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Introduction

Breast cancer (BC) is the most common malignant tumor among 
women in the world and is the second cause of death in women 
between the ages of 35–55 in developed countries. BC can be 
divided based on molecular criteria into distinct phenotypes: the 
molecular subtypes are classified by (1) expression of estrogen 
receptors (ERs) and/or progesterone receptors (PRs), (2) human 
epidermal receptor 2 (HER2/ERBB2) amplification and (3) a 
triple negative type (ER-/PR- and normal expression of HER2).1 
While estrogen has normal biological roles, such as reproduction, 
brain development and additional protective effects of sexual ste-
roid hormones, prolonged exposure, combined with high levels 
of hormone increases the risk of BC by constitutively activating 
the transcription of genes predominantly implicated in metab-
olism and cell cycle regulation. ER-mediated mechanisms of 
gene regulation are well documented. ERs exist as two isoforms  
(ERα and ERβ) that belong to the family of transcriptional 
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Estrogen signaling is mediated by Erα and Erβ in hormone 
dependent breast cancer (BC). Over the last decade the 
implication of epigenetic pathways in BC tumorigenesis 
has emerged: cancer-related epigenetic modifications 
are implicated in both gene expression regulation and 
chromosomal instability. in this review, the epigenetic-
mediated estrogen signaling, controlling both Er level and 
Er-targeted gene expression in BC, are discussed: (1) Er 
silencing is frequently observed in BC and is often associated 
with epigenetic regulations while chemical epigenetic 
modulators restore Er expression and increase response to 
treatment; (2) Er-targeted gene expression is tightly regulated 
by co-recruitment of Er and both co-activators/co-repressors 
including HATs, HDACs, HMTs, Dnmts and Polycomb proteins.
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receptors and recognize and bind to a specific DNA consensus 
sequence to facilitate the transcriptional initiation of hundreds 
of target genes.2 Following estrogen treatment, the hormone 
binds to the E-domain of ERs, induces ER dimerization and 
favors its nuclear translocation, where the dimer finally interacts 
with DNA on the estrogen response element (ERE) and induces 
the activation of estrogen regulated genes (Fig. 1). However, 
following estrogen stimulation, the transcription of additional 
genes lacking an evident ERE is also activated in response to 
ERα interaction with particular transcriptional factors (TFs) 
such as AP-1, SP1 or NFKB. In the latter cases, mechanisms of 
ER-dependent transcriptional activation are indirect and medi-
ated by the recruitment of ERα on TF boxes.3,4

Changes in gene expression caused by genetic mutations, 
which lead to oncogene activation or tumor suppressor gene 
silencing, have been studied in BC etiology and correlated with 
BC risk in a recent meta-analysis.5 For example, mutations in 
BRCA1/2 genes were frequently observed in hereditary BC. Over 
the last two decades, the idea of an epigenetic control of gene 
expression in diseases other than genetic disorders has emerged. 
This includes the deregulation of genes that participate in tumor-
igenesis initiation and progression. In the latter case, the outcome 
of both genetic and epigenetic modifications is an aberrant over-
expression and/or silencing of genes implicated in cell prolifer-
ation and/or in the control of cell death. Epigenetic pathways 
regulate gene transcription by two different mechanisms that are 
not mutually exclusive: DNA methylation and post-translational 
modification of histones. DNA methylation occurs in 2–3% 
of cytosines in CpG islands and is not randomly distributed 
throughout the DNA as these sequences are mostly located in the 
upstream region of promoters. DNA methylation is implemented 
by a family of enzymes referred to as DNA methyl transferases 
(Dnmts) 1, 2, 3a, 3b and 3L. Promoters with a high density of 
CpGs are defined as CG-rich areas and are predominantly sub-
ject to DNA methylation. Methylated DNA is generally asso-
ciated with a decreased TF binding capacity that diminishes/
abolishes transcriptional expression of the corresponding gene. 
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with an uncondensed chromatin status, accessi-
bility of TFs, and is processed by histone acetyl 
transferase (HATs), while these acetyl groups 
are removed by histone deacetylases (HDACs). 
Histone methyl transferase (HMT) or histone 
demethylases (HDM), respectively, catalyze 
the methylation or demethylation of lysine or 
arginine in histones and these modifications 
favor the compaction or relaxation of chroma-
tin, depending of the methylated residue (for a 
review see ref. 12).

