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Abstract

Currently available software tools for automated segmentation and analysis of muscle

cross-section images often perform poorly in cases of weak or non-uniform staining

conditions. To address these issues, our group has developed the MyoSAT (Myofiber Seg-

mentation and Analysis Tool) image-processing pipeline. MyoSAT combines several uncon-

ventional approaches including advanced background leveling, Perona-Malik anisotropic

diffusion filtering, and Steger’s line detection algorithm to aid in pre-processing and

enhancement of the muscle image. Final segmentation is based upon marker-based water-

shed segmentation. Validation tests using collagen V labeled murine and canine muscle tis-

sue demonstrate that MyoSAT can determine mean muscle fiber diameter with an average

accuracy of ~92.4%. The software has been tested to work on full muscle cross-sections

and works well even under non-optimal staining conditions. The MyoSAT software tool has

been implemented as a macro for the freely available ImageJ software platform. This new

segmentation tool allows scientists to efficiently analyze large muscle cross-sections for use

in research studies and diagnostics.

Introduction

Skeletal muscle is an adaptive tissue, which undergoes changes in mass and fiber composition

in response to a wide range of stimuli including exercise, aging, trauma, as well as myopathic

and neurological disease. Changes in muscle mass are primarily observed to be associated with

atrophy or hypertrophy of individual myofibers as opposed to changes in fiber number [1,2].

Thus, characterization of fiber size distribution in the muscle tissue has significant diagnostic

importance.

Muscle fiber size is routinely determined through imaging and analysis of fixed or frozen

cross-sections. The fiber size distribution is typically quantified in term of cross-sectional area

(CSA) or fiber diameter. The use of minimum Feret diameter is preferred as it is the least

affected by distortion due to oblique cross-sectioning of muscle tissue [3].
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The development of fluorescent immunohistochemistry (IHC) protocols which label the

muscle fiber plasma membrane or extracellular matrix enable high contrast imaging of the

fiber boundaries. Effective staining protocols for delineating muscle fibers include dystrophin

[4], laminin [5], or collagen [6] staining techniques.

Despite availability of these labelling procedures to aid in identification of the fiber bound-

aries, segmentation and analysis of scans of muscle cross-sections is still most often accom-

plished using manual techniques. This is frequently done using basic image annotation

software combined with a graphic tablet or mouse. This manual quantification process is

tedious and time consuming [7]. Considerable regional variability in fiber size is often

observed across a muscle section and so a large number of regions must be sampled across the

specimen to accurately quantify the fiber size distribution in the overall muscle.

In attempts to speed up this process, several groups have described image-processing

frameworks for the automatic segmentation and analysis of muscle cross-sections.

A typical image processing pipeline for muscle cross-sections requires several steps includ-

ing pre-processing, segmentation, and morphological analysis [8]. The pre-processing step

often involves re-adjusting intensity and contrast, background suppression, as well as to pro-

viding noise and artifact reduction of the original image. The segmentation step attempts to

separate the muscle fibers from background. Finally, morphological analysis extracts feature

data such as the fiber size distribution from the segmented image.

Common approaches for automated segmentation of muscle fiber cross-sections range

from simple thresholding based strategies [7] to more advanced methods including active con-

tour [9–13] and watershed based algorithms [6,14–17]. Unfortunately, while a number of

image processing approaches to muscle cross-section analysis have been described in the liter-

ature, to date, only a limited number of research groups [13,14,16] have made their computer

code available for general use by the research community.

In our experience, a common limitation of currently available software for automated anal-

ysis of muscle cross-sections is that segmentation accuracy tends to be highly sensitive to the

quality of the input images. Technical issues include weak staining contrast, regional variations

in intensity, non-specific staining, as well as presence of artifacts associated with freezing or

sectioning [11]. These issues can result in mis-segmentation, which may require extensive

manual correction. Because currently available software tools are so sensitive to these imaging

conditions, their use has not yet gained broad acceptance as a practical tool for research studies

and diagnostics.

