 1 and
the endemic equilibrium, which exists if and only if the basic reproduction number
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exceeds 1, is always asymptotically stable. However, it is possible for a different
STRS model to have quite different behavior.

3.3.1 *Delayinan SIRS Model

We consider an SI/RS model, which assumes a constant period of temporary
immunity following recovery from the infection in place of an exponentially
distributed period of temporary immunity [24]. We assume that there is a temporary
immunity period of fixed length w, after which recovered infectives revert to the
susceptible class. The resulting model is described by the system of differential—
difference equations

S' (1) = —BSWI (1) + al (t — )
I'(t) = BSI (1) — ol (1) 3.11)
R'(t) =al(t) —al(t —w).

The equilibrium analysis of a system of differential-difference equations with a
delay w is analogous to the equilibrium analysis of a system of ordinary differential
equations, but there are important variations. Instead of assigning an initial condition
at ¢t = 0 it is necessary to assign initial data on the interval —ow < ¢t < 0.
Equilibria of a system of differential-difference equations are constant solutions,
just as for systems of differential equations, and the process of linearization about
an equilibrium is the same.

The characteristic equation at an equilibrium is the condition that the lineariza-
tion at the equilibrium has a solution whose components are constant multiples
of ¢*. In the ordinary differential equation case, this is just the equation that
determines the eigenvalues of the coefficient matrix, a polynomial equation, but
in the general case, it is a transcendental equation. The result on which our analysis
depends, which we state without proof, is that an equilibrium is asymptotically sta-
ble if all roots of the characteristic equation have negative real part, or equivalently
that the characteristic equation have no roots with real part greater than or equal to
zero [5].

In (3.11), since N = S + I + R is constant, we may discard the equation for R
and use a two-dimensional model

S (1) =—-BSOI(t) +al(t — w)

I'(ty = BSMOI () — al (1) (3.12)

Equilibria are given by I = 0 or 8§ = «. There is a disease-free equilibrium S =
N, I = 0. There is also an endemic equilibrium for which 8S = «. However, the
two equations for S and / give only a single equilibrium condition. To determine the
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endemic equilibrium (Seo, /o), We must write the equation for R in the integrated
form

'
R() :/ ol (x)dx
t—w

to give Roo = wals. We also have fSo = «, and from So + Ioo + Roo = N we
obtain

_ (BN —a)
Ploo = l4+wa

To linearize about an equilibrium (S, Ioo) Of (3.12) we substitute
S(t) = Soo +u(t), I(1)=I1x—+v(),
and neglect the quadratic term, giving the linearization
' (1) = —Bloot(t) — BSoov(t) + av(t — w)
V(1) = Bloou(t) + BSoov(t) — av(t).

The characteristic equation is the condition on A that this linearization has a
solution

u(t) = upe™, () = voe,
and this is

(Bloo + Mg + (BSec — ae™**)vg = 0
Blooug 4+ (BSco — 0 — A)vg = 0,

or

_ A0
det A+ Bl BSco — e ‘
Bleo BSoco—a—X

This reduces to

1 — e @*
oe,BIOOT =—[A+a+ BSe + Blxl. (3.13)
At the disease-free equilibrium Sy, = N, s, = 0, this reduces to a linear equation
with a single root . = —BN — «, which is negative if and only if Zy = N /o < 1.
We think of w and N as fixed and consider § and « as parameters. If « = 0 the
Eq. (3.13) is linear and its only root is —BSs — Bls < 0. Thus, there is a region in
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the («, B) parameter space containing the B-axis, in which all roots of (3.13) have
negative real part. In order to find how large this stability region is, we make use of
the fact that the roots of (3.13) depend continuously on 8 and «. A root can move
into the right half-plane only by passing through the value zero or by crossing the
imaginary axis as SN and « vary. Thus, the stability region contains the §-axis and
extends into the plane until there is a root A = 0 or until there is a pair of pure
imaginary roots A = iy with y > 0. Since the left side and right side of (3.13)
have opposite sign for real 1 > 0, there cannot be a root A = 0.
The condition that there is a root A =iy is

l_e—iwa
OlﬂlooT =—(iy+ta+BSx + Blx) (3.14)

and separation into real and imaginary parts gives the pair of equations

sin wy 1 — cos wy
of y = —[o + BSe0 + Blxl, aﬂlooT =

y. (3.15)

To satisfy the first condition, it is necessary to have wa > 1 since | sin wy| < |wy]|
for all y. This implies, in particular, that the endemic equilibrium is asymptotically
stable if wa < 1. In addition, it is necessary to have sin wy < 0. There is an
infinite sequence of intervals on which sin wy < 0, the first being 7 < wy < 2.
For each of these intervals, the equations (3.15) define a curve in the (8, o) plane
parametrically with y as parameter. The region in the plane below the first of these
curves is the region of asymptotic stability, that is, the set of values of 8 and « for
which the endemic equilibrium is asymptotically stable. This curve is shown for
o =1, N = 1 in Fig.3.3. Since Zyp = BN/a > 1, only the portion of the (8, «)
plane below the line ¢ = BN is relevant.

The new feature of the model of this section is that the endemic equilibrium is
not asymptotically stable for all parameter values. What is the behavior of the model
if the parameters are such that the endemic equilibrium is unstable? A plausible
suggestion is that since the loss of stability corresponds to a root A = iy of the
characteristic equation there are solutions of the model behaving like the real part
of ¢/, that is, that there are periodic solutions. This is exactly what does happen
according to a very general result called the Hopf bifurcation theorem [25], which
says that when roots of the characteristic equation cross the imaginary axis a stable
periodic orbit arises.

From an epidemiological point of view periodic behavior is unpleasant. It implies
fluctuations in the number of infectives which makes it difficult to allocate resources
for treatment. It is also possible for oscillations to have a long period. This means
that if data are measured over only a small time interval the actual behavior may not
be displayed. Thus, the identification of situations in which an endemic equilibrium
is unstable is an important problem.
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Fig. 3.3 Region of
asymptotic stability for
endemic equilibria (v = 1,
N=1)

3.4 A Simple Model with Multiple Endemic Equilibria

In compartmental models for the transmission of communicable diseases there
is usually a basic reproduction number %, representing the mean number of
secondary infections caused by a single infective introduced into a susceptible
population. If 2y < 1 there is a disease-free equilibrium which is asymptotically
stable, and the infection dies out. If %y > 1 the usual situation is that there is
a unique endemic equilibrium which is asymptotically stable, and the infection
persists. Even if the endemic equilibrium is unstable, the instability commonly
arises from a Hopf bifurcation [25], described in Sect. 3.3, and the infection still
persists but in an oscillatory manner. More precisely, as %y increases through 1 there
is an exchange of stability between the disease-free equilibrium and the endemic
equilibrium (which is negative as well as unstable and thus biologically meaningless
if ,@0 < l).

There are, however, situations in which there may be more than one endemic
equilibrium even in very simple epidemic models, and we describe such a model
suggested in [42, 43]. We consider an S/S model in a population of constant total
size N with treatment of infectives, assuming that the treatment cures the infection
but that there is a maximum capacity for treatment. Thus we assume a model
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S’ = —BSI + h(I)

I' = BSI —al — h(l), (3.16)

assuming a treatment function 4 () of the form

WDy — :rl, (I < 1%
rl*, (I =1,

in which r is a constant representing the treatment rate up to a maximum capacity

rI*. Since the total population size S + [ is a constant N, we may replace S by
N — I and reduce the model to a single equation

I'=BI(N—1)—al —h(I) = g(I). (3.17)
There is a disease-free equilibrium / = 0, and it is easily verified that the disease-
free equilibrium is asymptotically stable if and only if Zy = BN /(o +r) < 1.
For I < I'*,
g) =pI(N = 1) = (a+n),

and an endemic equilibrium with 7 < I* is a positive solution I, of g(I) = 0,
namely

1*2N-“§’=N(1-i>. (3.18)

For I < I*,
') =B(N —2BI — (a+r),

and g’'(I») < 0if and only if

N2t <2100=2<N—“+r>,
B B

*

and this is equivalent to %y > 1. Thus, the equilibrium /o, < [I* exists and is

asymptotically stable if and only if (3.18) is satisfied.
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Equilibria I > I'* are solutions of the quadratic equation
g(I)=—BI* + (BN —a)] —rI* =0,

which are

_ (BN-o) + VBN-a)>—4rpI*  _ (BN-o) = V(BN — a)?—4prI*
- 28 T 28 '

Then J < (BN —a)/2B and I > (BN — «)/2p. For these to qualify as equilibria,
they must also be greater than /* and less than N, but it is possible to choose
parameter values such that the model (3.16) has more than one endemic equilibrium.
For example, the choices

1

a=05 r=05 ~N=1, I*=0.05

so that Zy = B, give two equilibria 7, J for some values of 8, including some values
with Zy < 1. With these parameter values, / = J = 0.279 when 8 = 0.779.

