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Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary
dentin, as well as the liberation of physiologically active molecules and the control of developmental
processes. Although efforts to protect dentin have mostly centered on preventing these proteases from
doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated.
The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and
regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of
reparative and reactionary dentin, and the established functions of MMPs in dentin production are given
particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as
leading applicants for dentin regeneration.
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Introduction And Background
Regeneration of the tissue must closely resemble parent dentin due to the firmly associated structural and
functional relationship in the physiologic dentin. In other words, maintaining the mechanical characteristics
of the tissue provided by its biological structure is necessary for dentin regeneration. Dentin is an essential
mineralized tissue that contains odontoblasts' biological functions within dentinal tubules and is in charge
of reducing mastication pressures [1]. These pressures need to be transmitted from a rigid (96% mineral by
weight enamel) to a much more elastic (70% mineral by weight dentin) substance. Collagenous (86% type 1,
together with types 3, 5, and 6) and non-collagenous proteins make up the dentin matrix. Following pulpal
injury from cavity preparations, carious lesions, erosion, and restorative dental materials, dentin is capable
of limited healing. The circumpulpal dentin layer grows inward as a result of dentin healing by tertiary
dentin deposition, enlarging the pulp chamber and root canals. The exact tubular structure of physiological
dentin is lost in tertiary dentin. Reactionary dentin forms in the shape of tubular odontodentin or atubular
and bone alike osteodentin after minor trauma, which does not affect the underlying Hoehl’s cells or
odontoblast layer [2]. Despite being substantially mineralized, reactionary dentin is less elastic and rigid [3].
Progenitor cells are needed to fill up the deficiency after more severe injuries that cause cellular death by
laying reparative dentin in the shape of a dentinal bridge. The quantity of tertiary dentin in a tooth may or
may not have an impact on how well it functions.

Dentin hardness is linearly correlated with tissue's lack of elasticity and directly proportional to the density
of minerals present in the tissue. The tissue has different mineral densities, with peritubular dentin being
the dentin that is closest to the dentinal tubule border, hardest, and least elastic [4]. The much more elastic
intertubular dentin is found between tubules. Hardness is highest in circumpulpal dentin, lowest in the DEJ,
and again falls toward the pulp [5]. Dentinal tubules increase in number, density, and size as they grow
nearer to the cell body of odontoblasts [6]. Variations in the ratio of intertubular to peritubular dentin,
which affects the tissue's hardness and mechanical qualities, are correlated with changes in dentinal tubule
density. The effects of matrix metalloproteinase (MMP) activity on tube density and the structural and
mechanical characteristics of tertiary dentin have not been demonstrated in research to our knowledge.
Future regenerative models ought to take into account using these elements as success indicators because of
how crucial they are to dentin function.

Review
Dentin regeneration and its implications
The vitality of the pulp is always necessary for dentin repair and regeneration. This idea has been applied in
the management of deciduous teeth that have open apices using regenerative endodontics. The center of the
tooth is made up of the dental pulp, which is a loose connective vascular tissue. In close proximity to dentin,
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it is made up of cellular elements such as immune cells, odontoblasts, neuro-vascular networks, fibroblasts,
and extracellular elements such as glycoproteins and collagen [1]. Vital pulp therapies help to regenerate
vascularized and innervated dental pulp that can facilitate odontoblast differentiation and
dentin neogenesis for the full development of roots [7]. Such a sort of dentin regeneration falls short of
addressing the clinical crown loss brought on by caries. The amount of dentin that might be replaced in
studies is unclear, as is the question of whether this would balance the amount lost via disease. Enamel is an
acellular tissue; hence regeneration of this tissue presents much greater difficulties than dentin
regeneration [8]. At the very least, tissue regeneration requires the capacity for cellular and matrix
replacement through proliferation [9]. Replacement of the damaged dentin matrix by freshly generated,
proliferating odontoblasts and differentiated dental pulp stem cell (DPSC) is necessary for dentin repair. In
this regard, scaffolds and biological cues hold the most potential, enabling cellular infiltration, matrix
deposition, and mineralization later on. Collagen, silk, chitosan, alginates, hyaluronic acid, hydrogels, and
fibrin have all proved successful in promoting dental pulp cell maturation [10]. Despite the fact that these
scaffolds claim to encourage pulpal regeneration, no research has demonstrated meaningful amounts of
mineralization to compensate for the dentin that has been lost to caries. Additionally, the length of time
needed to repair the bulk of the tissue that caries destroyed would be excessive and clinically inappropriate.
To avoid massive forces from interfering with the process of regeneration, the tooth might need to be
removed from its occlusal position. Additionally, a full-coverage restoration would definitely be necessary
for a better long-term outlook.