In this paper, we present MyoSAT (Myofiber Segmentation and Analysis Tool), a semi-

automated image processing pipeline that our group has developed to allow analysis of large

(and even entire) muscle cross section images. Our goal in developing the MyoSAT software is

to offer an improved method, which performs well even in cases of non-ideal staining condi-

tions. The capability to analyze large regions of muscle enables the researcher to identify subtle

changes in fiber size distribution between treatment groups.

Materials and methods

Tissue samples

Animal tissues used for development of the image analysis method were obtained as part of

ongoing research studies associated with peripheral nerve repair. No animals were sacrificed

specifically for purposes of this study.

Ethics statement. All associated research studies were performed in accordance with the

PHS Policy on Humane Care and Use of Laboratory Animals, NIH Guide for Care and Use of
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Laboratory Animals, federal and state regulations, and was approved by the Cornell University

Institutional Animal Care and Use Committee (IACUC, protocol #2012–0099).

Murine tibialis-anterior (TA) muscle tissue. Six C57 BL/6 mice (three male and three

female) underwent a left side proximal-tibial to distal-common peroneal cross suture surgery

with a conduit repair [18]. Five weeks after nerve injury, animals were euthanized and bi-lat-

eral TA muscle cross sections were obtained.

Canine crico-arytenoid lateralis (CAL) muscle tissue. Five CAL muscle cross sections

were obtained from each of two female beagle dogs with no history of upper airway disease

and normal laryngeal function, which was determined endoscopically.

Immunohistochemistry

The TA and CAL muscle sections were briefly fixed in cold acetone for 10 minutes. 8 μm cryo-

sections were then obtained. The sections were washed in phosphate buffered saline contain-

ing 0.05% Tween 20 (PBST) and incubated with 10% rabbit serum and then goat anti-type V

collagen antibody (Southern Biotech, Birmingham, AL) at 1:1000 for 1.5 hours. The sections

were then further incubated with biotinylated rabbit anti-goat IgG (Vector Laboratories, Bur-

lingame, CA) and streptavidin-Texas Red (Molecular Probe, Life Technologies, Grand Island,

NY) to visualize staining. Finally, the sections were stained with DAPI and mounted in Pro-

Long1Diamond anti-fade mountant. As a negative control, goat IgG was diluted to the same

final concentration as the primary antibody.

Microscopy

The Murine TA cross sections were imaged using a Leica Aperio FL slide scanner at 20x.

Image resolution: 0.462 μm/pixel (10bits/pixel). The images were saved in 16 bit TIFF format.

Canine CAL cross sections were imaged using an Olympus AX 70 compound fluorescence

microscope at 20x with an Optronics MicroFire camera. Image resolutions: 0.368 μm/pixel (12

bits/pixel). The images were saved in 16 bit TIFF format.

Image processing development

The MyoSAT image-processing pipeline consists of 5 stages: 1) Intensity Leveling. 2) Contrast

Enhancement. 3) Ridge Detection. 4) Ridge Image Post-Processing. 5) Watershed

Segmentation.

Intensity leveling. In typical IHC stained muscle cross-sections, regional fluorescent

intensity of the interiors of the muscle fibers is observed to vary across the sample due to non-

specific staining as well as variations in tissue thickness. A background leveling technique is

applied to suppress this variation. To accomplish this, first the background intensity of the

fiber interiors is estimated by applying a median filter with kernel size of 45x45 μm. Any of the

parameters discussed in this section can be adjusted in the macro. Custom values will be input

in μm and calculated in pixels for use in the filters. This allows for use of images of different

resolutions. Next, pixel values of the original image (Fig 1A) are divided by the median filtered

image values, which results in a new “leveled” image with each pixel represented with a floating

point value. Fiber interiors in this leveled image have a normalized average intensity of ~1.0

and the stained fiber boundaries have intensity >1.0.

Contrast enhancement. In the second stage, a Perona-Malik (PM) anisotropic diffusion

filter [19] is applied to the new “leveled” image. This filter aids to suppress local image varia-

tions and pixel noise while preserving contrast of the fiber boundaries and to enhance the

edges. After the PM filter step, the image pixel values are raised to the 4th power which boosts

the contrast of the extracellular membranes with respect to background (Fig 1B). The
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optimum value of the k parameter of the diffusion filter was experimentally found to obey a

squared relationship, as shown below.

k ¼
s2

resolutionð mmpixelÞ
2

Where σ is the filter width in μm. This was determined to be optimal at 3 for the validation

images used. It can be adjusted to user preference.