An equilibrium I of the differential equation I’ = g(I) is asymptotically stable
if g(I) < 0, and unstable if g’(Io) > 0. From this, it is easy to deduce that
the equilibrium J is unstable, while the equilibrium / is asymptotically stable. If
we plot the equilibrium values as functions of B, the curve I begins at the point
(0.779, 0.279) and goes upwards to the right, while the curve J goes downward to
the right from the same starting point. Because of the choice 7* = 0.05, only the
portion of the J curve above the line / = 0.05 is relevant. For 0.779 < %y < 1 there
are two asymptotically stable equilibria, namely 0 and / separated by an unstable
equilibrium J. For this reason, we have drawn the J curve as a dotted curve in
Fig.3.4.
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Fig. 3.4 Multiple endemic equilibria
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A bifurcation curve, a graph of equilibria as a function of the basic reproduction
number, as in Fig.3.4, gives a good deal of information about the behavior of
endemic equilibria. We observe, for example, that in Fig. 3.4, there are endemic
equilibria for some values of the basic reproduction number less than 1, and that
there is a discontinuity in the endemic equilibria at Zy = 1.

3.5 A Vaccination Model: Backward Bifurcations

In a compartmental model, there is a bifurcation, or change in equilibrium behavior,
at Zo = 1 but the equilibrium infective population size depends continuously on
. Such a transition is called a forward, or transcritical, bifurcation.

The behavior at a bifurcation may be described graphically by the bifurcation
curve, which is the graph of equilibrium infective population size I as a function of
the basic reproduction number %j. For a forward bifurcation, the bifurcation curve
is as shown in Fig. 3.5.

It has been noted [14, 20, 21, 29] that in epidemic models with multiple groups
and asymmetry between groups or multiple interaction mechanisms it is possible
to have a very different bifurcation behavior at Zy = 1. There may be multiple
positive endemic equilibria for values of %y < 1 and a backward bifurcation at
Py = 1. This means that the bifurcation curve has the form shown in Fig. 3.4 with a
broken curve denoting an unstable endemic equilibrium that separates the domains
of attraction of asymptotically stable equilibria.

The qualitative behavior of an epidemic system with a backward bifurcation
differs from that of a system with a forward bifurcation in at least three important
ways. If there is a forward bifurcation at %y = 1 it is not possible for a disease to
invade a population if %y < 1 because the system will return to the disease-free
equilibrium / = 0 if some infectives are introduced into the population. On the
other hand, if there is a backward bifurcation at Zy = 1 and enough infectives are

Fig. 3.5 Forward bifurcation
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introduced into the population to put the initial state of the system above the unstable
endemic equilibrium with %y < 1, the system will approach the asymptotically
stable endemic equilibrium.

Other differences are observed if the parameters of the system change to produce
a change in %Zy. With a forward bifurcation at Zy = 1 the equilibrium infective
population remains zero so long as %y < 1 and then increases continuously as %y
increases. With a backward bifurcation at %y = 1, there is an asymptotically stable
disease-free equilibrium so long as %y < 1 but there is also an asymptotically stable
endemic equilibrium for some values of %y < 1 and as % increases through 1 the
infective population size jumps to the positive endemic equilibrium. In the other
direction, if a disease is being controlled by means that decrease % it is sufficient
to decrease % to 1 if there is a forward bifurcation at Zy = 1 but it is necessary to
bring Z well below 1 if there is a backward bifurcation.

These behavior differences are important in planning how to control a disease; a
backward bifurcation at Zy = 1 makes control more difficult. One control measure
often used is the reduction of susceptibility to infection produced by vaccination. By
vaccination, we mean either an inoculation that reduces susceptibility to infection
or an education program such as encouragement of better hygiene or avoidance of
risky behavior for sexually transmitted diseases. Whether vaccination is inoculation
or education, typically it reaches only a fraction of the susceptible population and is
not perfectly effective. In an apparent paradox, models with vaccination may exhibit
backward bifurcations, making the behavior of the model more complicated than
the corresponding model without vaccination. It has been argued [6] that a partially
effective vaccination program applied to only part of the population at risk may
increase the severity of outbreaks of such diseases as HIV/AIDS.

We will give a qualitative analysis of a model which may have a variable total
population size N < K for which there is a possibility of a backward bifurcation.
The model we will study adds vaccination to the simple SIS model with births and
natural deaths but with no disease deaths studied in Sect.2.2. We have considered
the model

8= A(N) = B(N)ST — S + ol

I'= BSI - (u+ ). (3-19)

where the population carrying capacity K is defined by A(K) = uK, A'(K) < u
and the contact rate S(N) is a function of total population size with NB(N) non-
decreasing and B(N) non-increasing. We have seen that there is a disease-free
equilibrium I = 0 that is asymptotically stable if

KB(K)
u+o

Ko =

< 1.

If Zo > 1 the disease-free equilibrium is unstable but there is an endemic
equilibrium that is asymptotically stable.
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To the model (3.19) we add the assumption that in unit time a fraction ¢ of
the susceptible class is vaccinated. The vaccination may reduce but not completely
eliminate susceptibility to infection. We model this by including a factor o, 0 <
o < 1, in the infection rate of vaccinated members with o = 0 meaning that the
vaccine is perfectly effective and o = 1 meaning that the vaccine has no effect. We
describe the new model by including a vaccinated class V, with

S =uN —BWN)SI — (u+¢)S +al
I' = B(N)SI +0BN)VI — (u+a)l (3.20)
Vi=9S —aBIN)VI —puV

and N = S+ 1 4 V. Since N is constant, we can replace S by N — I — V to give
the equivalent system

I'=B[N-I—-(0—-0)V]I - (u+a)l 321)
V=[N —I]1—0BVI—(n+e)V ’

with B = B(N). The system (3.21) is the basic vaccination model which we will
analyze. We remark that if the vaccine is completely ineffective, ¢ = 1, then (3.21)
is equivalent to an S/S model. If all susceptibles are vaccinated immediately
(formally, ¢ — 00), the model (3.21) is equivalent to

I'=0BI(K—1)— (u+a)l
which is an S7.S model with basic reproduction number

oBK
u+a

E'; = 0%y < X.

We will think of the parameters u, o, ¢, and o as fixed and will view B as
variable. In practice, the parameter ¢ is the one most easily controlled, and later we
will express our results in terms of an uncontrolled model with parameters 8, u, o,
and o fixed and examine the effect of varying ¢. With this interpretation in mind,
we will use Z(¢)to denote the basic reproduction number of the model (3.21), and
we will see that

Ky < Z(p) < Xo.
Equilibria of the model (3.21) are solutions of

BIK—1—(1—0)V]=(u+a)l

9K —11=0BVI+ (n+@)V. (3.22)
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If I = 0, then the first of these equations is satisfied and the second leads to

¥

V =
n+o

This is the disease-free equilibrium.
The matrix of the linearization of (3.21) at an equilibrium (7, V) is

[—2,31—(1—0),3V—(u+a)+ﬂ1< —(1—0)BI }
—(p+0BV) —(u+e@+oBD |

At the disease-free equilibrium this matrix is

[—(1—0)/3V—(M+a)+ﬁl< 0 ]
—(p+0oBV) —(u+9)

which has negative eigenvalues, implying the asymptotic stability of the disease-free
equilibrium, if and only if

—(1-0)BV —(u+a)+BK <0.
Using the value of V at the disease-free equilibrium this condition is equivalent to

K
B htoe o rtoe

0 1.
mHto pu+oe n+e

K(p) =

The case ¢ = 0 is that of no vaccination with Z(0) = %, and Z(¢) < X if
¢ > 0. We note that Z§ = 0 %o = limy_,c Z(¢) < Ho.
If 0 < 0 < 1 endemic equilibria are solutions of the pair of equations

BIK—1—-(1-0)V]=p+a

elK =I1=0BVI+ (u+¢@)V. (3.23)

We eliminate V using the first equation of (3.23) and substitute into the second
equation to give an equation of the form

AI?4+BI+C=0 (3.24)
with
A=o0of
B=@W+60+o0op)+o(u+ao)—opK (3.25)
C— (m+o)(n+60+9) (46 + oK.

B
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If o0 = 0 (3.24) is a linear equation with unique solution.
,:K_W:K[l_;}
Bu Z(9)

which is positive if and only if Z(¢) > 1. Thus if o = 0 there is a unique endemic
equilibrium if Z(¢) > 1 that approaches zero as Z(¢) — 1+ and there cannot
be an endemic equilibrium if Z(p) < 1. In this case, it is not possible to have a
backward bifurcation at Z(¢) = 1.