Epigenetic Silencing of ESR1  
and ESR2 Genes in Cancer

Anti-estrogen therapies are used in treat-
ment of BC but are inefficient in ER nega-
tive patients. In these therapies, the most used 
drug over the past 50 years is tamoxifen, a 
competitive inhibitor of estradiol that binds 
to ERα. More recent pharmacological mol-
ecules include selective ER down-regulators 
(SEDRs), which inhibit ERα dimerization and 
nuclear translocation; or aromatase inhibitors, 
which target the enzyme responsible for estro-
gen synthesis. As described above, estrogen 
dependent genes are controlled by ERα and 
ERβ. However, a frequent decrease in ERα 

expression was observed in BC and may occur during the course 
of the disease. ER- breast cancers were observed in 20% of low 
and 50% of high grade BC patients.13 ER expression status is 
paradoxical in BC. High ERα expression in high grade BC cor-
relates with a better outcome, a lower aggressiveness and a better 
response to anti-estrogen therapies compared with ER- patients. 
However, estrogen stimulation in healthy cells increases BC 
risks. This may be explained by the dual role of ERα in both 
proliferation and differentiation. Some studies also suggest that 
DNA methylation-mediated promoter ESR1 (estrogen recep-
tor 1 gene) silencing is found frequently and may participate 
in tumorigenesis or progression of the disease in other cancers, 
such as leukemia or colon tumors.14 The etiology of the loss 
of expression of ERα (about 30% of BC patients are ERα-) is 
due to DNA hypermethylation in 41% of cases, which corre-
lates with tumor size and histological grade.15-17 Moreover, a 
recent study on BC patients in India revealed that the propor-
tion of ESR1 hypermethylation was highly increased in triple 
negative tumors.18 Manipulation of ESR1 hypermethylation 
can also affect ERα expression. For example, a 5 d Bisphenol A 
(BpA) exposure in neonatal male rats induces persistent ESR1 
promoter hypermethylation in adults, associated with increas-
ing levels of Dnmts.19 Inactivation of Dnmt1 using siRNA or 
treatment with DNA methylation inhibitors such as 5-azadeox-
ycytidine, restores ERα expression in ERα negative BC cells.20 
As such, in addition to immunodetection of ERα, detection of 
ESR1 methylation status may aid in predicting a response to 
anti-estrogen therapies in BC patients.

Two distinct forms of DNA methylation processes have been 
described, the first is inherited DNA methylation or maintenance 
DNA methylation and is predominantly catalyzed by Dnmt1, the 
second is de novo DNA methylation and is performed mainly by 
Dnmt3a and Dnmt3b. Maintenance DNA methylation permits 
the conservation of DNA methylation patterns after DNA repli-
cation by copying methylation on the newly synthesized strand 
using the hemi-methylated DNA as a matrix. Conversely, de 
novo DNA methylation occurs on both strands of unmethylated 
DNA (for a review see ref. 6). Global DNA hypomethylation 
has been observed in many cancers including BC and prostrate 
tumors.7-9 Artificial disruption of DNA methylation complexes 
or invalidation of Dnmt1 in normal cells leads to a decrease in 
global DNA methylation and induces tumor formation in nude 
mice.10,11 This phenomenon is promoted by reactivation of non-
coding repetitive elements leading to chromosomal instability 
and abnormal gene expression. Besides global DNA hypomethyl-
ation, both local hypo and hypermethylation of promoters have 
also been reported and result in specific gene activation or silenc-
ing in cancers.