Ridge detection. In the third stage, Steger’s line detection algorithm [20] is applied to

locate the extracellular membranes between the muscle fibers. An appropriate scale factor (σ)

is chosen to maximize detection of the fiber boundaries while rejecting image artifacts. The

scale factor is related to the target boundary line width (w) by:

s ¼
w

2
ffiffiffi
3
p þ 0:5

Optimum value of σ was found to correspond to a target line width of 6μm. The macro cal-

culates the value in pixels for use with images of different resolution. As with any parameter in

the macro, this can be customized by the user. Output of the ridge detection algorithm is a

binary “skeletonized” image containing the detected fiber boundaries (Fig 1C).

The thickness of the connective tissue is input into the macro as the sigma parameter of the

ridge detection filter. The default value is the approximate average pixel width of the

Fig 1. MyoSAT image processing steps: A) Original image. B) Intensity leveling and contrast enhancement. C) Ridge detection. D) Ridge image

post-processing. [dilation + Gaussian blur + seed generation] E) Watershed segmentation. F) Result overlay.

https://doi.org/10.1371/journal.pone.0243163.g001
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connective tissue in the validation images. It will be scaled linearly to the image’s resolution.

This value can be adjusted for thicker or thinner connective tissue. Uneven thickness of con-

nective tissue can cause incorrect segmentation over these areas. The most effective solution is

to create a masking image that will prevent connective tissue areas from being included in the

analysis.

Ridge image post-processing. The output image of the ridge detection algorithm often

contains discontinuities as well as detected background artifacts. In order to convert the initial

ridge detection image to a final segmented result, several additional post-processing steps are

applied: First, a morphological dilation filter [21] using a disk shaped structuring element

(radius = 6 μm) is applied to thicken the detected lines. The next step applies a gaussian blur

filter to the binary image. Parameters for the morphological and Gaussian blur filters are also

scaled linearly according to image resolution. In the final step, a manually adjusted threshold

is applied to the blurred image such that values below the threshold are set to zero. The thresh-

old is selected using a visual representation, showing all areas that will be considered below the

threshold. The default value of 70 was experimentally selected and has been shown to produce

accurate results with all images test. Adjusting the value can be used to fine tune results, help-

ing correct for over- or under-segmentation. This step establishes seed locations for the water-

shed segmentation algorithm, which is described next (Fig 1D).

Watershed segmentation. The final stage of the pipeline applies a classic watershed seg-

mentation algorithm [22] to the blurred image. Regions of zero intensity established by the

manually adjusted thresholding step above provide seed locations for the segmentation algo-

rithm. After watershed segmentation (Fig 1E and 1F), the detected objects are classified by

cross-sectional area (CSA) and Feret diameter. To aid in filtering out mis-segmented regions,

objects with CSA outside a predetermined range (200 to 10,000 μm2) are excluded from the

analysis. This range corresponding to the smallest and largest fiber sizes observed in the target

muscle tissues. Excluding values outside this range is used to reduce errors in MyoSAT.

Through manual analysis, no fibers were measured outside this range. On inspection of results,

segments larger than 10,000 μm2 typically correspond to groups of myofibers that were

counted as a single object. Segments smaller than 200 μm2 correspond to artifacts that were

mistakenly identified as small fibers. Within the macro, this range can be adjusted to user spec-

ifications. In the 22 validation images, on average approximately 3.3% of detected fibers below

and 0.4% above this range. These fibers were not included in any analyses.

The image-processing pipeline has been implemented as a macro for the freely available

image processing package FIJI / ImageJ [20]. The macro requires several third-party ImageJ

plugins which implement several of the image processing algorithms [23–25]. Parameters for

filters used in the Macro were selected and optimized using images at a 0.462 μm/pixel resolu-

tion. For images of different resolution, parameters for the median, Gaussian blur, line dila-

tion, and ridge detection filters are defined in microns. These values are converted to pixels,

which are used in the filters. The k parameter anisotropic diffusion filter follows a squared rela-

tionship with resolution.

