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ABSTRACT Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations
and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong
immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and pro-
mote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South
America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission po-
tential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neu-
tralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV
patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-
phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to
DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while oth-
ers had low (50% effective concentration [EC50], <1:100 serum dilution; 18%) or moderate to high (EC50, >1:100 serum dilu-
tion; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by
neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an
immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV
vaccines to induce cross-protective immunity to ZIKV.

IMPORTANCE ZIKV is an emerging arbovirus that has been associated with severe neurological birth defects and fetal loss in
pregnant women and Guillain-Barré syndrome in adults. Currently, there is no vaccine or therapeutic for ZIKV. The identifica-
tion of a class of antibodies (envelope dimer epitope 1 [EDE1]) that potently neutralizes ZIKV in addition to all four DENV sero-
types points to a potential immunotherapeutic to combat ZIKV. This is especially salient given the precedent of antibody ther-
apy to treat pregnant women infected with other viruses associated with microcephaly, such as cytomegalovirus and rubella
virus. Furthermore, the identification of a functionally conserved epitope between ZIKV and DENV raises the possibility that a
vaccine may be able to elicit neutralizing antibodies against both viruses.
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Zika virus (ZIKV) is an arbovirus in the Flaviviridae family,
which includes important human pathogens such as Japanese

encephalitis virus (JEV), West Nile virus (WNV), yellow fever
virus (YFV), and dengue viruses 1 to 4 (DENV-1 to -4) (1). Flavi-
viruses are traditionally classified as neurovirulent (WNV and
JEV) or hemorrhagic (DENV and YFV). ZIKV infection has his-
torically been characterized by self-limiting febrile illness, includ-
ing mild fever, rash, arthralgia, and conjunctivitis, and was not
considered to be a pathogen of major public health concern (2, 3).
However, ZIKV caused a large outbreak in Micronesia in 2007 and
then throughout Polynesia and the Pacific Islands in 2013 to 2014
(4). In 2015, the first ZIKV outbreak in the Americas was reported

in Brazil, where there was no previous evidence of circulation (5).
Since then, 46 countries have reported novel outbreaks and ongo-
ing transmission (4). Following the onset of the 2015 outbreak,
several groups have identified an association between ZIKV infec-
tion and fetal malformations, including spontaneous abortion,
intrauterine growth restriction caused by placental insufficiency,
and blindness, and a causative link has been associated with mi-
crocephaly (2, 4, 6–8). The World Health Organization has also
reported an increase in Guillain-Barré syndrome and meningoen-
cephalitis associated with ZIKV (4, 9, 10). The underlying molec-
ular mechanisms driving these severe outcomes remain largely
unknown (11).
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The emergence of ZIKV overlaps geographically with regions
in which DENV is endemic, and ZIKV shares approximately 60%
sequence identity with DENV (12). Moreover, multiple dengue
vaccine candidates are in phase II and III clinical trials, including a
tetravalent vaccine that is currently approved for use in regions
where ZIKV is emerging (13–15). Thus, a significant portion of
the population in ZIKV outbreak areas has DENV-reactive anti-
bodies, which has complicated ZIKV diagnostics due to cross-
reactivity (16). Given the extent to which DENV antibodies are
present in the population, is it important to evaluate the possibil-
ity of cross-protective neutralizing epitopes that could protect
against ZIKV infection. By screening a panel of monoclonal anti-
bodies (MAbs), we found that a class of dengue virus serotype
cross-neutralizing MAbs isolated from dengue patients, known as
the envelope dimer epitope 1 (EDE1) MAbs, neutralize ZIKV in
cell culture and protect from disease in a murine model. A few
convalescent-phase immune sera from dengue patients also cross-
neutralized ZIKV, further demonstrating the presence of epitopes
conserved between ZIKV and DENV that are recognized by hu-
man neutralizing antibodies.