We note that C < 0if Z(¢) > 1,C =0if Z(p) = 1,and C > 0if Z(p) < 1.
If o > 0, so that (3.24) is quadratic and if Z(¢) > 1 then there is a unique positive
root of (3.24) and thus there is a unique endemic equilibrium. If Z(¢) = 1, then
C = 0 and there is a unique non-zero solution of (3.24) I = — B /A which is positive
if and only if B < 0. If B < 0 when C = 0 there is a positive endemic equilibrium
for Z(p) = 1. Since equilibria depend continuously on ¢ there must then be an
interval to the left of Z(p) = 1 on which there are two positive equilibria

;o "B% VB2 —4AC
= o :

This establishes that the system (3.21) has a backward bifurcation at Z(¢) = 1 if
and only if B < 0 when 8 is chosen to make C = 0.

We can give an explicit criterion in terms of the parameters wu, ¢, o for the
existence of a backward bifurcation at Z(¢) = 1. When Z(¢) = 1, C = 0 so
that

(n+o@)BK = (n+a)(n+¢). (3.26)
The condition B < 0 is

(m+op)+o(u+a) <oBK
with BK determined by (3.26), or

ocnta)u+e)>pn+top)(n+op)+o(n+al

which reduces to

o(l=o)(u+a)p > (u+o9). (3.27)
A backward bifurcation occurs at Z(¢) = 1, with BK given by (3.26) if and

only if (3.27) is satisfied. We point out that for an S/ model, where « = 0, the
condition (3.27) becomes

o(l —o)up > (u+op).
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But

(H+09)? = u? + 07> +2u0p
>2uop > o(l —o)up

because o < 1. Thus a backward bifurcation is not possible if ¢ = 0, that is, for an
ST model. Likewise, (3.27) cannot be satisfied if o = 0.

If C > 0 and either B > 0 or B2 < 4AC, there are no positive solutions
of (3.24)and thus there are no endemic equilibria. Equation (3.24) has two positive
solutions, corresponding to two endemic equilibria, if and only if C > 0, or Z(¢) <
I,and B < 0, BZ > 4AC, or B < —2J/AC < 0.If B = —ZW, there is one
positive solution I = —B/2A of (3.24).

If (3.27) is satisfied, so that there is a backward bifurcation at Z(¢) = 1, there
are two endemic equilibria for an interval of values of 8 from

(n+a)(u+¢)

K =
P n+og

corresponding to Z(¢) = 1 to a value B, defined by B = —2+/AC. To calculate
Be.weletx =pu+a—BK, U =u+optogive B=ox+U, BC = BKU +
(u + a)(u + @). Then B> = 4AC becomes

(6x +U)> +4BoKU —4o(u+a)(u +¢) =0
which reduces to

(0x)2 —2U(ox) + [U2 Fao(l—o)(u + ot)tp] —0

with roots

ox =U =+ 2\/0(1 —o)(u+ o).

For the positive root B = ox + U > 0, and since we require B < 0 as well as
B? —4AC = 0, we obtain f. from ox = U — 2/o (I — 0) (it + @)@ so that

oBK =o(u+a)+2/o(l —o)(u+a)g — (uL+0p). (3.28)

Then the critical basic reproduction number Z. is given by

7. — ptog ou+a)+2J/o(l—o)(n+a)g—(u+oy)
T ou+te o(n+a)y

and it is possible to verify with the aid of (3.28) that Z, < 1.
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3.5.1 The Bifurcation Curve

In drawing the bifurcation curve (the graph of I as a function of Z(¢)), we think
of B as variable with the other parameters i, «, o, Q, ¢ as constant. Then Z(¢p) is
a constant multiple of B and we can think of 8 as the independent variable in the
bifurcation curve.

Implicit differentiation of the equilibrium condition (3.24) with respect to 8 gives

(u+ o) (u+ o)
B> '

It is clear from the first equilibrium condition in (3.23) that / < K and this
implies that the bifurcation curve has positive slope at equilibrium values with
2AI + B > 0 and negative slope at equilibrium values with 2AI + B < 0. If there
is not a backward bifurcation at Z(¢) = 1, then the unique endemic equilibrium for
Z (@) > 1 satisfies

ear+ B — o1k -1+
ap = °

2A1 + B =+B?2—4AC >0

and the bifurcation curve has positive slope at all points where I > 0. Thus the
bifurcation curve is as shown in Fig. 3.5.

If there is a backward bifurcation at Z(¢) = 1, then there is an interval on which
there are two endemic equilibria given by

2AI + B = ++/ B2 — 4AC.

The bifurcation curve has negative slope at the smaller of these and positive slope
at the larger of these. Thus the bifurcation curve is as shown in Fig. 3.4.

The condition 2Al + B > 0 is also significant in the local stability analysis
of endemic equilibria. An endemic equilibrium of (3.21) is (locally) asymptotically
stable if and only if it corresponds to a point on the bifurcation curve at which the
curve is increasing. To prove this, we observe that the matrix of the linearization
of (3.21) at an equilibrium (Z, V) is

|:—2,81—(1—a);3V—(u+oz)+,8K —(1—0),31}
—(¢ +0BV) —(u+e@+oBD ]

Because of the equilibrium conditions (3.23), the matrix at an endemic equilibrium
(I,V)is

[ —-BI —(1—-0)BI }
—(p+0oBV) —(n+e+opD]|
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This has negative trace, and its determinant is

c(BD? + BI(n+¢) — (1 —a)ppl — (1 —a)BV - Bl
= BI[20BI + (L +09) + o (u+ &) — oBK]
= BI[2AI + B].

If 2A1 + B > 0, that is, if the bifurcation curve has positive slope, then the
determinant is positive and the equilibrium is asymptotically stable. If 2A/+B < 0
the determinant is negative and the equilibrium is unstable. In fact, it is a saddle
point. A saddle point in the plane is an equilibrium at which the linearization has
one positive eigenvalue and one negative eigenvalue. This means that there are
two orbits approaching the saddle point called stable separatrices and two orbits
going out from the saddle point, called unstable separatrices. Because orbits cannot
cross the separatrices, the stable separatrices divide the plane into two regions and
divide the plane into two domains of attraction. The stable separatrices in the (/, V)
plane separate the domains of attraction of the other (asymptotically stable) endemic
equilibrium and the disease-free equilibrium.

3.6 *An SEIR Model with General Disease Stage
Distributions

The ODE models considered in earlier parts of the chapter, except the SIRS model
in Sect. 3.3, assume exclusively that the durations of disease stages (e.g., latent and
infectious stages) are exponentially distributed. This assumption, while making the
models and their analyses easier, is not biologically realistic for most infectious
diseases. A more appropriate distribution is the gamma distribution, for which the
probability of remaining in the stage is given by

n—1

k o—nBs
pals) =" o 7 (3.29)

k!
k=0

where 1/6 is the mean of the distribution and n is the shape parameter. The
exponential distribution is the special case when n = 1. The other extreme case
is when n — oo, which corresponds to a fixed duration. Figure 3.6 illustrates the
gamma distribution for various n values. Let 1/« and 1/« denote the mean latent
and infectious periods, and let m and n denote the shape parameter for the latent and
infectious stages, respectively. It has been reported [44] that for measles

I/k =8, 1/a =5, m=n=20,
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Fig. 3.6 Depictions of the survival probability (3.29) for the infectious period (left) and the
probability density function (right) with different shape parameter values (n). The special case
of n = 1 gives the exponential distribution. The mean infectious period (1/6) is chosen to be 1
week

and for smallpox
l/k =14, 1/a =8.6, m =40, n =4.

There are other cases where the disease stage durations do not fit well by
the standard family distributions. Epidemiological models with non-exponential
distributions such as the gamma distribution have been previously studied (see, for
example, [23, 30, 31]. In these studies, the authors discussed various drawbacks
associated with the exponential distribution assumption. For example, it is pointed
out that constant recovery is a poor description of real-world infections, and they
show that in models with more realistic distributions of disease stages less stable
behavior may be expected and disease persistence may be diminished [23, 30].
In [18] it was demonstrated that when control measures such as quarantine and
isolation are considered, models with exponential and gamma distributions may
generate contradictory evaluations on control strategies. Thus, it will be helpful to
have mathematical results for models that allow arbitrary distributions. This is the
goal of this section.