Validation

Validation image sets. The validation image sets consisted of 12 murine TA muscle

cross-section images (ROI area: 0.17–0.86 mm2) and 10 canine CAL muscle cross-section

images (ROI area: 0.26mm2).

Manual segmentation (Ground truth). Fiber boundaries within the muscle cross-section

images were manually segmented with the aid of a graphics tablet (Wacom Cintiq 22HD).

Feret diameters of the manually segmented regions were then obtained using the ImageJ
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“Analyze Particles” function. The manual analysis was performed by one observer, not

involved in the study.

SMASH software. To compare performance of the MyoSAT with other currently avail-

able open-source software for automated muscle cross-section image segmentation, the image

sets were similarly segmented using the recently released SMASH (Semiautomatic Image Pro-

cessing of Skeletal Muscle Histology) software package [16].

Accuracy analysis. Histograms of fiber diameter were generated for each muscle section

image using each of the three segmentation methods (manual, MyoSAT, and SMASH). The

accuracy of the automated approaches was compared to ground truth by statistical compari-

sons of mean fiber diameter obtained for each image. For reasons described in the previous

section, segmented objects with CSA outside of the pre-determined given range (~200 to

10,000 μm2) were excluded from the analysis. Fibers intersecting the ROI edges were also

excluded from analysis.

Development of a staining contrast mapping tool

It was observed that several of the image-processing pipeline steps could be combined to pro-

vide a staining contrast mapping tool valuable for optimization of staining protocols. We

define the staining contrast in the image as the intensity ratio between the staining of the fiber

boundaries (extracellular membranes) to the non-specific staining of the fiber interiors.

The accuracy of most segmentation algorithms is often highly sensitive to staining contrast

within the image. Such contrast information aids in quality control by identifying cross-sec-

tion regions with sufficient contrast to provide good segmentation accuracy.

The three steps used to generate the staining contrast map are: 1) The original image is

divided by the median filtered image to generate a “leveled image”. 2) The ridge detection

image generated using Steger’s line detection algorithm is used as a mask to sample the centers

of the fiber boundaries to generate the local contrast map. 3) An averaging function with ker-

nel size (27 x 27 μm^2) is then applied to the map to reduce localized intensity variations. This

aids in assessing overall staining contrast within a muscle region.

Results

Validation testing

The validation images were analyzed using three different segmentation methods: 1) Manual

tracing (ground truth), 2) the proposed MyoSAT image processing method, and 3) the

SMASH software package.

The image sets consisted of 12 murine TA muscle cross-section images containing 91–165

fibers (mean = 124.9); and 10 canine CAL muscle cross-section images containing 28–153

intact fibers per image (mean = 89.3)).

We found that for both murine and canine tissue samples, fiber counts and fiber diameter

obtained using the proposed semi-automated muscle segmentation method (MyoSAT) closely

correlated to results obtained using manual segmentation of the muscle fibers (Fig 2).

As seen in Fig 2, some images have fiber counts greater than the ground truth. MyoSAT has

a tendency to over-segment the image, rather than under-segment. The ridge detection filter,

sometime recognizes artifacts as fiber divisions, causing single fibers to be subdivided and

counted as multiple. Use of the noise reduction filters with appropriate parameters, described

above, has reduced these errors. Artifacts are typically areas containing connective tissue or

thicker sectioning, where fibers are less distinct. These errors have not been seen in clean areas

with well-demarcated fibers. The quality of the muscle section has a strong effect on over-

segmentation.
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For the murine TA samples, no significant differences were observed between mean fiber

estimates for the proposed method and ground truth (mean difference ± std error,

0.55 ± 0.94 μm, p = 0.57, paired two-tailed test). Significant differences were observed between

ground truth and the SMASH method (3.03± 1.04μm, p = 0.0081, paired two-tailed test).