RESULTS

Neutralization of ZIKV by human, nonhuman primate, and
mouse MAbs. To better understand antibody cross-reactivity and
functionality between DENV and ZIKV, we tested a large panel of
well-characterized human and mouse MAbs for binding and neu-
tralization of two strains of ZIKV: a French Polynesian 2013 strain
representing the Asiatic lineage (H/PF/2013) and a strain circulat-
ing in the Americas in 2015 (PRVABC59). As expected, human
and nonhuman primate type-specific MAbs that strongly neutral-
ize DENV-1 (1F4), DENV-2 (2D22), DENV-3 (5J7), and DENV-4
(5H2) did not neutralize ZIKV (Fig. 1A) (17–20). DENV-cross-
reactive MAbs that weakly or moderately neutralized two or more
DENV serotypes (4G2, 1N5, and 1M7) also failed to neutralize
ZIKV (21, 22). In stark contrast, the potent DENV cross-
neutralizing MAbs EDE1 C8 and EDE1 C10 strongly neutralized
ZIKV infection of human monocytic cells expressing DC-SIGN
(23). ZIKV neutralization by EDE1 C8 and ECE1 C10 was con-
firmed in Vero cells (Fig. 1B). EDE1 C8 and C10 neutralization of
the high-passage-number 1947 Ugandan isolate ZIKV MR766 was

FIG 1 Neutralization and binding of DENV and ZIKV by monoclonal antibodies. (A) MAbs elicited by DENV were evaluated for their ability to neutralize and
bind DENV-1, DENV-2, DENV-3, DENV-4, ZIKV H/PF/2013, and ZIKV PRVABC59. (B) The ability of the EDE1 MAbs to neutralize ZIKV H/PF/2013 and
ZIKV PRVABD59 was confirmed in both U937�DC-SIGN and Vero cells. (C) Binding of the neutralizing EDE1 MAbs and the nonneutralizing EDE2 B7 MAb
to DENV-1, DENV-2, DENV-3, DENV-4, and ZIKV H/PF/2013 was assessed via enzyme-linked immunosorbent assay. Bars for neutralization data in panels A
and B represent the means from two replicates with upper and lower 95% confidence intervals. The dotted line indicates the limit of detection for the assay.
Nonneutralizing antibodies were assigned a value of twice the limit of detection for visualization. Bars for binding data in panel C represent the mean from two
replicates with standard deviations.
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also confirmed in Vero cells, with 50% effective concentrations
(EC50s) of 8.9 � 10�4 and 3.4 � 10�4 �g/ml, respectively. Inter-
estingly, EDE2 B7 (23), which strongly neutralized all four DENV
serotypes, bound but did not neutralize ZIKV (Fig. 1C). Of note,
the contact residues of EDE2 B7 are all part of the EDE1 epitope,
except for residues 153 to 157, which were too disordered to re-
solve structurally when bound to DENV-2 (see Table S1 and
Fig. S1 in the supplemental material) (24).

Recent studies indicate that flavivirus antibodies that neutral-
ize virus in vitro may not necessarily be protective in vivo (25). To
determine if EDE MAbs protect against ZIKV in vivo, a study was
performed in type I/II interferon receptor-knockout mice, which
develop ZIKV-induced morbidity and mortality (26, 27). The
mice were treated with either 10 �g EDE1 C10 or phosphate-
buffered saline (PBS) at 1 day preinfection and again at 9 days
postinfection and challenged with 102 focus-forming units (FFU)
of ZIKV H/PF/2013 or PBS in the footpad. The PBS-treated mice
experienced 60% mortality following challenge (Fig. 2A), while

the EDE1 C10-protected mice all survived (P � 0.05). The EDE1
C10-treated, infected mice largely exhibited no signs of illness,
and their weight gain was more than that of mice that were in-
fected with ZIKV and mock antibody but less than that of the mice
that were not infected (Fig. 2B).