Let Pg, Py : [0, 00) — [0, 1] describe the durations of the exposed (latent) and
infective stages, respectively. That is, P;(s) (i = E, I) gives the probability that the
disease stage i lasts longer than s time units (or the probability of being still in the
same stage at stage age s). Then, the derivative —Pi (s) @ = E,I) gives the rate
of removal from the stage i at stage age s by the natural progression of the disease.
These duration functions have the following properties:

o0
P,0)=1, Pi(s) <0, / Pi(s)ds <oo, i=E,I.
0
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For the vital dynamics, we use the simplest function e=#! for the probability
of survival (because our focus is on the effect of arbitrary distribution for disease
stages). Let the numbers of initial susceptible and removed individuals be Sy >
0 and Ry > O respectively. Let Eg(t)e ™ and Iy(t)e ™" be the non-increasing
functions that represent the numbers of individuals that were initially exposed and
infective, respectively, and are still alive and in the respective classes at time ¢. £(0)
and / (0) are constants representing the number of individuals in the £ and I classes,
respectively, at time r = 0. Let Io(1) denote those initially infected who have moved
into the 7, and are still alive at time ¢. Consider the force of infection A(¢) that takes
the form

ae) = 1) 330

t=c N (3.30)

Then the number of individuals who became exposed at some time s € (0, ¢) and
are still alive and in the E class at time ¢ is

t
E@t) = / A($)S () PE(t — 5)e MU= ds + Eo(r)e ™,
0
and the number of infectious individuals at time ¢ is
t T . -
I(t) = / / 2SS [—Pr(t — )Pt — T)e M dsdt + Io(t)e ™™ + Iy(1).
0 J0

Assume that the recruitment rate is ©/N and they all enter the S class. Then the
SE IR model reads

t t
S@t) = / uNe M= gg — [ A($)S(s)e MU ds + Spe M,
0 0
t

E(t) = / A($)S(s) PE(t — $)e M ds + Eg(t)e ™, (3.31)

0
t T
1(t) = f / A(S)S$)[—Pe(xr — )Pt — T)e " dsdr + 1 (1),
0 JO

where A(7) is given in (3.30), and X (t) = Xo(t)e ™ + Xo(t) (X = Q,1, H, R).
It can be shown that under standard assumptions on initial data and parameter
functions the system (3.31) has a unique non-negative solution defined for all
positive time.

When specific distributions are assumed for functions Pr and P; the sys-
tem (3.31) might be simplified. In particular, under the exponential distribution
assumption (EDA) and gamma distribution assumption (GDA) the system can be
reduced to be ODE systems, which will be referred to as the exponential distribution
model (EDM) and gamma distribution model (GDM), respectively. This allows the
examination of how the distribution assumptions may affect the model predictions.
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Let
a(t) = e_“TfT[—PE(T —w)P;(w)du. (3.32)
0

The reproduction number is given by

R = /OO ca(t)dr. (3.33)
0

To see the biological meaning of the expression (3.33) and to simplify the
notation in later sections we introduce the following quantities:

7 = / [~Pr(s)le " ds, Ty = / [ Pr(s)le™"ds,

o oo (3.34)
7E = f Pp(s)e™ds, 7 =/ Pr(s)e "ds.

0 0

Tk, T represent, respectively, the probability that exposed individuals survive
and become infectious, and the probability that infectious individuals survive and
become recovered. Z represents the mean sojourn time (death-adjusted) in the
exposed stage, and Z; represents the mean sojourn time (death-adjusted) in the
infectious stage. Using (3.34) we can rewrite %, in (3.33) as

K, = c/ a(tydt = c T, 9y, (3.35)
0

System (3.31) always has the disease-free equilibrium (DFE), and an endemic
equilibrium may exist depending on the value of % as described below. The proof
of the result can be found in [18].

Result For System (3.31), the DFE is a global attractor if Z. < 1 and unstable if
Z. > 1, in which case an endemic equilibrium exists and is stable.

To compare the model behavior under different stage distributions, let Pg and
P; be the gamma distributions with the duration functions Pg(s) = pn (s, k) and
P;(s) = pn(s, @), withmean 1/« and 1/, respectively. Whenm = n = 1, where m
and n are the shape parameters, Pg and P; are exponential distributions the general
model (3.31) has the usual form of the standard SEIR model:

S' =N — ¢S+ — uS,
E' =cSEt —(k+E, (3.36)
I'=kE —(a+mwl.

For other integers m and n, then the integral equation model (3.31) can be
reduced to an ordinary differential equation model. It has been noted that the use
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of the gamma distribution p, (s, #) for a disease stage, e.g., the exposed stage, is
equivalent to assuming that the entire stage is replaced by a series of n sub-stages,
and each of the sub-stages is exponentially distributed with the removal rate n6
and the mean sojourn time 7/n, where T = 1/6 is the mean sojourn time of the
entire stage (see, for example, [23, 30, 32]). This approach of converting a gamma
distribution to a sequence of exponential distributions is known as the “linear chain
trick”. In this case, the general model (3.31) reduces to the following ODEs:

S'=uN —cS4 — uS,
E| =S4 — (mk + WEy,
E;ZmKE]—l_(mK—i_H’)E]v j:21"'1m3

.37
I{ = mk Ep — (na + w1y, (3:37)
Ii=nalj_y — (na+wl;, j=2,---,n,
From the formula (3.35) we get the reproduction number for system (3.37):
m n—1 j
_ (mk) c Z (na) (3.38)
(u +mr)™ p+ no

7
iz (At na)
The qualitative behavior of the two systems (3.36) and (3.37) is the same due
to the results stated above. For the quantitative behavior, some differences exist.
For example, Fig.3.7 illustrates that the model with gamma distributions tend
to generate a lower frequency in oscillations than the model with exponential

0.003 E Gial 0.003 E Gl
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,E — Gamma (a) ,5 — Gamma (b)
£ 0.002 £ 0.002
g g
) -
=) =}
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= =

0
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Fig. 3.7 Comparison of simulations of the SEIR model with exponential and gamma distribu-
tions (3.36) and (3.37). Plot in (a) is for the case when the initial fraction of infectious individuals
is higher (0.0015) while in (b) it is lower (0.0001). We observe in (a) that the solution of the
model with gamma distribution has much lower magnitude in the oscillation than the solution of
the model with exponential distribution, whereas in (b) it is opposite. However, in both (a) and (b)
the frequency of the oscillation is lower for the gamma distribution model than for the exponential
distribution model. The parameter values used are 1/k = 2 (day), 1/ = 7 (day), 1/u = 15
(year). This is more appropriate for modeling school entry and exit. The values of ¢ is chosen so
that Zy = 2
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distributions. As for the magnitude of oscillations, either model can have a higher
magnitude than the other depending on the initial conditions.

3.6.1 *Incorporation of Quarantine and Isolation

As pointed out earlier, the model with gamma distributions for disease stages (3.37)
has similar qualitative behavior as the model with exponential distributions (3.36).
As will be shown in this section, when control measures with quarantine and
isolation are considered, models with exponential and gamma distributions can
generate very different quantitative outcomes, including contradictory evaluations
regarding control strategies.

Let p denote the isolation efficiency with p = 1 representing complete
effectiveness. Thus, when p < 1 the isolated individuals can transmit the infection
with a reduced infectivity 1 — p. The force of infection is

I(t)+ (1 —p)H (1)

AMt)=c N

(3.39)

Let k(s),l(s):[0,00) — [0, 1] denote, respectively, the probabilities that
exposed, infective individuals have not been quarantined, isolated at stage age s.
Hence, 1 — k(s) =: k(s), 1 —I(s) =: I(s) give the respective probabilities of being
quarantined, isolgted before reaching stage age s. Assume that £(0) = [(0) = 1,
k(s) < 0 and I(s) < 0. Consider the simpler case when the survivals from
quarantine and isolation are described by the exponential functions

k(s) = e X5, I(s) = e % (3.40)
with x and ¢ being constants, we have

Eo(t) = EQQ)e~ X" [o(1) = 1(0)e™ @D e, (3.41)

The model with general distributions as well as quarantine and isolation is
t t
S(t) =f uNe M= —/ A($)S(s)e M= ds 4+ Spe ™M,
0 0
t
E(t) = / A(s)S(s) PE(t — s)k(t — $)e =9 ds + Eo(t)e ™™,
0
t T . ~
(1) = / / A($)S(5)[—Pg(t—5)k(t—3)1Pg (t—7|t—s)e " Hdsdr+0(1),
0J0

t T
1(;):// A($)S$)[—Pe(t—)k(t—5)1P;(t—0)l(t — T)e MV dsdt+1(1),
0 JO
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H) = fo t /0 ' fo MOSOI=Pe(r — k(T — )= Py — )it — 1))
x Py(t —ulu —t)e """ Vdsdrdu
+ /0 t /0 MOSOI—Pe(r — R — 1Pt — e M dsdr+H (@),
R(t) = f l f MOSO=Pr( — I — Pyt — Dle M Vdsdr + Rio).
o (3.42)
where A (¢) is given in (3.39) and X (1) = Xo(t)e ™ + Xo(t) (X = Q.1, H, R).