Nucleosomes are made up of a duplicate of histones H2A, 
H2B, H3 and H4 enclosed in a DNA loop and regulate chroma-
tin compaction as well as TF accessibility for transcription ini-
tiation. Histones are subject to post-translational modifications 
such as acetylation, methylation and phosphorylation. The “his-
tone code” refers to the sum of these modifications and allows 
a prediction of a favorable or unfavorable chromatin status for 
gene transcription. Acetylation of lysines in histones is associated 

Figure 1. Structure and activation of Estrogen receptor. (A) Schematic representation of 
Erα domains and their potential interaction with co-activators/co-repressors and ErE.  
(B) Mechanisms of Erα activation by estrogens. recruitment of liganded Erα on DNA is 
mediated directly on ErE or not directly via SP1 or NFKB interaction.
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ESR1 expression in ER- patients. A combined HDACi and 5-aza-
deoxycytidine treatment induces the most significant increase in 
ERα content. Surprisingly however, addition of tamoxifen does 
not produce a tumorigenic response in ER- BC cells. Hoestetter et 
al. demonstrated that a better response to tamoxifen in BC cells, 
correlated with a lower level of the RNA-stabilizing HuR protein. 
Tamoxifen treatment increased HuR content, and contributed to 
its own resistance while HDACi/5-azadeoxycytidine decreased 
HuR. Preliminary treatment with HDACi/5-azadeoxycytidine 
was given before delivering tamoxifen to attempt to obtain the 
best tamoxifen sensitivity.32 The precise roles of tamoxifen are 
complex: although it competes with 17β-estradiol to bind to 
ERα, ERα bound to tamoxifen is still able to target the TFF1 
(also called pS2) promoter without constitutive activation of 
gene transcription. The loss of transcriptional activity of the 
tamoxifen-ERα complex is mediated by changes in the balance 
of co-activators/co-repressors and ERα-interacting partners.

Epigenetic Regulation of Estrogen-Responsive 
Genes by Estrogen Receptors

Regulation via ER and co-activators. How epigenetic changes 
affect the transcriptional response of estrogen stimulation in can-
cer, and particularly in BC, is still poorly understood. However, 
several groups have shown a connection of both estrogen and ER 
in epigenetic regulation. Several reports suggest that ERα cooper-
ates with co-activators to epigenetically regulate estrogen respon-
sive genes. Only a small percentage of genes with putative ERE 

Overexpression of HDAC1 abolishes ESR1 
expression in MCF7 cells.21 Macaluso et al. pro-
posed a model of epigenetic inactivation of the 
ERα promoter (Fig. 2).22,23 In ER+ BC cells such 
as the MCF7 cell line, an activator complex com-
posed of pRb2/E2F4/5/HDAC1/SUV39H1/
p300 binds to a region containing E2F boxes 
close to the initial transcription site in the ESR1 
promoter. The authors proposed that repres-
sor activity of both HDAC1 and the HMT 
SUV39H1 might be overcome by the HAT activ-
ity of p300. Methylation of CpG by Dnmt3a/3b 
in this promoter may induce the recruitment of 
ICBP90 (inverted CCAAT box binding protein  
of 90 kDa) and consequently facilitate the 
replacement of p300 by Dnmt1 in the repressor 
complex pRb2/E2F4/5/HDAC1/SUV39H1/
Dnmt1 found in ERα- BC, MDA MB231 cells. A 
further recruitment of MeCP2 to an ERα meth-
ylated promoter may also participate in complete 
ERα repression, as illustrated in Figure 2.24 These 
epigenetic signals, in particular DNA methyla-
tion near the AP-2 binding site, induce a repres-
sive chromatin, blocking the loading of TFAP2C, 
further RNAP II recruitment and thus transcrip-
tion of ESR1.25 A recent study in male tissues 
revealed that among the methylated CpGs close 
to the ESR1 promoter, the methylation of one 
particular CpG (located in the +1 kb intragenic region of ESR1) 
correlates with low ESR1 expression. This CpG is included in 
a TGIF box, and its methylation provokes the recruitment of 
the repressor TGIF, targeting of HDAC1 and ESR1 silencing. 
Interestingly, methylation status of ESR1 in these tissues was 
not sensitive to estrogen exposure.26 Moreover, in MCF7 cells, 
estrogen treatment induces ESR1 repression in an ERα-mediated 
mechanism: while co-activators and ERα are found at both 
distal and proximal ESR1 promoters, Sin3A/ERα complex is 
specifically recruited on the proximal promoter and represses  
ESR1 transcription.27