The average difference between the proposed method and ground truth for the 22 com-

bined murine and canine sample images was 7.6% [SD = ±1.3%]. The difference between the

SMASH method and ground truth was 8.5% [SD = ±1.5%]. We observed that the SMASH soft-

ware had a tendency to over-segment the fibers resulting in higher fiber counts and underesti-

mation of the fiber diameters.

Bland-Altman analysis [26] indicates that the MyoSAT method correlates slightly more

closely (y = -0.22x + 8.8, p = 0.099) with the manual method than SMASH (y = -0.58x + 21,

p = 0.0001, ANOVA, Fig 3).

We next compared the fiber size histograms generated using manual, MyoSAT, and

SMASH segmentation methods. We observed that the MyoSAT analysis pipeline produces

fiber size distributions histograms that more closely resemble ones generated by manual seg-

mentation than size distributions generated using the SMASH segmentation approach.

Fig 2. Comparison of manual tracing method (Ground truth), MyoSAT, and SMASH to analyze 12 murine (TA) and 10 canine (CAL)

muscle cross-section images. (22 Images total) % Error = percent difference of the minimum Feret diameter from the ground truth.

https://doi.org/10.1371/journal.pone.0243163.g002
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Analysis of full muscle cross-sections

A primary motivation for the development of the MyoSAT software was to develop a reliable

method for segmentation and analysis of large muscle cross-sections regions.

Using the MyoSAT segmentation method to analyze entire murine TA muscle cross-sec-

tion images frequently identified regions of non-uniform and low contrast staining. Fig 4 pro-

vides an example output of the proposed method. The analysis of the example image took

approximately 15 minutes. We found analysis of such large regions to be unreliable using

other available image processing software for automatic fiber segmentation due to issues

including mis-segmentation, processing time, and image size constraints.

We next demonstrated the application of MyoSAT to identify changes in muscle physiology

after injury. Left and right size TA muscle cross-sections were obtained from mice 5 weeks

after a unilateral nerve transection. MyoSAT was used to analyze the full TA muscle cross-sec-

tions images containing between 1153–2637 identified fibers (mean 1784.1).

As anticipated, evidence of reduced muscle fiber diameter was detected in the repaired limb

(38.8μm (±1.0μm)) compared to the control (51.36 (± 2.1μm), Fig 5, p = 0.00184, n = 4 mice,

paired t-test). This demonstrates the use of MyoSAT data to quantify and identify significant

statistical differences in fiber size obtained via analysis of full-muscle cross-sections. This new

method avoids the traditional approach of having to analyze a large number of individual

ROI’s of each cross-section. The percentage of outliers, based on CSA (>10,000, <200 μm2) in

the images were 3.5% below and 0.48% above, resembling the full validation image set.

Fig 3. Combined Bland-Altman plot for murine and canine fiber diameter data obtained using MyoSAT, and SMASH compared to

manual tracing method (Ground truth). Linear regression: MyoSAT: y = -0.22x + 8.8. SMASH: y = -0.58x +21.

https://doi.org/10.1371/journal.pone.0243163.g003
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Application of contrast analysis tool

We found the staining contrast mapping tool, which we developed as a simple extension of the

image-processing pipeline, to be very useful in providing an objective assessment of staining

contrast. The contrast map allows the user to quickly identify poorly stained regions, which

may result in reduced segmentation accuracy.

Fig 6 demonstrates output of the contrast-mapping tool applied to a full cross-section of

Col V stained murine TA muscle exhibiting a non-uniform staining issue. In this case, the

regional average contrast ratio between the fiber boundaries and the fiber interior ranged from

approx. 1.0 to 3.0.

In our testing, a contrast ratio of approximately >2.25 across a region was found to provide

consistent and accurate segmentation of the fiber boundaries using the MyoSAT software.

Discussion

Here we have introduced a semi-automated image-processing pipeline (MyoSAT) which we

developed for accurate segmentation and size distribution analysis of myofibers in muscle

cross-section images. As we have described, MyoSAT incorporates several novel pre-process-

ing steps to compensate for non-uniform staining intensity and to enhance the contrast of the

fiber boundaries. Several of the unconventional steps within the image-processing pipeline

include: 1) Aggressive pre-processing to compensate for non-uniform staining. 2) Application

of anisotropic diffusion filtering to provide noise reduction and fiber border enhancement. 3)

Use of Steger’s algorithm to detect and binarize the fiber boundaries.