Again X(t) — 0 ast — oo.
Let

ai(r) = e_’”/r[—f’E(f —wk(t —uw)Pr(uw)l(w)du,
OT

ar(t) = e"”f [—Pe(t — wk(t — w)1P; )l (u)du, (3.43)
0

a3(t) = ef“r/T[—PE(T — uk(t — w)] Py (u)du,
0

where k(s) = 1 — k(s), I(s) = 1 — I(s). Let
A(T) = a1 (1) + (1 — p) |:a2(r) + a3(r)i|.
Then, the reproduction number is
R = c/:oA(t)dt. (3.44)

We can also rewrite % in the following form:
Re =K1 + X1 + XoH, (3.45)
where
o
.@[:C/ a1(f)df=CyEk91,,
0

FEin =1 - /O)C/O ax(1)ydt = (1 = p)c T (D1 — D),

Hon =1 — ;O)C/O az(t)dt = (1 — p)e(Tg — Tg) 1.
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and
TE =/ [—Pr(s)le ™ ds, Tk, =f [— P (s)k(s)]e "Sds,
OOO %O
7 Z/ (=Pl ds, T = / [~ Pr()I(s)]e ™" ds,
o 0o (3.46)
7 :/ Pe()e™ds, I, Z/ Pg(s)k(s)e™"'ds,
& 0

o0 o0
9 =/ Pi(s)e ™ds, 2, =/ Pr(s)l(s)e ™ ds.
0 0

The three components, Z;, Z1u, Zon in Z%. represent contributions from the
I class and from the H class through isolation and quarantine, respectively. Jg
and Jf, represent, respectively, the probability and the “quarantine-adjusted”
probability that exposed individuals survive and become infectious. .77 and .7},
represent, respectively, the probability and the “isolation-adjusted” probability
that infectious individuals survive and become recovered. Zg and Zg, represent,
respectively, the mean sojourn time (death-adjusted) and the “quarantine-adjusted”
mean sojourn time (death-adjusted as well) in the exposed stage. 27 and %,
represent, respectively, the mean sojourn time (death-adjusted) and the “isolation-
adjusted” mean sojourn time (death-adjusted as well) in the infectious stage.

For system (3.42), the same results as for system (3.31) holds, i.e., the DFE is
a global attractor if Z. < 1 and unstable if Z. > 1, in which case an endemic
equilibrium exists and is stable.

3.6.2 *The Reduced Model of (3.42) Under GDA

Again let Pr and P; be the gamma distributions with the duration functions
Pg(s) = pm(s,k) and P;(s) = pu(s, @), with mean 1/« and 1/«, respectively.
Then using the functions k(s) and [(s) given in (3.40) we can differentiate the
equations in system (3.42) and obtain the following system of ordinary differential
equations

I+ —pH
S/Z,MN—CS#—MS,
N
I+(—-pH
E;:CS%—(X‘FWZK"‘M)E],
E;=mcEj_1 — (x +mx+ WE;, j=2,--,m,

Q) = xE1 — (mk + ) 01,
Q) =xEj+mkQj1 — (mk +1)Qj, J
I{ =mkEy, — (¢ +na + i, (3.47)

2, ,m,
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I} = nalj—y — (¢ +na + wlij, ji=2-.,n,
H{ =mk Qum + ¢I1 — (na + p) Hy,

R =nal, + naH, — iR,
n n

with 1 =) "1;, H=_Hj.
j=1 j=1

In the special case when m = n = 1, the system (3.47) reduces to:

S’ZMN—CSW —us,

E' =S (0 4k + WE,

Q' =xE—(k+wo, (3.48)
I'=kE — (¢ +a+ml,

H =kQ+¢I — (o« +pH.

From the formula (3.45) we get the reproduction number for system (3.47):
_ (m)" c nil (na)?
(A mi)™ 4 nd s (u + nar)J
n—1 (o)’
l—pl1- (A mic)™ Pt ne 2= Grnarg)
(e +mic+ )" p+na+¢ yn-l (na)/

c

’

J=0 (u+na)
(3.49)
with the derivatives
0%, m(mg)™ nl (na)/
—_— = — < 0, 3.50
oy P T mr + )t ;(M+na+¢)j+l (3.50)
R m n—1 . 1 j
N UL 3 U+ Dlna) S <0. (3.51)
I¢ (w A+ mic + 0™ =5 (u +no + @)/

3.6.3 *Comparison of EDM and GDM

In this section, we show that when the GDA is used to replace the EDA, model
predictions regarding the effectiveness of disease intervention policies may be
different both quantitatively and qualitatively. We illustrate this by comparing the
two models, GDM (3.47) and EDM (3.48). Two criteria are used in the comparison.
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One is the impact of control measures described by x and ¢ on the reduction in the
magnitude of %, and the other one is the reduction in the number of cumulative
infections C at the end of an epidemic (the final epidemic size).

From (3.49) to (3.51) we know that the reproduction number %, for GDM
decreases with increasing x and ¢. Similarly, using the formula (3.45) we get the
reproduction number for the EDM, Z. = %1 + %11 + #%0oH, Where

cK
R = ,
m+e+xx)(r+a+e)
(1 — p)ex 1 1
%[HZ - ,
u+ck+x\pu+ao putoa+¢
K K 1
Fon =1 — p)c - ,
or = ( 2 <M+K ;L—i—K—i—X)M—i-oe

which can be written in a simpler form as:

Bo= € |:l—,0<1— piK Hto )] (3.52)
Htept+ao Htek+xpnt+o+o

The derivatives of %, with respect to the control parameters are

0%, K 1

= —Cp ) <
% M+ +x) ntat+o
0L, K 1

cp 2<0
¢ wte+xputat+o)

’

Hence, the reproduction number %, for EDM also decreases as the control
parameters x and ¢ increase. Therefore, both models seem to work well when
the impact of each individual control measure is considered. When we try to
compare model predictions of combined control strategies, however, inconsistent
predictions by the two models are observed. For example, in Fig.3.8a, b, %, for
both models is plotted either as a function of ¢ for a fixed value of x = 0.05, or
as a function of x for a fixed value ¢ = 0.05, or as a function of both x and ¢
with x = ¢. For any vertical line except the one at 0.1, the three curves intersect
the vertical line at three points that represent three control strategies. The order
of these points (from top to bottom) determines the order of effectiveness (from
low to high) of the corresponding control strategies since a larger %, value will
most likely lead to a higher disease prevalence. The order of these three points
(labeled by a circle, a triangle, and a square) predicted by the EDM and the GDM is
clearly different for the selected parameter sets, suggesting conflict assessments of
interventions between the two models. These conflict assessments are also shown
when we compare the C values. For example, Fig.3.8a shows that the strategy
corresponding to x = 0.3, ¢ = 0.05 (indicated by the triangle) is more effective
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Fig. 3.8 Comparison of the EDM and the GDM on the impact of various control measures. (a)
and (b) are plots of the reproduction number %, as functions of control measures (x and ¢) for the
EDM and GDM, respectively

than the strategy corresponding to x = 0.05,¢ = 0.3 (indicated by the solid
circle). However, Fig. 3.8b shows the opposite, i.e., the strategy corresponding to
x = 0.3,¢ = 0.05 (indicated by the triangle) is less effective than the strategy
corresponding to x = 0.05, ¢ = 0.3 (indicated by the solid circle). The parameter
values used in Fig.3.8 are ¢ = 0.2, p = 0.8, « = 1/7, and ¢ = 1/10,
corresponding to a disease with a latency period of 1/« = 7 days and an infectious
period of 1/a¢ = 10 days (e.g., SARS).

To examine in more detail the quantitative differences between the two models
we conducted intensive simulations of the EDM and the GDM for various control
measures, some of which are illustrated in Fig.3.9. In this figure, the parameters
for gamma distributions are m = n = 3, E and [ represent the fraction of latent
and infectious fractions £ = (E; + E» + E3)/N and I = (I} + I, + I3)/N,
respectively. The latent and infectious periods are k = 1/7 and @« = 1/10. The
cumulative infection is calculated by integrating the incidence function, i.e.,

t
C(t):/ cS(s)[1(s) + (1 — p)H(s)]/Nds
0

where H = H; + H + Hj. Figure 3.9a, b is for Strategy I which implements
quarantine alone with x = 0.07, and Fig. 3.9¢, d is for Strategy II which implements
isolation alone with ¢ = 0.06. The effectiveness of these control measures is
reflected by the corresponding C(#) values. According to Fig.3.9a, ¢, the EDM
predicts that Strategy II is more effective than Strategy I as the number C of
cumulative infections (fractions) under Strategy II is 30% lower than the C value
under Strategy I (notice that C ~ 0.3 and C =~ 0.2 under strategies I and II,
respectively). However, according to Fig. 3.9b, d, the GDM predicts that Strategy
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Fig. 3.9 Comparison of control strategies and evaluations given by the exponential distribution
model (EDM) and the gamma distribution model (GDM) with m = n = 3. Two strategies
represented by x and ¢ are compared: Strategy I involves quarantine alone (x = 0.07 and ¢ = 0)
while Strategy II involves isolation alone (x = 0 and ¢ = 0.06). Other parameter values used are
1/k =7 (day), 1 /o = 10 (day), 1/ = 75 (year), and ¢ = 0.2. The time unit is day

I is less effective than Strategy II as the number C of cumulative infections under
Strategy I is 30% lower than the C value under Strategy II (notice that C ~ (.23
and C ~ 0.36 under strategies I and II, respectively). Obviously, in this example,
the predictions by the EDM and by the GDM are inconsistent.