Epigenetic regulation of ESR2 (gene coding for ERβ) has 
been poorly investigated. However, one study has demonstrated a 
frequent occurrence of ESR2 promoter methylation in ERβ- BC 
in Chinese women.28 Indeed, ESR2 methylation was significantly 
higher in high grade BC (45%) than in starting neoplasia and was 
strongly correlated with ESR1 methylation, suggesting common 
epigenetic mechanisms of regulation.28 Overexpression of ERβ 
in MCF7 cells strongly decreased cell proliferation. Similarly, 
hypermethylation of ESR2 was also identified in prostate tumors 
and present on 3 CpG islands during disease progression.29 All 
of these observations strongly suggest a role of epigenetics in the 
inactivation of ESR genes in hormone dependent cancers.

HDAC inhibitors (HDACi) such as Entinostat or valproic 
acid, have been tested in BC cells and efficiently restored both 
ERα expression and Letrozole sensibility in ER- BC in vitro and in 
vivo.30,31 The association of HDACi or 5-azadeoxycytidine with 
a treatment inducing overexpression of TFAP2C might improve 

Figure 2. Model of epigenetic inactivation of ESR1. Primary methylation and recruitment 
of iCBP90 on ERα promoter, provoke histone deacetylation and a large secondary meth-
ylation and ERα silencing. Ac, acetylation of histones; white circles symbolize unmethyl-
ated CpGs and black circles symbolize methylated CpGs.
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Expression of CARM1 (Co-activator-associated arginine 
methyltransferase), a co-activator of ERα, correlates with low 
grade BC and with a decrease in BC cell proliferation. CARM1 
is believed to partially govern the proliferation/differentia-
tion balance in BC by controlling 16% of estrogen dependent 
genes.43 While mechanisms implicating CARM1 are complex 
and still under investigation, CARM-1-mediated H3R17me and 
H3R26me seems to be implicated in estrogen response, while 
methylation of p300 may regulate its activity.44 A direct inter-
action between free ERα and phosphorylated CARM-1 may be 
used to recruit other co-activators, while association of CARM-1 
with activated ERα may require a p160 co-activator SRC-2.45 
Indeed, CARM1-mediated CBP methylation is required for 
CBP recruitment to some ER target genes and increases its HAT 
activity.46

Fewer studies have been performed to identify ERβ co- 
activators. Indeed, as has been observed for ERα/MLL interac-
tions, MLL1-4/ERβ complexes are implicated in HOXC13 gene 
regulation.47 However, ERβ/eNOS (endothelial nitric oxide syn-
thase) complex was observed in prostate cancer and provoked the 
activation of hTERT, MSH2, CyclinD1 and TFF1, 4 genes previ-
ously identified in prostate cancer grading.48 On the other hand, 
this complex was also associated with the epigenetic repression of 
GSTP1 expression, a gene frequently silenced in prostate tumors. 
Further investigation will be necessary for a better view of the 
mechanisms controlling epigenetic-mediated ERβ target gene 
expression.

Regulation via ERs and co-repressors. Although the link 
between ERα and upregulation of gene transcription is well 
studied, some transcriptome analyses have revealed that about 
50% of ERα target genes are downregulated following estrogen 
treatment.49,50 Indeed, estrogen exposure or ERα loss using both 
chemical mimetics or siRNA, leads to epigenetic modifications 
in ER target genes requiring both histone modifying enzymes 
and Dnmts.

