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Abstract

Background: Helicobacter pylori causes gastric cancer in 1–2% of cases but is also beneficial for protection against allergies
and gastroesophageal diseases. An estimated 85% of H. pylori–colonized individuals experience no detrimental effects. To
study the mechanisms promoting host tolerance to the bacterium in the gastrointestinal mucosa and systemic regulatory
effects, we investigated the dynamics of immunoregulatory mechanisms triggered by H. pylori using a high-performance
computing–driven ENteric Immunity SImulator multiscale model. Immune responses were simulated by integrating an
agent-based model, ordinary, and partial differential equations. Results: The outputs were analyzed using 2 sequential
stages: the first used a partial rank correlation coefficient regression–based and the second a metamodel-based global
sensitivity analysis. The influential parameters screened from the first stage were selected to be varied for the second stage.
The outputs from both stages were combined as a training dataset to build a spatiotemporal metamodel. The Sobol indices
measured time-varying impact of input parameters during initiation, peak, and chronic phases of infection. The study
identified epithelial cell proliferation and epithelial cell death as key parameters that control infection outcomes. In silico
validation showed that colonization with H. pylori decreased with a decrease in epithelial cell proliferation, which was
linked to regulatory macrophages and tolerogenic dendritic cells. Conclusions: The hybrid model of H. pylori infection
identified epithelial cell proliferation as a key factor for successful colonization of the gastric niche and highlighted the role
of tolerogenic dendritic cells and regulatory macrophages in modulating the host responses and shaping infection
outcomes.
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Background

Computational modeling of immune response dynamics can
provide novel insights and facilitate systems-level understand-
ing of the interactions at the gastric mucosa during infection.

Ordinary differential equation (ODE)-based methods are deter-
ministic and based on the average response of cells over time.
Dynamical models are used in immunology for system-level
analyses of CD4+ T cell differentiation [1], macrophage differ-
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entiation [2], immune responses elicited by Clostridium difficile
infection [3], co-infections [4], and in cancer and immunother-
apy [5]. However, ODE-based models lack the spatial aspects and
the features to study the organ and immune cell topology over
time. Agent-based models (ABM) employ a bottom-up approach
that focuses on the spatial and temporal aspects of individual
immune cells, unlike the ODE-based methods. This rule-based
method includes agents that act as local entities which - inter-
act locally with other agents, move in space, follow a set of rules
representing their role in a given system and contribute towards
generating an emergent behavior. Because the immune system
is a complex dynamical system [6] whose components, i.e., the
immune cells, move in space and time changing their location,
ABMs are useful tools that can be used to understand biological
mechanisms and reveal hidden insights.

Helicobacter pylori is a gram-negative bacterium that has per-
sistently colonized the human stomach since early evolution [7,
8] and is currently found in >50% [9] of the global population.
H. pylori has co-evolved with humans for thousands of years,
such that an estimated 85% of H. pylori−colonized individuals
do not present any detrimental effects. Thus, the vast major-
ity of carriers (i.e., up to 75%) remain asymptomatic, while only
15% develop ulcers and <3% develop cancer. Further, growing
and sometimes contradictory evidence from recent experimen-
tal, clinical studies and epidemiological studies suggest that H.
pylori might provide protection against obesity-related inflam-
mation, type 2 diabetes [10], esophageal and cardiac patholo-
gies, childhood asthma and allergies [11], and autoimmune dis-
eases. In this context, it is crucial to understand the mecha-
nisms that promote host tolerance to the bacterium in the gas-
trointestinal mucosa and its systemic regulatory effects because
these have been linked to the beneficial commensal aspects of H.
pylori−human host interaction. Computational models provide
a cost-effective and predictive way to study the complex and
dynamic immune system interactions and form a non-intuitive
novel hypothesis. Solving the complex puzzle of immunoregula-
tory mechanisms that include large spatiotemporal scales rang-
ing from cellular, intracellular, and tissue- to organ-level scales
is a major unsolved challenge that requires the application of
computational modeling and data analytics.

An advanced hybrid model used to study the mucosal im-
mune response during gut inflammation highlighted the mech-
anisms by which effector CD4+ T-cell responses contributed to
tissue damage in the gut mucosa following immune dysregu-
lation [12]. Other hybrid models with the integration of ABM,
ODE, and partial differential equation (PDE) technologies were
developed to elucidate the dynamics of tumor development [13]
and tumor growth models [14]. These combined techniques have
been used to develop multi-organ models in various situations,
including the study of granuloma formation [15] and pressure-
driven ulcer formation in patients with spinal cord injury [16].
The different agent-based simulators with immunology-related
applications are discussed and summarized by Cappuccio et al.
[17] and Bassaganya-Riera et al. [18]. The different multiscale
modeling tools and agent-based immune simulators are com-
pared by Mei et al. [12] and An et al. [19].

In this study, we utilize a high-resolution ENteric Immunity
SImulator (ENISI)-based model of the stomach for simulating
the mucosal immune responses to H. pylori infection. The ad-
vanced hybrid multiscale modeling platform ENISI multiscale
model (MSM) is capable of scaling up to 1012 agents [20]. The host
immune responses initiated during H. pylori infection and the
underlying immunoregulatory mechanisms are captured using
the ENISI multiscale hybrid model. The underlying intracellu-

lar mechanisms that control cytokine production, signaling, and
differentiation of macrophages and T cells are modeled by using
ODEs; the diffusion of cytokine values is modeled using PDEs;
and the location and interactions among the immune cells, bac-
teria, and epithelial cells are modeled using ABMs. The hybrid
model thereby represents a high-performance computing (HPC)-
driven large-scale simulation of the massively interacting cells
and molecules in the immune system, integrating the multiple
modeling technologies from molecules to systems across multi-
ple spatiotemporal scales.