One of the main reasons for the discrepancy between models with exponential
and gamma distributions is the memoryless property of the exponential distribution.
This can be made more transparent by examining the expected remaining sojourns
from the distributions. Under the gamma distribution p, (s, 0) (or simply denoted
by p,(s)) with n > 2, the expected remaining sojourn at stage age s is

(n6s)’
il

—1 Kk
1 o0 1 ZZ:é j=
) :/0 A0 / Pt = T ot

k=0 k!
After checking .#,(s) < 0 and limg_, oo #,(s) — T/n where T = 1/6, we know
that .4, (s) strictly decreases with stage age s, and that when s is large the expected
remaining sojourn can be as small as 7'/n. Hence, the expected remaining sojourn
in a stage is indeed dependent on the time already spent in the stage. Therefore, the
gamma distribution p,(s) for n > 2 provides a more realistic description than the
exponential distribution pj(s) for which .#(s) = T for all s.

< palt +S)dl‘
Dn(8)
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3.7 Diseases in Exponentially Growing Populations

Many parts of the world experienced very rapid population growth in the eighteenth
century. The population of Europe increased from 118 million in 1700 to 187 million
in 1800. In the same time period the population of Great Britain increased from 5.8
to 9.15 million, and the population of China increased from 150 to 313 million
[33]. The population of English colonies in North America grew much more rapidly
than this, aided by substantial immigration from England, but the native population,
which had been reduced to one tenth of their previous size by disease following the
early encounters with Europeans and European diseases, grew even more rapidly.
While some of these population increases may be explained by improvements in
agriculture and food production, it appears that an even more important factor was
the decrease in the death rate due to diseases. Disease death rates dropped sharply
in the eighteenth century, partly from better understanding of the links between
illness and sanitation and partly because the recurring invasions of bubonic plague
subsided, perhaps due to reduced susceptibility. One plausible explanation for these
population increases is that the bubonic plague invasions served to control the popu-
lation size, and when this control was removed the population size increased rapidly.

In developing countries it is quite common to have high birth rates and high
disease death rates. In fact, when disease death rates are reduced by improvements
in health care and sanitation it is common for birth rates to decline as well, since
families no longer need to have as many children to ensure that enough children
survive to take care of the older generations. Again, it is plausible to assume that
population size would grow exponentially in the absence of disease but is controlled
by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick [28]
includes births in the susceptible class proportional to population size and a natural
death rate in each class proportional to the size of the class. Let us analyze a model
of this type with birth rate » and a natural death rate © < r. For simplicity we
assume the disease is fatal to all infectives with disease death rate «, so that there is
no removed class and the total population size is N = S + I. Our model is

S' =r(S+1)—BSI — S

) (3.53)
I'=BSI — (u+a)l.

From the second equation we see that equilibria are given by either / = O or S =
@+ a. If I = 0, the first equilibrium equation is S = .S, which implies § = 0
since r > . It is easy to see that the equilibrium (0,0) is unstable. What actually
would happen if I = 0 is that the susceptible population would grow exponentially
with exponent r — p > 0. If BS = u + «, the first equilibrium condition gives

+ o + o
HEQ ol utayr = TS

B B

r

0 )
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which leads to

(r—w(u+a)
—5

Thus, there is an endemic equilibrium provided r < « 4+ u, and it is possible to
show by linearizing about this equilibrium that it is asymptotically stable. On the
other hand, if r > « + p there is no positive equilibrium value for 7. In this case we
may add the two differential equations of the model to give

(@+p—nl=

N =@ —-uN—al >@F —u)N —aN =@ —u—a)N

and from this we may deduce that N grows exponentially. For this model, either
we have an asymptotically stable endemic equilibrium or population size grows
exponentially. In the case of exponential population growth we may have either
vanishing of the infection or an exponentially growing number of infectives.

If only susceptibles contribute to the birth rate, as may be expected if the disease
is sufficiently debilitating, the behavior of the model is quite different. Let us
consider the model

S =rS—BSI —uS=8r—u-—BI

’ (3.54)
I'=8SI—(u+a)l =1(BS—u—ow

which has the same form as the Lotka—Volterra predator—prey model of population
dynamics. This system has two equilibria, obtained by setting the right sides of
each of the equations equal to zero, namely (0, 0) and an endemic equilibrium
(w4 a)/B, (r — w)/B). It turns out that the qualitative analysis approach we have
been using is not helpful as the equilibrium (0, 0) is unstable and the eigenvalues
of the coefficient matrix at the endemic equilibrium have real part zero. In this
case the behavior of the linearization does not necessarily carry over to the full
system. However, we can obtain information about the behavior of the system by a
method that begins with the elementary approach of separation of variables for first
order differential equations. We begin by taking the quotient of the two differential
equations and using the relation

I dl
S’ dS

to obtain the separable first order differential equation

dl_ I(BS—p—a)
ds S —BI)

Separation of variables gives

/(%—ﬂ)d!:f(ﬁ—'u;a)ds.
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Integration gives the relation
BS+I)—rlogl — (u+a)logS =c
where c is a constant of integration. This relation shows that the quantity
VS, )= +1)—rlogl — (n+a)log$

is constant on each orbit (path of a solution in the (S, I) plane). Each of these orbits
is a closed curve corresponding to a periodic solution.

We may view the model as describing an epidemic initially, leaving a susceptible
population small enough that infection cannot establish itself. Then there is a steady
population growth until the number of susceptibles is large enough for an epidemic
to recur. During this growth stage the infective population is very small and random
effects may wipe out the infection, but the immigration of a small number of infec-
tives will eventually restart the process. As a result, we would expect recurrent epi-
demics. In fact, bubonic plague epidemics did recur in Europe for several hundred
years. If we modify the demographic part of the model to assume limited population
growth rather than exponential growth in the absence of disease, the effect would
be to give behavior like that of the model studied in the previous section, with an
endemic equilibrium that is approached slowly in an oscillatory manner if Zy > 1.

3.8 Project: Population Growth and Epidemics

When one tries to fit epidemiological data over a long time interval to a model, it
is necessary to include births and deaths in the population. Throughout the book
we have considered population models with birth and death rates that are constant
in time. However, population growth often may be fit better by assuming a linear
population model with a time-dependent growth rate, even though this does not
have a model-based interpretation. There could be many reasons for variations in
birth and death rates; we could not quantify the variations even if we knew all of
the reasons. Let r(t) = ‘fj—/t\' /N denote the time-dependent per capita growth rate. To
estimate r(¢) from linear interpolation of census data, proceed as follows:

1. Let N; and N;4; be the consecutive census measurements of population size
taken at times #; and #;41, respectively. Let AN = N;y1 — N;, At = tj41 — ¢,
and 6N = N(t 4 6t) — N(t)

AN AN

2.1t <t <tiy1, 57 = Bt , then we make the estimate r (f) ~ 257+

(1)
3. A better approximation is obtained by replacing N(¢) by N (¢t + 6t/2). Why?
Show that in this case, r (¢) ~ (8’ N(A?VA’) L
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Table 3.1 Population data growth for the USA

Year Population size Year Population size Year Population size
1700 250,888 1800 5,308,483 1900 75,994,575
1710 331,711 1810 7,239,881 1910 91,972,266
1720 466,185 1820 9,638,453 1920 105,710,620
1730 629,445 1830 12,866,020 1930 122,775,046
1740 905,563 1840 17,069,453 1940 131,669,275
1750 1,170,760 1850 23,192,876 1950 151,325,798
1760 1,593,625 1860 31,443,321 1960 179,323,175
1770 2,148,076 1870 39,818,449 1970 203,302,031
1780 2,780,369 1880 50,155,783 1980 226,542,199
1790 3,929,214 1890 62,947,714 1990 248,718,301

- — - - 2000 274,634,000

Fig. 3.10 Observed death
rate (filled circle) and the best 0.024+
fit obtained with the o
function (3.55) 0.022 ‘.
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Question I Use the data of Table 3.1 to estimate the growth rate r(¢) for the
population of the USA.

Figure 3.10 shows the time evolution of the USA mortality rate. This mortality
rate is fit well by

Mo — [y

S U o/ 3.55
14 1204 (323

W= o+

with g = 0.01948, uy = 0.008771, tf/z = 1912, and A" = 16.61. Then the
“effective birth rate” b(t) is defined as the real birth rate plus the immigration rate.
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Question 2 Estimate b(t) using r(¢) = b(¢) — (), with r(¢) found in Question 1.
Consider an SEIR disease transmission model. We assume that:

(a) An average infective individual produces 8 new infections per unit of time when
all contacts are with susceptibles but that otherwise, this rate is reduced by the
ratio S/N.