Neutralization of ZIKV by convalescent-phase dengue im-
mune sera. People exposed to dengue and other flavivirus infec-
tions develop antibodies that change in magnitude and quality
over time (28). The ZIKV cross-neutralizing and protective EDE1
C8 and C10 MAbs were derived from plasmablasts collected from
individuals a few days after recovery from DENV infections (23).
We tested whether convalescent-phase immune sera collected
from DENV patients several years after primary or secondary in-
fection contained antibodies that cross-neutralized ZIKV. We
tested a panel of 17 serum samples with neutralization profiles
consistent with previous exposure to primary DENV-1 (n � 5),
DENV-2 (n � 4), DENV-3 (n � 5), and DENV-4 (n � 3) infec-
tions for cross-neutralization of ZIKV (see Table S2 in the supple-
mental material). Most of the primary sera failed to cross-
neutralize ZIKV. In fact, with primary DENV immune sera, we
observed lower levels of ZIKV cross-neutralization than of DENV
cross-neutralization (Fig. 3; see also Fig. S2). Notable exceptions
to this trend were two primary DENV-1 immune sera and one
primary DENV-4 immune serum that contained moderate to
high levels of ZIKV-neutralizing antibodies.

A hallmark of secondary DENV infections is the induction of
dengue virus serotype cross-neutralizing antibodies which reduce
the risk of disease from subsequent DENV infections (29). We
tested whether convalescent-phase sera from people exposed to
secondary DENV infections years previously also cross-
neutralized ZIKV. All of the secondary serum samples tested neu-
tralized DENV-1, DENV-2, and DENV-3, and 15 of 16 samples
neutralized DENV-4 (Fig. 4; see also Fig. S3 in the supplemental
material). There were no statistically significant differences be-
tween the DENV serotypes. In contrast, secondary DENV im-
mune sera usually had low or undetectable levels of ZIKV cross-
neutralizing antibodies. Six of the 16 sera (38%) had measurable
neutralization titers against ZIKV. Five of these six individuals had
modest ZIKV neutralization (EC50s between 1:20 and 1:100), and
only one individual had strong ZIKV neutralization (EC50, �1:
100). Overall, secondary DENV immune sera poorly neutralized
ZIKV compared to cross-neutralization phenotypes noted among
other DENV serotypes, and only one individual (6%) strongly
cross-neutralized ZIKV.

Antigenic cartography. The fact that convalescent-phase
DENV immune human sera displayed low cross-neutralization of
ZIKV suggests that ZIKV is antigenically distantly related to
DENV. To examine the antigenic relationships between ZIKV and
DENV, we used antigenic cartography to calculate the Euclidean
distances between sera, and metric multidimensional scaling was
used to render the data in three dimensions (see Movies S1 and S2
in the supplemental material). Cartography supports the hypoth-
esis that ZIKV is antigenically more distant from DENV-1 to -4
than each DENV serotype is from the others. Moreover, ZIKV-
neutralizing sera did not have universally higher DENV-
neutralizing titers than ZIKV-nonneutralizing sera. Indeed, car-
tography suggests that neutralization titers of primary and
secondary sera across all four DENV strains do not predict cross-
neutralization outcomes with ZIKV, suggesting that these cross-
neutralizing antibodies represent a rare subset of anti-DENV an-

FIG 2 EDE1 C10 protects ZIKV-susceptible mice from infection. Five-week-
old type I/II interferon receptor-knockout mice on a C57BL/6 backbone re-
ceived either EDE1 C10 (n � 5) or mock (n � 5) treatment and were chal-
lenged with 102 FFU of ZIKV H/PF/2013. A mock cohort (n � 2) was also
included. Survival (A) and weight loss (B) were monitored, and differences
between the mock-treated and EDE1 C10-treated cohorts are shown.
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tibodies that develop in a subset of individuals within a
population.