HMT EZH2 (enhancer of zeste homolog 2) is a polycomb 
protein that catalyzes H3K27me3, a chromatin repressive mark. 
A high level of EZH2 has been reported in several cancers and is 
associated with malignancy and the grade in BC. Interestingly, 
an increase in EZH2 expression, both in MCF7 and in vivo, was 
also reported following estrogen-like exposure.51 Overexpression 
of EZH2 induces a decrease in the expression of numerous genes, 
in particular in the ER responsive gene pathway. EZH2-mediated 
H3K27me3 on ER target genes in BC cells requires EZH2 inter-
action with REA (repressor of estrogen activity), which prefer-
entially targets ERE and may also recruit HDACs for complete 
gene silencing.52 On the other hand, Bcl2 is an estrogen respon-
sive gene encoding a major anti-apoptotic protein, upregulation 
of which is often observed in many cancers including BC. Both 
genetic and non-genetic ER pathways regulate the expression of 
Bcl2.53 Bcl2 is normally silenced by EZH2-mediated repressive 
mark H3K27me3 in its enhancer, promoting the recruitment of 
other polycomb group proteins (PRC1 and 2). Constitutive S21 
phosphorylation-mediated inhibition of EZH2 following PI3K/
Akt activation in HER2 positive BC and/or demethylation of 
H3K27me via ERα/JMJD3 complex recruitment on Bcl2, induce 

are really activated following estrogen stimulation, suggesting 
that additional proteins could specifically control ER-responsive 
gene pathways. Maximal ERα-mediated transcription requires 
the addition of some epigenetic changes and the removal of others. 
Estrogen bound ERα orchestrates the recruitment of HATs (p300 
and CBP) and HAT co-activators of the p160 family (SRC1/
SRC2/SRC3) to modulate chromatin status and allow RNAP II 
recruitment.33,34 Indeed, overexpression of SRC3 increases BC cell 
proliferation, while inhibition of SRC1/SRC2 blocks their prolif-
eration. Moreover, in the absence of estrogen stimulation, a direct 
interaction between HDAC1 and unbound ERα, via its AF2 and 
DNA binding domains, is constitutive in BC and inhibits its 
activity.21

Methylation of histones and the enzymes that control this 
methylation are highly implicated in estrogen signaling. An 
increase in the epigenetic mark H3K4me3 is generally associ-
ated with positive effects on transcription and such an increase 
on the TFF1 promoter is due to a direct interaction between ERα 
and the protein linker MEN1. This interaction recruits the co- 
activators H3K4 methylase MLL1/2 (Mixed Lineage leukemia).35 
Based on studies done on JMJD2B/MLL2/ERα interactions, a 
model was developed in which demethylation of H3K9me by the 
HDM JMJD2B (Jumonji domain-containing protein 2B) is first 
required for the further methylation of H3K4 by MML2.36 An 
increase of H3K4me3 after direct interaction between ERα and 
MLL 2–4, via its LxxLL domain, was required for activation of 
cathepsin, liver x-receptor genes.