(b) Individuals in the exposed class E progress to the infective class at the per capita
rate k.

(c) There is no disease-induced mortality or permanent immunity, and there is a
mean infective period of 1/y.

We define y = r + u. The model becomes:

ds I
=2 —bN —uS — BS—,

I N
% :,BSN —(k+wkE,
Y kE— G+l
I

— =rl — uR.
dt " ’

(3.56)

Question 3

(a) Show that the mean number of secondary infections (belonging to the exposed
class) produced by one infective individual in a population of susceptibles is
Qo=B/y.

(b) Assuming that k and u are time-independent, show that % is given by Qo f,
where f = k/(k + ). What is the epidemiological interpretation of Qg f?

The usual measure of the severity of an epidemic is the incidence of infective
cases. The incidence of infective cases is defined as the number of new infective
individuals per year. If we take 1 year as the unit of time, the incidence of infective
cases is given approximately by kE. The incidence rate of infective cases per
100,000 population is given approximately by 10° kE/N.

Tuberculosis (TB) is an example of a disease with an exposed (noninfective)
stage. Infective individuals are called active TB cases. Estimated incidence of active
TB in the USA was in a growing phase until around 1900 and then experienced
a subsequent decline. The incidence rate of active TB exhibited a declining trend
from 1850 (see Table 3.2 and Fig. 3.11). The proportion of exposed individuals who
survive the latency period and become infective is f = ﬁ The number f will be
used as a measure of the risk of developing active TB by exposed individuals.
Question 4 Assume that the mortality rate varies according to the expression (3.55),
and that the value of b found in Question 2 is used. Set y = 1 years~! and 8 =
10 years ~!, both constant through time. Simulate TB epidemics starting in 1700
assuming constant values for f. Can you reproduce the observed trends (Table 3.2)?
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Table 3.2 Reported incidence and incidence rate (per 100,000 population) of active TB

Year Incidence rate Incidence Year Incidence rate Incidence
1953 53 84,304 1976 15 32,105
1954 49.3 79,775 1977 13.9 30,145
1955 46.9 77,368 1978 13.1 28,521
1956 41.6 69,895 1979 12.6 27,769
1957 39.2 67,149 1980 12.3 27,749
1958 36.5 63,534 1981 11.9 27,337
1959 32.5 57,535 1982 11 25,520
1960 30.8 55,494 1983 10.2 23,846
1961 29.4 53,726 1984 9.4 22,255
1962 28.7 53,315 1985 9.3 22,201
1963 28.7 54,042 1986 9.4 22,768
1964 26.6 50,874 1987 9.3 22,517
1965 25.3 49,016 1988 9.1 22,436
1966 24.4 47,767 1989 9.5 23,495
1967 23.1 45,647 1990 10.3 25,701
1969 19.4 39,120 1992 10.5 26,673
1970 18.3 37,137 1993 9.8 25,287
1971 17.1 35,217 1994 9.4 24,361
1972 15.8 32,882 1995 8.7 22,860
1973 14.8 30,998 1996 8 21,337
1974 14.2 30,122 1997 7.4 19,885
1975 15.9 33,989 1998 6.8 18,361

It is not possible to obtain a good fit of the data of Table 3.2 to the model (3.56).
It is necessary to use a refinement of the model that includes time-dependence in the
parameters, and the next step is to describe such a model. The risk of progression
to active TB depends strongly on the standard of living. An indirect measure of the
standard of living can be obtained from the life expectancy at birth. The observed
life expectancy for the USA is approximated well by the sigmoid shape function

(to — 7¢)
1+ expl(t — t12)/ A1

=1+ (3.57)

shown in Fig. 3.12. Here 1 and 77 are asymptotic values for life expectancy; t1/2 =
1921.3 is the time by which life expectancy reaches the value (79 + 7r)/2; and
A = 18.445 determines the width of the sigmoid.

Assume that the risk f varies exactly like life expectancy, that is, assume that f
is given by

(fi = fp)
1+ expl(t — 112)/A]

Fy = fr+ (3.58)
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Fig. 3.11 Incidence of active 8007
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We refine the model (3.56) by replacing the parameter k by the variable
expression wf(t)/(1 — f(¢)) and k + pu by u/(1 — f(¢)), obtained from the
relation f = k/(k 4+ p). Since the time scale of the disease is much faster than
the demographic time scale, the recovery rate r is approximately equal to y. This
gives the model
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S I
g—% = b(t)IIV - u(t)(St)— ﬁSﬁ,
w
—=BS————FE,
dt N 1-f@®
dl _pf@ , (3:39)
dt  1—f(@) ’
ar _ I — ()R
o7 = vI— R

Question 5 Simulate TB epidemics starting in 1700 using the model (3.59) with
y = 1 years™! and B = 10 years™!, both constant, and with su(r) given
by (3.55) and f(¢) given by (3.58). Find values of fj and fy for which an accurate
reproduction of the observed TB trends (Table 3.2) is achieved.

References: [1-4, 9—11, 15, 16, 38-41].

3.9 *Project: An Environmentally Driven Infectious Disease

Consider an environmentally driven infectious disease such as cholera and toxo-
plasmosis (a parasite disease caused by T. gondii). For this type of disease, the
transmission occurs when susceptible hosts have contacts with a contaminated
environment, and the rate of environment contamination is dependent on both the
number of infected hosts and the average pathogen load within an infected host.
One way to model the transmission dynamics for such a disease is to consider both
the disease transmission at the population level and the infection process within the
hosts. The following model couples a simple within-host system for cell-parasite
interactions (e.g., see [34-36]) and an endemic SI model with an interaction with a
contaminated environment:

T=A—kVT —mT,
T*=kVT — (m+d)T*,
V =g(E)+ pT* — ¢V,
. (3.60)
S=u(lS+1)—AES — uS,
I =MES — pul,
E=6(V)I1—E)—yE.
Here, the variables for the within-host system 7" = T (t), T* = T*(¢), and V =
V() are the densities of healthy cells, infected cells, and parasite load, respectively.
S = S(t) and I = I(¢) denote the numbers of susceptible and infective individuals

at time ¢, respectively. A denotes the recruitment rate of cells; k is the per-capita
infection rate of cells; m and d are the per-capita background and infection-induced
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cell mortalities, respectively; p denotes the parasite production rate by an infected
cell and c is the within-host clearance rate of pathogens.

The variables S(#) and I(¢) denote the numbers of susceptible and infective
hosts at time 7, and E(t) (0 < E < 1) represents the level of environmental
contamination at time ¢, or the concentration of the pathogen per unit area of a
region being considered. The parameter A denotes the per-capita infection rate of
hosts in a contaminated environment; @ denotes per-capita birth and natural death
rate of hosts; and y denotes the rate of pathogen clearance in the environment.

The function g(E) in the V equation represents an added rate in the change
of parasite load due to the continuous ingestion of parasites by the host from a
contaminated environment, and is assumed to have the following properties:

g(0)=0, g(E)=0, g'(E)>0, g"(E)=0. (3.61)

One of the simplest forms for g(E) is the linear function g(E) = aE, where a is a
positive constant. Other forms of g(E) include g1(E) = aE /(1 +bE) with a and b
being positive constants and g»(E) = aE? (g < 1).

For the analysis of the coupled model (3.60), a commonly used approach is to
consider that the within-host system (consisting of the T, T*, and V equations)
occurs on a much faster time scale than the between-host system (consisting of S, 1,
and E equations), which allows the substitution of a stable equilibrium of the fast-
system (treating the slow-variables as constant) into the slow-system and study the
lower-dimensional slow system (see, e.g., [7, 12, 17, 19]). The system for the fast
variables is

T=A—kVT —mT
T* =kVT — (m +d)T* (3.62)
V =g(E)+ pT* —cV,

and the system for the slow variables is

S=uS+1)—rES —puS,
[ =L1ES —pul, (3.63)
E=6IV(1—E)—yE.

Question 1 Consider the fast system (3.62). The within-host reproduction number
Py (w for within) is given by
kpTy

= pr—— 5 (3.64)

where Tp = A/ .
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(a) Let E > 0 be a constant. Show that (3.62) has a unique biologically feasible
equilibrium (which depends on E) f](E) (T(E) T*(E) V(E))

(b) Show that the unique equilibrium U(E) = (T(E), T*(E), V(E)) of (3.62) is
globally, asymptotically stable.
Hint: Consider the following Lyapunov function

- (T T T* T*
f(T,T*,V):T(——log——l)+T*<~——log~——l>
T T* T

m—l—d Vv
+— ——lg——l .
p Vv Vv

Consider the case when %, > 1. It can be verified that V (0) = limg_.o V(E) > 0.
Note that the total population of hosts N = § + [ remains constant for all ¢ >
0. Thus, the fast system (3.62) can be reduced to a two-dimensional system (by
ignoring the S equations). Note also that U is g.a.s. in the fast system. We can
replace the fast variable V in (3.62) by V (E) and study the following fast system

I =ME(N—-1)—

. . (3.65)
E=0IV(E)1—-E)—

The reproduction number for the between-host system, which is denoted by %, (b
for between) and defined as

oV (0) AN

Ry = .
W 14

(3.66)

Therefore, %), represents the number of secondary infections through the environ-
ment by one infected individual during the entire infectious period in a completely
susceptible host population and environment.