DISCUSSION

Because ZIKV cocirculates with other flaviviruses, especially the
four DENV serotypes, an understanding of the antigenic relation-
ships between ZIKV and other flaviviruses and how these interac-
tions modulate ZIKV replication, disease, and transmission is im-
perative. Among the pathogenic human flaviviruses, ZIKV is most
closely related to DENV, and the goal of this study was to identify
any shared epitopes between DENV and ZIKV targeted by cross-
protective human antibodies (12). Primary DENV infections in-
duce serotype-specific neutralizing and protective antibody re-
sponses, whereas repeat DENV infections lead to the induction of
serotype cross-neutralizing and cross-protective responses (28,
30). We assessed the long-term immunological cross-reactivity of
DENV sera with ZIKV using panels of MAbs and immune sera
from people exposed to DENV. Neutralization assays with multi-
ple type-specific and cross-reactive MAbs identified a single set of
MAbs in our panel that could neutralize ZIKV and protect against
lethal infection in vivo: EDE1 C8 and EDE1 C10. While we recog-
nize that a broader set of human MAbs might identify novel cross-
neutralizing epitopes conserved in ZIKV and DENV, the EDE1

FIG 3 Neutralization of DENV and ZIKV by DENV primary sera. Geometric mean titers of DENV-1 primary sera (A), DENV-2 primary sera (B), DENV-3
primary sera (C), and DENV-4 primary sera (D). Colored points represent individual sera, and horizontal lines represent the geometric mean titers of all sera with
upper and lower 95% confidence intervals. The dotted line indicates the limit of detection for the assay. Nonneutralizing sera were assigned a value of one-half
of the limit of detection for visualization and calculation of the geometric means and confidence intervals.

FIG 4 Neutralization of DENV and ZIKV by DENV secondary sera. Geomet-
ric mean titers of DENV secondary sera. Colored points represent individual
sera, and horizontal lines represent the geometric mean titers of all sera with
upper and lower 95% confidence intervals. The dotted line indicates the limit
of detection for the assay. Nonneutralizing sera were assigned a value of one-
half of the limit of detection for visualization and calculation of the geometric
means and confidence intervals.
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antibodies potently neutralized a French Polynesian 2013 strain
representing the Asiatic lineage (H/PF/2013) and, importantly, a
strain circulating in the Americas in 2015 (PRVABC59). Indeed,
the dose of EDE1 C10 administered to protect in vivo (two doses of
10 �g) is far less than the 500 �g required for the fusion loop-
targeting mouse MAb 2A10G6 (31). Thus, it seems likely that
these EDE1 MAbs will prove efficacious against multiple ZIKV
strains in vivo. Consonant with this hypothesis, an alignment of
the EDE1 contact residues on DENV as previously identified by
X-ray crystallography and ZIKV reveals considerable conserva-
tion among contact residues between all four DENV serotypes and
ZIKV, readily explaining the cross-neutralization phenotypes
noted in our studies (24).

The EDE2 B7 MAb did not neutralize ZIKV despite significant
epitope overlap with the EDE1 antibodies. EDE2 B7 is reported to
be sensitive to the glycan at position 153 of the DENV envelope
protein; ZIKV has a glycan at position 154, but the amino acid
insertion in the glycan loop may alter the presentation of the gly-
can (23, 32). Moreover, EDE1 antibodies reach further into do-
mains I and III, providing an additional structural framework for
robust binding that may not be as strongly impacted by the inser-
tion in the glycan loop. These data suggest that the EDE1 epitope
may be critical to eliciting antibodies that protect against both
DENV and ZIKV and that efforts to develop vaccines and thera-
peutics should emphasize this population of antibodies.

The initial description of EDE antibodies reported that they
were immunodominant in nearly half of the study’s subjects (in-
cluding one individual with a primary DENV infection), but there
are several important caveats: the study had a small cohort (n � 7)
and the frequency of EDE antibodies was not broken down into
EDE1 versus EDE2 (23). Additionally, the EDE antibodies were
isolated from circulating plasmablasts elicited early during the
first couple of weeks following a confirmed DENV infection in
Southeast Asia. It is unclear whether these EDE-expressing plas-
mablasts are frequently elicited across the global population,
whether they are dependent on select sequential strain infection
serotype patterns, and whether these plasmablasts mature into
long-lived memory B cells or are lost. Nor is it known whether the
level of EDE antibody expression in the circulating short- and
long-term serological repertoire is sufficiently robust to protect
from repeat infections. For example, while highly cross-
neutralizing monoclonal antibodies can be elicited against the
GII.4 human epidemic noroviruses, only a few percent of the hu-
man population actually produces these potent antibodies (33).
Clearly, new diagnostic metrics such as epitope swap viruses, an-
tibody depletion assays, and blockade of binding assays are needed
to evaluate the levels of EDE antibodies in polyclonal sera after
primary and secondary infection (34–37).