Besides methylated marks, removal of other methylation 
may also be implicated in estrogen responsive gene regulation. 
Recruitment of the HMT SMYD3, whose levels increase in BC, 
was also able to produce the tri-methylation of H3K4me3 and 
was mediated by both a direct ERα/SMYD3 interaction on the 
ERE of the TFF1 promoter and/or by the identification of the 
Ser10 phosphorylation mark on histone H3.37,38 The HDM LSD1 
(lysine specific demethylase, also called KDM1) also contributes to 
H3K9 demethylation on ER targets genes and recruitment of co- 
activators, but this required the presence of activated ERα.39 In 
some other genes, however, recruitment of LSD1 also follows H3K9 
deacetylation and provokes H3K4 demethylation, which is unfa-
vorable to transcription.40 The specificity of H3 methylated sub-
strate on ER target loci such as TFF1 promoter, is orchestrated by 
the co-recruitment of PELP1/activated ERα/LSD1. PELP1 (pro-
line glutamic acid and leucine rich protein 1) is a reader of meth-
ylation marks that recognizes both H3K4me2 and H3K9me2 but 
its interaction with ERα and LSD1 decreases the LSD1-mediated 
HDM activity on H3K4me2 in favor of H3K9me2 demethyl-
ation and increased ER target gene expression.41 Moreover, the 
early engagement of some factors on condensed chromatin, in 
a specific sequence that is dependent of an epigenetic signature, 
refers to a class called competence or pioneer factors. Pioneer fac-
tors are implicated in the opening and activation of transcription. 
Magnani et al. reported that the association of activated ERα with 
the pioneer factors PBX1 (pre-B-cell leukemia homeobox 1), and 
FOXA1 (forkhead box A1) considerably increased estrogen depen-
dent transcriptional response via PBX1-dependent identification 
of H3K4me2 and chromatin remodeling.42
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Figure 3. Model of Er-mediated epigenetic response in Er target genes. (A) Schematic representation of action of co-activators and co-repressors.  
(B) Direct and indirect interactions of Erα with epigenetic related proteins.
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mediated by ERα translocation into the nucleus and addition of 
epigenetic marks such as H3K27me3. Prolonged estrogen expo-
sure induces progressive DNA methylation, which confers a per-
sistence of epigenetic modifications similar to those of neoplastic 
cells.

ERβ has recently been implicated in epigenetic control of 
estrogen responsive genes. Expression of Glut-4 in MEF cells 
required the interaction between ERβ and the Glut-4 promoter, 
which prevented methylation of CpG 11 and therefore allowed 
the recruitment of SP1 to this region and activation of transcrip-
tion.65 Epigenetic-mediated neoplastic transition following estro-
gen exposure has been clearly demonstrated.66,67 Progression of 
pre-cancerous lesions provoked by estrogen exposure in neoplas-
tic lesions required continuous exposure to estrogen in ACI rats. 
Indeed, removal of estrogen treatment after 4 weeks followed by 
8 weeks of recovery induced a regression of hyperplasia in con-
junction with modifications in Dnmts expression.56

Epigenetic mechanisms implicated in ER target gene silenc-
ing seem highly variable and require different co-repressors. 
Indeed, CTCF (CCCTC-binding factor) recruitment on the 
CDKN1c promoter following estrogen stimulation is implicated 
in CDKN1c silencing.68 LCoR, a repressor able to bind to ligand-
associated receptors to repress their transcriptional activity also 
interacts with nuclear HDAC6 and attenuates specific ER target 
genes, including IGFBP4, but not TFF1 in BC cells. Moreover, 
the LCoR/CtBP1 repressor complex interacts with HDAC1 and 
ER on TFF1 and other estrogen responsive promoters.69,70 Malik 
et al. recently demonstrated a cooperation between HDAC7/
FoxA1/ERα in RPRM repression.71 Nevertheless, HDAC7-
mediated gene silencing was not related to the weak HDAC 
activity of HDAC7 but rather to additional properties of this 
protein. This complex was recruited to both proximal and distal 
RPRM promoters. HDAC1/PADI4 (peptidylarginine deiminase 
IV) interaction was also associated with TFF1 silencing. Indeed, 
this complex provoked H3R deimination, resulting in either a 
blockade of H3R methylation or a demethylation of mono-
methylated H3Rme and therefore inhibited the addition of the 
positive transcriptional mark H3Rme2, normally processed by 
CARM1 or PRMT1 (H3R17me and H4R3me). On the other 
hand, CARM1-mediated H3Rme2 blocked H3R deimination 
and allowed the recruitment of ERα to the active TFF1 pro-
moter.72 Sin3A is frequently associated with HDAC1/2 in the 
Sin3 repressor complex and can also be involved in ER-mediated 
gene silencing (including ESR1) via its multiple interactions with 
both additional repressors and ERα.27 Similarly, MTA1 (metas-
tasis associated antigen 1), the expression of which correlates with 
BC progression, can also bind HDAC1/2 and ERα and partici-
pate in ER-mediated gene silencing such as BRCA1 silencing.73 
BRCA1 was associated with a repression of a subset of estrogen 
responsive genes in 293T cells while its overexpression induces 
an almost 90% decrease in ER target gene expression, includ-
ing TFF1, in MCF7 cells. This inhibition required a direct inter-
action between active ERα and BRCA1 (aa 338–379 of ERα) 
and their co-recruitment on ERE, which blocked further ERα 
recognition by co-activators such as p300.74,75 Increasing con-
centrations of estrogen or overexpression of cyclin D1, which 