Our validation tests have demonstrated that the MyoSAT analysis provides on average

92.4% accuracy for estimation of mean fiber diameter when compared to human segmented

images in both murine and canine muscle tissue. Muscle fiber size distribution histograms

generated during the analysis were found to closely approximate results obtained by manual

segmentation.

Fig 4. A,B:Example of full cross-section of murine TA muscle analyzed using the MyoSAT semi-automatic fiber detection software. C:

Histogram of (min Feret) fiber diameters. MyoSAT has identified n = 2923 fibers with mean fiber diameter = 44.75μm (SD+/-13.81 μm).

https://doi.org/10.1371/journal.pone.0243163.g004
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It is important to note that the MyoSAT segmentation approach is based upon a line detec-

tion algorithm to detect the fiber boundaries, whereas most other software approaches are

based upon edge detection algorithms. As a result, MyoSAT establishes segmentation bound-

aries halfway between the individual fibers instead of attempting to trace the fiber interior

edges. As such, the proposed method has limited ability to reject the presence of excessive con-

nective tissue in a region. Despite this limitation, the primary advantage of the line detection

approach is the enhanced ability to segment low contrast images. This approach also avoids

subjectivity associated with identifying the precise location of each fiber membrane edge,

which is a common issue with the edge based detection algorithms.

MyoSAT is a semi-automated segmentation approach and so some manual adjustment of

sensitivity parameters is required in order to achieve accurate segmentation. A disadvantage to

this approach is that manual tuning can introduce some subjectivity into the analysis. How-

ever, an advantage is the ability to adjust the image processing to work for a wide range of

imaging and staining conditions.

As with most automated image segmentation approaches, the segmentation accuracy of the

proposed method is ultimately limited by staining contrast and image quality. A secondary

outcome of our work has been the development of a contrast-mapping tool, which we have

found to be useful for optimization and quality control of muscle staining protocols. The

Fig 5. MyoSAT detects difference in muscle fiber diameter following nerve transection. Analysis used to evaluate change in muscle

morphology in murine TA muscle 5 weeks after a common peroneal nerve transection. MyoSAT reveals significant differences in average fiber

size between transected and uninjured sides. (n = 4 mice) Error bars = Std. Error.

https://doi.org/10.1371/journal.pone.0243163.g005
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contrast mapping technique provides an objective approach to identify regions with sufficient

staining contrast in order to yield accurate segmentation.

Our research group developed MyoSAT after having limited success with both commercial

and open-source software packages to reliably analyze muscle fiber size distributions in large

cross-sections, which we needed for own work. MyoSAT can be applied to entire cross sections

of skeletal muscle, allowing the accurate segmentation and measurement of thousands of indi-

vidual fibers.

Future development goals for the MyoSAT software include: 1) Continue to improve opti-

mization of the image processing algorithms to improve performance. 2) Incorporate addi-

tional staining channel data to take advantage of ATPase [27] or myosin heavy chain [28]

staining techniques to provide capability for fiber type distribution analysis. 3) Improve Myo-

SAT’s ability to handle images with areas of thicker connective tissue. 4) Test and improve

MyoSAT’s accuracy under a variety of staining conditions.

MyoSAT has demonstrated it’s potential use for a wide range of range of studies including

disease and regeneration models. The ability to rapidly measure muscle fiber diameter allows

for fast assessment of nerve injury or muscle atrophy. While MyoSAT has only been tested

using canine and murine muscles, it could be applied to skeletal muscle of any species. The

availability of this software will enable the research community to efficiently analyze large

muscle cross-sections for experimental studies and diagnostics.

Supporting information

S1 Fig.

(TIF)

Fig 6. Development of contrast mapping tool to assess staining uniformity and contrast required for accurate fiber segmentation

illustrating regions of high contrast (I) vs poor contrast (II) fiber staining. Contrast map range 1.0–3.0.

https://doi.org/10.1371/journal.pone.0243163.g006
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S2 Fig.
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