Some, but not all, DENV primary and secondary immune sera
are capable of cross-neutralizing ZIKV. The limited cross-
neutralization of ZIKV by DENV primary sera is likely attributed
to the mostly type-specific long-term response that follows a sin-
gle DENV infection (28). After secondary infection, DENV-
elicited antibody responses are thought to maintain the type-
specific response while simultaneously generating more broadly
neutralizing antibodies that typically protect from further DENV
infection with any serotype (30). Surprisingly, we observed no
cross-neutralization of ZIKV in many individuals who had
broadly cross-neutralizing antibodies to three or more DENV se-
rotypes. We conclude that, despite the close phylogenetic relation-

ship of DENV and ZIKV, durable long-lived antibody immune
responses that broadly cross-neutralize DENV serotypes are usu-
ally not effective against ZIKV. What we did observe were clear
cases of ZIKV cross-neutralization in a minority of subjects with
DENV type-specific or cross-neutralizing antibody responses.
The molecular basis of why some dengue-immune individuals
cross-neutralize ZIKV is currently not known. Possible explana-
tions for cross-neutralization include previous exposure to both
DENV and ZIKV or the presence of EDE1 or related antibody
classes in a subset of individuals. We propose that EDE1-like an-
tibodies are, at least in part, responsible for cross-neutralizing ac-
tivity in immune sera.

Gamma globulin treatment of pregnant women infected with
rubella virus is associated with a reduction in harmful outcomes in
the fetus (38). Similar therapies have had mixed success in pre-
venting cytomegalovirus-driven birth defects, and immunother-
apeutic human monoclonal antibody clinical trials are still ongo-
ing (39–41). Thus, it is reasonable to assume that human
monoclonal antibody therapy may be a viable treatment option to
protect the developing fetus in pregnant women infected with
ZIKV. Although additional therapeutic studies during infection
and pregnancy will be required, the identification of an epitope
that neutralizes ZIKV in vitro and in vivo represents a significant
first step toward preventing ZIKV-driven fetal malformation and
loss. Furthermore, the fact that the same antibodies targeting
EDE1 are able to strongly neutralize both DENV and ZIKV is
highly desirable, as diagnostic tests cannot always rapidly and re-
liably differentiate between the two infections. The strongly cross-
neutralizing phenotypes of EDE1 C8 and EDE1 C10 should re-
duce the likelihood that a DENV patient who has been
misdiagnosed with a ZIKV infection would experience disease en-
hancement after treatment with an EDE1 therapeutic antibody. In
some individuals, the EDE1-like antibody may also be elicited by
the existing tetravalent dengue vaccines already in late-stage clin-
ical trials or available on the market. Further testing is required to
determine the frequency of this antibody in the population fol-
lowing both natural infection and vaccination.

MATERIALS AND METHODS
Cells and viruses. All viruses were propagated in C6/36 Aedes albopictus
cells as previously described. C6/36 cells were grown in minimal essential
medium (Gibco, Grand Island, NY) at 32°C. Vero-81 cells were grown in
Dulbecco’s modified Eagle’s medium (Gibco, Grand Island, NY), and
U937�DC-SIGN cells were maintained in RPMI 1640 (Gibco, Grand
Island, NY) at 37°C. All media were supplemented with 10% (Vero-81) or
5% (C6/36 and U937�DC-SIGN) fetal bovine serum (HyClone, Logan,
UT), 0.1 mM nonessential amino acids (Gibco, Grand Island, NY), and
100 U/ml penicillin and 100 mg/ml streptomycin (Gibco, Grand Island,
NY). U937�DC-SIGN medium was additionally supplemented with
2 mM GlutaMAX (Gibco, Grand Island, NY), 10 mM HEPES (Cellgro,
Manassas, VA), and 2-mercaptoethanol (Sigma, St. Louis, MO). All cells
were incubated in the presence of 5% CO2.