Dentin MMPs
MMPs are a group of 28 modular endopeptidases that play an important function in the remodeling of
extracellular matrix and the control of extracellular signaling networks that, among other things, regulate
inflammation, bone growth, and angiogenesis [11]. The cellular elements of both hard and soft tissues, such
as epithelial cells, fibroblasts, osteoclasts, osteoblasts, as well as hypertrophic chondrocytes, chondroclasts,
inflammatory cells, and odontoblasts, create these substances [12]. The majority of MMPs have a propeptide
domain, which is in charge of maintaining the enzyme's latent conformation, a zinc-binding catalytic
domain, which is in charge of their proteolytic function, and a hemopexin-like domain, which is in charge of
protein-protein interactions as shown in Figure 1.

FIGURE 1: Structure of MMPs
MMPs contain a zinc-binding catalytic domain, an specificity determining site, a propeptide domain, and a
hemopexin-like domain.

 

Various proteolytic and also nonproteolytic methods trigger these zymogens, which enables them to
perform the many tasks that they are intended for [13]. Their substrates can be used to categorize them, and
these substrates are mostly defined by specificity-determining sites on their catalytic domain [14]. MMP-2, -
3, -7, -8, -9, -13, -14, -20, -23, and -25 are MMPs that are present in dentin as shown in Figure 2 [12,15-17].
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FIGURE 2: MMPs present in dentin and their functions

MMP activation and inhibition dynamics are still poorly understood, despite being one of the significant
aspects of tissue remodeling in reaction to illness. MMP’s proteolytic activity has previously been linked to
tissue deterioration. A significant rise in the activity of MMP-14 has also been linked to a carious response,
though its precise function is still unknown. MMP-8 has been recognized among the principal collagenases
in human dentin linked to carious lesions [3]. These endogenous MMPs perpetuate the illness via enzymatic
activity they have and could be produced from the extracellular matrix or triggered by the process of caries.
Additionally, like in the case of MMP-13, their diminished capacity has been linked to lowered decay risk
[16]. Inhibiting MMP activity has been the main focus of efforts to delay or prevent illness. It has been
determined that MMPs' enzymatic destruction of collagen fibrils is what causes resin-based restorations to
fail to owe to hybrid layer degradation. Exogenous MMP inhibitors have enhanced clinical results of the
restorations, which are resin-bonded so far by maintaining the bond strength and hybrid layer. Examples
include tetracycline antibiotics and chlorhexidine [18]. In human dentin, endogenous Tissue Inhibitors of
Metallo Proteinases I to IV (TIMP-I, TIMP-II, TIMP-III, and TIMP) have been found. Even though this
increase occurs at the same time as raising MMP expression, TIMP-II expression rises during the caries
process [3,12]. Despite the fact that the MMP/TIMP ratio and the substrate-inhibitor specificity might help to
describe and regulate the activity of MMPs in tissues, the importance of their co-expression has not yet been
shown. It has also been suggested that TIMP signaling occurs independently of its MMP-inhibitory effect.
Important elements of scaffolds utilized in regenerative endodontic operations include TIMP-I and TIMP-II
expression [19]. Additionally, it is known that substances that promote pulp cell proliferation also increase
the expression of TIMP [20]. In these circumstances, MMP counter-regulatory effect on TIMP signaling may
explain MMP co-expression. In the end, matrix turnover must be balanced for regeneration. Knowledge of
MMP-TIMP protein interactions and biological processes is necessary for maximizing MMP activity.

MMPs are essential for tooth growth. The earliest MMPs to express are MMP-2 and MMP-9, which may help
with basement membrane breakdown and signal the beginning of ameloblast and odontoblast terminal
differentiation [21]. MMP-2 (and MMP-20) loss of function causes larger levels and a better reach of non-
collagenous proteins known to stimulate dentin mineralization, which is significant at early stages [22].
Still, as development progresses, root dentin abnormalities are caused by the dysfunction of other MMPs,
such as MMP-14 [17]. MMPs are not absurd proteins with similar roles, according to the available evidence.
Their unique modes of action have the potential to influence tissue development, and their imbalance has
important consequences for tissue integrity. The propensity for cell maturation, as well as the necessary
remodeling of freshly deposited dentin matrix, are required for dentin regeneration and tertiary dentin
creation. For these processes, MMPs are essential. In order to achieve regeneration, it may not be possible to
totally stop their proteolytic activity. In fact, even though they are present throughout the disease, some
MMPs may operate as a protective mechanism by aiding in the healing process. The optimum proteolytic
activity and calcium affinities of MMP-3 are pH-dependent (range pH 5.2-5.6). Thus, at the essential pH for
demineralization of enamel and dentin, as those observed in carious settings, its proteolytic activity is at its
peak [23]. However, angiogenesis and reparative dentin deposition have both been linked to MMP-3 [24].