gene expression and contribute to apoptosis resistance in BC. 
ERα methylation appears essential for non-nuclear functions of 
ERα such as activation of AKT following ERα/Src/PI3K inter-
action.52 PRMT1-mediated R260 methylation of cytosolic ERα 
within its DNA interacting domain occurs rapidly after estrogen 
treatment and ERα hypermethylation has been reported in 55% 
of BC. This methylation also required p160 co-activators and is 
implicated in the non-genomic functions of ERα, leading to a 
constitutive activation of AKT signaling and a promotion of pro-
liferation and survival signals.54,55

In fact, epigenetic silencing of ER target genes was most fre-
quent in ER- than in ER+ patients and was comparable to the 
panel of epigenetic modifications observed in MCF7 following 
ERα inactivation by RNAi.56 According to the literature, DNA 
methylation and histone modification can cooperate to govern 
the sequence of epigenetic events leading to the silencing of one 
gene. DNA methylation and histone modification can be cata-
lyzed within the same complex or successively by independent 
complexes. Investigations on the kinetics of the addition of epi-
genetic marks on ER target loci revealed that chromatin remod-
eling begins 36 h after ERα invalidation. First, HDAC1 and the 
polycomb co-repressors YY1 and EZH2 are recruited while addi-
tion of persistent heritable epigenetic marks via Dnmt1 recruit-
ment occurs only at 168 h. Local hypermethylation in BC may 
be the consequence of an increase in Dnmts followed by MeCP2 
induction, as was observed in rats treated with high amounts 
of estrogen.57 Following estrogen exposure, a similar increase 
in both Dnmt3b expression and activity in endometrial cancer 
cells was reported and could be inhibited by an ER antagonist, 
suggesting a direct implication of ER in Dnmts regulation.58 
However, diethylstilbestrol exposure in mice provokes a decrease 
in Dnmts and SP3 on day 5 while SP1 levels only decreased at day 
14, followed by demethylation of several DNA loci.59 Dnmt3a/b 
expression is under estrogen regulation in normal female tis-
sues.60 To date, the effects of estrogen and the ER pathway on 
the recruitment of SP1/SP3 to Dnmt promoters have not been 
investigated. This could be studied with folate treatment, which 
preferentially permits the recruitment of SP3 in detriment to SP1 
and increases Dnmt genes transcription.61 Relative amounts and/
or preferential recruitment of SP1/SP3 may explain the tissue-
specific response to estrogen exposure. Indeed, hypermethylation 
of ERCC1, XPC, OGG1 and MLH1 genes, all involved in DNA 
repair, after estrogen treatment contributed to chromosomal 
instability and mutations that occur in BC.62 Conversely, expres-
sion of HOXA10 was increased following BpA exposure and ERE 
hypomethylation.63

Moreover, some experiments show that estrogen exposure 
of breast progenitor cells induces epigenetic modifications and 
confers a cancer-like methylome in these cells, suggesting a pos-
sible role of epigenetic modifications in breast progenitor cells 
in the initiation of BC.64 Epigenetic modifications (global DNA 
hypomethylation and histone modifications) occurred as soon as 
6 weeks in treated rats, while evident signs of neoplasia could be 
detected only after 12 weeks. Indeed, estrogen stimulation pro-
voked long-range epigenetic silencing (LRES) in a cluster of 14 
genes located at 16p11.2 in normal breast cells.65 The silencing is 
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