ZIKV H/PF/2013 viral stocks were obtained from Michael S. Diamond
(Washington University, St. Louis, MO). ZIKV PRVABC59 viral stocks
were obtained from the Centers for Disease Control and Prevention (At-
lanta, GA). DENV strains used in the polyclonal neutralization panel
(DENV-1 WestPac74, DENV-2 S-16803, DENV-3 CH-53489, and
DENV-4 TVP-376) were obtained from natural isolates maintained in the
laboratory of Aravinda M. de Silva. DENV strains used in the monoclonal
antibody panel (DENV-1 WestPac74, DENV-2 S-16803, DENV-3
UNC3001, and DENV-4 SriLanka 92A) were obtained from infectious
clones in the laboratory of Ralph S. Baric (34, 35).
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Serum and antibodies. Deidentified human DENV immune sera and
plasma were collected from individuals with naturally acquired DENV
infections confirmed via serology. All donations were collected in com-
pliance with the Institutional Review Board of the University of North
Carolina at Chapel Hill (protocol 08-0895). Deidentified human immune
sera previously collected from the Pediatric Dengue Vaccine Initiative
were also used.

Monoclonal antibodies were purified from hybridomas (1M7 and
1N5) or synthetically generated by Lake Pharma (Belmont, CA) from
published sequences (1F4, 2D22, 5J7, 5H2, 4G2, EDE1 C8, EDE1 C10, and
EDE2 B7); the latter are available upon request.

In vitro neutralization. Human sera or monoclonal antibodies were
serially diluted 3-fold and mixed with sufficient virus to cause 15% infec-
tion in U937�DC-SIGN cells. Dilution medium contained reduced (2%)
fetal bovine serum and was supplemented with 2 mM CaCl2 and MgCl2.
The virus-antibody mixtures were incubated for 45 min in a 96-well plate
at 37°C. Following this incubation, 5 � 104 cells were added and the
infection was allowed to proceed for 2 h at 37°C. The volume of medium
in each well was increased to 200 �l, and the cells were returned to 37°C
for a total of 24 h. After 24 h, the cells were fixed in paraformaldehyde,
permeabilized, blocked with normal mouse serum in permeabilization
buffer, and stained with Alexa Fluor 488-conjugated (Molecular Probes,
Eugene, OR) 4G2 antibody. Unbound antibody was washed off, and cells
were resuspended in Hanks’ buffered salt solution (Gibco, Grand Island,
NY) supplemented with 2% fetal bovine serum. Assays were performed
twice and in duplicate. Samples were read on a Guava easyCyte 5HT flow
cytometer (Millipore) as previously described by our group (42).

Neutralization in Vero-81 cells was assessed by serially diluting the
monoclonal antibodies 10-fold and mixing with approximately 150
focus-forming units of virus. Dilution medium contained reduced (2%)
fetal bovine serum. The virus-antibody mixtures were incubated for 1 h in
a 96-well plate at 37°C and then transferred to a monolayer of Vero-81
cells in a 96-well plate. Following a further 1-h incubation at 37°C, the
monolayers were overlaid with Opti-MEM (Gibco, Grand Island, NY)
containing 2% fetal bovine serum and 1% (wt/vol) carboxymethyl cellu-
lose (Sigma, St. Louis, MO). Infected plates were incubated for 2 days at
37°C with 5% CO2, at which time they were fixed with paraformaldehyde,
permeabilized, blocked with normal goat serum (Sigma, St. Louis, MO) in
permeabilization buffer, stained with 4G2 primary antibody followed by
secondary horseradish peroxidase (HRP)-conjugated anti-mouse IgG
(KPL, Gaithersburg, MD), washed again, and developed with TrueBlue
peroxidase substrate (KPL, Gaithersburg, MD).