Utilizing MMPs to promote dentin regeneration
MMPs have been linked to the control of developmental processes, the release of physiologically active
molecules, and the modulation of repair during the production of tertiary dentin, among other things [25].
MMPs open pathways for progenitor cells to enter and also activate growth factors that control angiogenesis,
the immune system, and cellular differentiation. When a disease is present, MMP activity may be produced
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by endogenous (immune cells), exogenous (bacterial products), and dentin matrix reservoirs. Bacterial
byproducts from decayed lesions may also activate odontoblast MMP release by activating signaling
cascades. High MMP-2 expression in odontoblasts next to reactive dentin has been linked to higher
proteolytic activity in this region [26]. The maturation of collagen fibers and the beginning of mineral
production in the freshly created dentin may be caused by this action [27]. MMPs aid in the removal of
detritus and the development of tissue. The significance of these enzymes in the regenerative process is
supported by animal models of tissue regeneration. One of the first steps in new limb regeneration following
amputation is MMP overexpression. MMP activity is necessary for limb regeneration, and its suppression
slows it down [28]. The most highly expressed MMPs in this particular model were MMP-9, MMP-3, and
MMP-13 [29]. Similar to other injuries, pulp damage triggers an inflammatory response that includes the
invasion of PMN’s cells and the production of proteases like MMP-9 [30]. These MMPs aid in the breakdown
of exposed carious dentin, angiogenesis, and cell migration, which activates the processes that result in the
deposition of tertiary dentin [26]. As a diagnostic and predictive indicator of pulpal inflammation, MMP-9 is
being employed in endodontics to help direct clinical decisions [30].

Because MMP-3 has anti-inflammatory characteristics, it can reverse mild irreversible pulpitis in vivo. These
characteristics include a reduction in the invasion of macrophages and antigen-presenting cells, as well as
the suppression of Interleukin-6 (IL-6) production [31]. Additionally, independent of its proteolytic activity,
MMP-3 can increase the synthesis of the connective-tissue growth factor (CTGF), which promotes the
migration of dental pulp cells [32]. In vivo pulp damage models, MMP-3 is also localized to endothelial cells
and promotes angiogenesis and reparative dentin deposition [24]. The lack of increased MMP-3 activity in
pulps with irreversible damage supports the protein's potential for regeneration [33]. Future models of
dentin regeneration should pay close attention to MMP-3 as a regeneration mediator. A palisade layer of
odontoblasts that lines the pulp chamber's perimeter is in charge of producing dentin. These cells release
bioactive chemicals during dentin deposition that direct the tissue's mineralization. Similar to this, these
cells are prompted to secrete new dentin in response to dentin breakdown brought on by attrition, carious
exposures, and chemical assaults. The chemical signals and cellular dynamics necessary for primary dentin
production, however, are not present during regeneration and repair. As a result, the tissue is dependent on
bioactive chemicals to promote the differentiation and proliferation of cells necessary for
dentin regeneration and repair [34].

The bioactive chemicals that were once engaged in the natural deposition of mature dentin are stored in the
tissue. As a result, the tissue has a defense system against environmental assaults. Dentin contains
sequestered forms of Transforming Growth Factor-1 (TGF-1), Platelet-Derived Growth Factor- AB (PDGF-
AB), Vascular Endothelial Growth Factor (VEGF), Placenta Growth Factor (PlGF), and Fibroblast Growth
Factor-2 (FGF-2) [35]. These growth hormones are made soluble, which encourages angiogenesis,
odontoblast differentiation, and tertiary dentin deposition. As a result, dentinal bridges that are denser,
thicker, and more structurally similar to physiological dentin are produced [36]. Additionally, removing
these components from plasma can maintain the viability of tooth-bud cells, which has led to the
regeneration of teeth in porcine animal models [37]. A promising method for releasing growth factors and
activating the genes that promote odontoblast differentiation is dentin conditioning with
ethylenediaminetetraacetic acid (EDTA) [38]. Another way to release these elements from tooth tissues is
through MMPs. These proteases may be exposed while still serving their purpose when phosphoric acid
etch-and-rinse adhesive methods are used [39]. Numerous of these proteases have been linked to the
promotion of pulp repair. Similar regeneration qualities have been shown in vivo using direct pulp capping
agents made of dentin matrix components that have undergone MMP digestion [40]. These investigations
recognized MMP-1, MMP-9, MMP-13, and MMP-20 as pulpal healing boosters. In tissue regeneration
models, endogenous MMP activity has been used to transport growth factors from scaffolds. In recent work,
Huang et al. [41] constructed a scaffold including growth factor-binding sites and an MMP-2 cleavage site.
When activated by MMP-2 in vivo, such hydrogel scaffolds would be helpful for the release of growth factors.