Let W (1 E ) denote a biologically feasible equilibrium for (3.65). Show that
[ = AEN/(AE+/L) and E is a solution of the equation F(E) = G(E), 0 < E < 1,
where

FE) = = E o)+ 2" (10— F(E)
c m-+d

VE wy
G(E)="— + DN

(3.67)

Equivalently, E is a zero of the function H(E)=F(E)—G(E)withO < E < 1.

(a) Let Wy = (0, 0) denote the infection-free equilibrium of (3.65). Show that Wy
locally asymptotically stable when 2%, < 1 and unstable when %), > 1.



110

Fig. 3.13 Plot of the function
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(b) Show that it is possible for the equation H(E) = F(E) — G(E) = 0 to have 0,

1, or 2 solutions in (0, 1).
Hint: Show first that H”(E) > 0for0 < E < 1.

(c) Figure 3.13 illustrates a numerical plot of the function H(E) for various %)

(by varying A) values between 0.75 and 2. Other parameter values used are:
A=6x10k=15x10°%m =03,d =02,a =4 x 10°, c = 50,
Rwo = 1.09(p =908), N = 10*, u =4x107*,0 = 1 x 10719, and y = 0.02.
What do you observe? How does the number of solutions of H(E) = 0 depend
on %p?

(d) From the plot in part (c) we can observe that there exists a lower bound % €

(0, 1) such that for all % € (%Zpr, 1), the equation H(E) = F(E)—G(E) =0
has two solutions in (0, 1), which correspond to two positive equilibria Wi =
(ii, E,-) (i = 1,2) with iz > I 1. In this case, prove analytically that Wz is
locally asymptotically stable and Wi is unstable. (Hint: Check the sign of the
eigenvalues of the Jacobian matrix at W).

(e) For the full system (3.60), conduct numerical simulations to confirm the results

stated in parts (a)—(d), which are obtained by separating the fast and slow
systems.

(i) Reproduce the Fig.3.14 (left) by plotting the fraction of infected 1(¢)/N vs.

time with several sets of initial conditions. Use the same parameter values as in
Part (c) except that p = 850 (corresponding to %, = 0.37 < 1),a =5 x 10°,
A =55x%x10"% and y = 0.015.

(i) Reproduce the phase portrait shown in Fig. 3.14 (right), which illustrates one

fast variable (V') and one slow variable (E). Use the same parameter values as
in Part (c) except that p = 10° (corresponding to %, > 1) and a = 4 x 10*.
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Fig. 3.14 Left: Time plot of the full system (3.60) for %} € (%L, 1), in which case there are two
stable equilibria, one with the infection-free and one with positive infection level. Right: Phase
portrait of the full system (3.60) for % > 1, in which case there is a unique stable equilibrium

3.10 *Project: A Two-Strain Model with Cross Immunity

This project concerns a two-strain model with cross immunity. Divide the popula-
tion into ten different classes: susceptibles (), infected with strain i (I;), primary
infection), isolated with strain i (Q;), recovered from strain i (R;, as a result of
primary infection), infected with strain i (V;, secondary infection), given that the
population had recovered from strains j # i, and recovered from both strains (W).
Let A denote the population of non-isolated individuals and let w be the
rate at which susceptibles become infected with strain i. That is, the ith (i # j)
incidence rate is assumed to be proportional to both the number of susceptibles
and the available modified proportion of i-infectious individuals, W Let o
denote a measure of the cross-immunity provided by a prior infection with strain i
to exposure with strain j (i # j). Consider the following model

2

ds Ui + Vi)

2 A— ) _

o i_ZlﬁlS T —HS,

dl; (I + Vi)
d—;=ﬂis%—(ﬂ+%’+5i)li,

Q‘

- =8l = (a0,

dR; (I; +V)) o (3.68)
7=)/i1i+0!iQi—,3j0iniT—MRi, JFi
dv; i +Vi) Lo
?=ﬂi6inj%—(M+Vi)Vi, JF#I

w

o Y viVi— W,

A=S+W+Y7 (i +Vi+R).
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The basic reproduction number for strain i is

Bi

=—, i=12
v+

i
Assume that 019 = 021 = 0. The values of reproduction numbers %; and the cross-
immunity levels o determine the existence and stability of equilibrium points of the

system (3.68). Let E; denote the boundary equilibria where only strain i is present
i=1,2).

Question 1 Consider the case when changes in %; are due to changes in ;. Let
f(Z#,) and g(#>) be the two functions given by

Y74
f(%l) = 5 1 n(utay) (3.69)
l+o -1 (1 + M+V2) (1 - (M+V1)(u+011)+0!151)
and
8%
(%) = N Y (3.70)
l+o@ -1 (1 + u+y1) (1 - <u+yz>w+‘a.)+‘a252)
and let ;" and o5 be the critical values such that
of (%1, 0) 08(%>, 0)
"A) = — "~ =0, "By = =22 =0. 3.71
[ (%) 0% o g (92) 0% ot ( )

Determine the properties of f and g and sketch these functions in the Z; — %>
plane.

Question 2

(a) Determine the region(s) in the Z; — %> plane for the existence of E| and E>.
(b) Determine the conditions for the stabilities of E; and E>.

3.11 Exercises

1. Consider the following SEIR model with disease-induced mortality:

ds
dr
dE

I
— =88— — E,
r ﬁN ( + )

I
N — BS— — uS,
iz ,BNM
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dl
dR
o VI RR

N=S+E+1I+R,

where § denotes the per capita rate of disease related death.

(a) Compute the basic reproduction number %.

(b) Does the system have an endemic equilibrium? If yes, find the condition in
terms of .

(c) Show that the endemic equilibrium is locally asymptotically stable whenever
it exists.

(d) Reduce the system to a three-dimensional system by introducing fractions
u=S/N,x=E/N,y=1/N,z=R/N.

2. Show that the endemic equilibrium of (3.3) is asymptotically stable if Zp > 1.

3. Consider a population in which a fraction p € (0, 1) of newborns are successfully
vaccinated and assume permanent immunity after infection and vaccination.
Assume that infectious individuals are treated at a per capita rate r. Let %,
denote the control reproduction number such that the disease-free equilibrium
is locally asymptotically stable when %, < 1. Consider a disease for which
B =0.86,y = 1/14 days™"', u = 1/75 years™'. Use the following SIR model
to calculate the threshold immunity level p. such that Z, < 1 for p > p..

das
gt
1
gt
R
E=MNP+(V+V)1—/LR,
N =S+1+R.

I
=uN( — p)— BS— — us,
uN( p)ﬁNM

1
= BS~ —(r+u+nl.

(a) Find p. in the absent of treatment (i.e., r = 0).

(b) Find p, when r = 0.2.

(c) Plot p. as a function of r.

(d) Plot %, as a function of p and r

(e) Plot several contour curves of Z, in the (p, r) plane including the curve for
Ze. = 1.

4. Consider the SIRS model (3.10).

(a) Find the expression for the fraction /*/N of the infected individuals at the

endemic equilibrium.

(b) Explore the dependence of /*/N on the immunity loss (8), particularly in
the two extreme cases when the immunity period is very short or very long.
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5.% Consider the SIR model with delay (3.12).

(a) Find the endemic equilibrium.
(b) Let B = 0.86 and o = 1/14. Determine the threshold value w. such that
the stability of the endemic equilibrium switches its stability.

6. Consider the vaccination model (3.21).

(a) Verify that Z, < 1 whenever there is a backward bifurcation.

(b) Show how to choose ¢ to make Z, < %, assuming that all parameters other
than ¢ are kept fixed.

(c¢) Isitpossible to improve the vaccine (decrease o) enough to make %, < %y,
assuming all parameters other than o are kept fixed?

7.* Consider the model with a gamma distribution (3.47) and the exponential
distribution (3.48). Compare the behavior of the two models under the scenarios
specified below. Assume that all parameters have the same values as in Fig. 3.10
except the control parameters x and ¢.

(@) x = ¢ = 0. Do you observe any differences in the disease prevalence
between the two models? Explain why or why not.

(b) Compare the two models under two strategies. Strategy I: x = 0.08 and
¢ = 0, Strategy II: x = 0 and ¢ = 0.08. Do you observe any differences in
the disease prevalence between the two models? Explain why or why not.
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