Binding assays. High-binding Microlon 600 96-well plates (VWR,
Radnor, PA) were coated with 100 ng of 4G2 and 2H2 antibody in 0.1 M
carbonate buffer, pH 9.6, overnight at 4°C. Unbound antibody was rinsed
with wash buffer (Tris-buffered saline [TBS] plus 0.2% Tween), and wells
were coated with blocking buffer (TBS plus 0.05% Tween) for 1 h at 37°C.
Virus was diluted in blocking buffer at a concentration sufficient to result
in approximately equal reactivity with a human cross-reactive control
serum and was added to the plate for 1 h at 37°C. Unbound virus was
rinsed in wash buffer, and 1 �g of each primary antibody (or the control
serum) diluted in blocking buffer was added to the plate for 1 h at 37°C.
Unbound primary antibody was rinsed in wash buffer, and alkaline
phosphatase-conjugated goat anti-human IgG antibody (Sigma, St. Louis,
MO) at 1:2,500 in blocking buffer was added to the plate for 1 h at 37°C.
Unbound secondary antibody was rinsed in wash buffer, the plate was
developed with SigmaFast p-nitrophenyl phosphate tablets (Sigma, St.
Louis, MO), and signal was read at 405 nm.

Animal studies. Cohorts of five (virus only and virus with antibody)
or two (mock) 5-week-old type I/II interferon receptor-knockout mice
(Ifnar�/� and Ifngr�/�) on a C57BL/6 backbone were used in a single
experiment. On days �1 and 9 postinfection, mice received either PBS
(mock and virus only) or 10 �g EDE1 C10 antibody (virus with antibody)
in a 100-�l dose delivered intraperitoneally. On day 0, mice received ei-
ther PBS (mock) or 100 FFU of ZIKV H/PF/2013 (virus only and virus

with antibody) in a 10-�l dose delivered subcutaneously in the hind left
footpad (27). Mice were monitored daily for 14 days postinfection for
weight loss and signs of illness. Mice were humanely euthanized if they
became moribund and counted as deceased for that day. All work was
performed in adherence to the Guide for the Care and Use of Laboratory
Animals (43).

Antigenic cartography. Antigenic cartography was performed using
the EC50s generated from the neutralization assays with DENV-1, -2, -3,
and -4 in U937�DC-SIGN cells. The data were normalized as described in
the work of Cai et al. (44). Euclidean distances between sera were calcu-
lated, and metric multidimensional scaling was used to render the data in
three dimensions (45). All calculations and images were generated in R
Studio, version 0.99.467 (RStudio Inc., Boston, MA). Movie files were
rendered using Adobe Photoshop software (Adobe, San Jose, CA).

Statistical analysis. When analyzing neutralization assays, antibody
and serum concentrations were log10 transformed. Next, the EC50s were
calculated using the sigmoidal dose response (variable slope) equation of
Prism 6 (GraphPad Software, La Jolla, CA). Reported values were required
to have: at least 5,000 recorded events per data point (in the case of the
U937�DC-SIGN assay), an R-squared value of greater than 0.75, a Hill
slope value of at least 0.7 for monoclonal antibodies and 0.5 for sera, and
an EC50 within the range of the assay. Variation between groups was
measured by one-way analysis of variance (ANOVA) with a Bonferroni
post hoc test. P values of less than 0.05 were considered statistically signif-
icant.

Absorbance signals for each virus group in the binding assay were
multiplied or divided such that the signal for that virus against the com-
mon control serum was set to 1. Each assay was run singly with technical
duplicates. Means and standard deviations were calculated in Prism 6
(GraphPad Software, La Jolla, CA).

Survival rates in the animal experiment were analyzed using the log
rank (Mantel-Cox) test in Prism 6 for Windows (GraphPad Software, La
Jolla, CA). The virus-with-antibody cohort was compared to the virus-
only cohort.
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