It has been demonstrated that concentrated venous blood growth factors, including PDGF-BB, TGF-1, VEGF,
and others, can stop dental pulp cells from releasing proinflammatory cytokines and stimulate the
regeneration of dentine-pulp complex in vivo [42]. Melatonin-induced dental pulp TGF - secretion has also
been used to immunomodulate the pulpal inflammatory response to damage [43]. By attracting dental pulp
stem cells, promoting their proliferation and odontogenic differentiation, as well as promoting pulp
angiogenesis, overexpression of PDGF-BB encourages regeneration [44]. Similar to Bone Morphogenetic
Protein (BMPs), FGF-2 and bioactive pulp-capping agents like BMP-2 and BMP-4 promote cell
differentiation and tertiary dentin deposition [45]. The tissue engineering trio includes scaffolds, signaling
molecules, and cells. Successful scaffolds must endure in tissues for a sufficient amount of time to permit
cellular colonization before being degraded by enzymes [46]. In order to maintain cell colonization and long-
term proliferation, two factors necessary for neovascularization and angiogenesis, MMPs have been used to
remove hydrogel scaffold systems at the appropriate moment [47]. The scaffolds must be kept in place by the
native cells that are present in the regenerating tissues. Anti-inflammatory cytokines like IL-10 that are
released cause TIMP expression and stop MMPs from degrading the scaffold [48]. On the other hand, it is
also known that inflammatory cells in the regenerating tissues secrete MMPs that modify these scaffolds
and freshly deposited extracellular matrices [49]. As was already mentioned, MMPs play a crucial role in the
development of tertiary dentin. These enzymes enhance the bioavailability of signaling molecules, the
cellular processes that result in dentin healing, and the maturation of the dentin collagen matrix. In the
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mineralization process, activation of signaling molecules is crucial. MMPs play a role in the maturation and
function of a class of non-collagenous proteins known as small integrin-binding ligand, N-linked
glycoprotein (SIBLINGs), in addition to the collagenous components of the dentin matrix. This family of
proteins contains the proteins Osteopontin (OPN), dentin-matrix protein-1(DMP-1), dentin sialo
phosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and bone sialoprotein (BSP-2).
Both latent and TIMP-inhibited MMPs are activated by SIBLINGs, which bind exclusively to MMPs [50].
OPN/MMP-3, DMP-1/MMP-9, and BSP/MMP-2 are examples of the known partners. DSPP can be broken
down by MMP-9 into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), and MMP-2 can also
cleave DMP-1 to liberate physiologically active peptides [51]. There is currently no recognized MMP
companion for DSPP or MEPE [52]. SIBLINGs make up the majority of the extracellular matrix proteins in
dentin that have been phosphorylated, and they have been linked to mineralization and odontoblast
development [53]. These two protein families' connections might give a chance for dentin healing.

Conclusions
MMPs are a family of proteinases that are in charge of dentin repair by modulating non-collagenous proteins
and signaling molecules as well as matrix formation and remodeling. These proteinases have as many
different activities as the protein family itself, and they play a developmental role in both illness and
healing. The available literature demonstrates that not all MMPs have the same characteristics. Some may
function more destructively than others, while vice versa.

Dentin regeneration has so far been tackled in one of two ways: either by encouraging stem cells to deposit
dentin or by creating scaffolds that will help mineralized tissue deposit where the dentin deficiency is. These
multifarious proteins are excellent candidates for stimulating dentin regeneration because of the
spatiotemporal modulation of MMP production, their multifunctionality, and their capacity to autoregulate.
Future studies should concentrate on utilizing these enzymes' characteristics to encourage dentin
regeneration.
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