To understand the dynamics and emergent immunological
patterns described by this hybrid model, we employed sensitiv-
ity analysis (SA), an important part of the model analysis used
to explore the influence of varying model parameters on the
simulation outputs. The influence of the effects of changes in
parameter values on the model output explains the model dy-
namics that underlay the outputs [21, 22]. Furthermore, SA ex-
amines the robustness of the model output at a different range
of parameter values that correspond to a range of different as-
sumptions. We employed global SA and conducted a 2-stage
spatiotemporal global SA approach. First, we used a regression-
based method such as the partial rank correlation coefficient
(PRCC) and screened the important input parameters that were
shown to have the most influence on the output cell populations
obtained from the hybrid model. Second, the screened input pa-
rameters from the first stage were varied to build a second-stage
parameter design matrix, and the computer simulations were
again run using the hybrid ENISI model. The outputs from both
analytic stages were combined and used as a ’training dataset’ to
build a spatiotemporal Gaussian process (GP)-based metamodel.
Finally, variance-based decomposition global SA was used to
compute the Sobol’ indices and the most influential parameters
over the course of infection were identified. The data analytics
methods conducted on the hybrid model identified the epithelial
cell parameters such as epithelial cell proliferation as the most
influential ones, required for the successful colonization of H.
pylori in the gastric microenvironment.

Methods
Hybrid multiscale H. pylori infection model

We developed a multicompartment, high-resolution, hybrid
ABM/ODE/PDE model to capture the dynamics of the immune re-
sponse during H. pylori colonization of the gastric mucosa. The
model has a spatial discretization such that the dimension of
the entire (2D) grid is 30 mm x 10 mm. An individual lattice site
for our simulation is 1 mm x 1 mm; however, this is a config-
urable run parameter and can be changed without modifying the
model. An individual lattice site is a unit wherein all the agents
located within that location have the same cytokine environ-
ment, i.e., for all the agents in that location, ENISI-MSM would
send the same concentration of cytokines to COPASI. The en-
tire grid is divided within into 4 functionally and anatomically
distinct sized compartments: lumen, epithelium, lamina propria
(LP), and gastric lymph node (GLN). In the model, there are multi-
ple cells and cell types (i.e., agents) within this dimensional grid.
At the beginning of each simulation cycle, the cells (agents) are
randomly placed within the 2D grid. The separation of different
types of agents, corresponding to different cell types, into com-
partments within the grid is based on the conceptual framework
that underlines the model, which is based on the authors’ exper-
tise and available information. Currently the individual agents
do not have any physical size meaning such that there is no limit
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of agents within each individual spatial grid. The model is ini-
tialized with the concentration of different cell types (i.e., agents
for, e.g., macrophages) at the beginning of the simulation by the
user.

The use of a border implementation permits the migration
of agents (cells) across compartments and facilitates the unidi-
rectional and bidirectional movement of the agents. At the cel-
lular scale, ENISI-MSM, simulated epithelial cells, macrophages,
dendritic cells (DCs), CD4+ T cells, and bacteria which are im-
plemented as agents in the model. At the intracellular scale,
calibrated ODE-based models of T cells [23] and macrophages
[2] were used to represent the intracellular pathways control-
ling cytokine production. The CD4+ T-cell ODE model was cali-
brated using the experimental data provided in Table S1 of Carbo
et al. [23]. The Particle Swarm algorithm implemented in CO-
PASI was used to determine unknown model parameter values
and fully calibrate the CD4+ T-cell ODE model (details are de-
scribed in Carbo et al. [23]). The intracellular macrophage ODE
model was calibrated using a combination of sourced and new
data generated from in vitro macrophage differentiation studies,
which were compiled into a dataset provided in the S2 file of
Leber et al. [2]. The parameter values are specified within the
previously published articles—CD4+ T-cell ODE model [23] and
macrophages [2]. The parameters of the calibrated ODEs were
kept unchanged, and the ABM parameters were calibrated by ap-
proximating the output simulations such that they qualitatively
resembled the patterns observed in a mouse model of H. py-
lori infection [24], also described in detail in Results (see Results
section, Hybrid model simulations produce similar immune dynamics
observed in previously published experimental data). Cytokines se-
creted by immune cells and their change in concentration were
modeled by PDE. The degradation value of the cytokines and the
diffusion constant determines the spread of the cytokine value
of one lattice site to its neighboring lattice site similar to as de-
scribed in our previous work [12]. The features of ABM, ODE,
and PDE were combined to create a multiscale modeling envi-
ronment that spanned across different orders of spatiotemporal
scales. The model output contains information about the x and y
coordinates of the agents at every time point. The cytokines and
internal signaling pathways that drive functional fates of cells
are well mixed within a cell; i.e., we have only temporal reso-
lution within the cell during a time step. However, because the
model is capable of providing information regarding spatial co-
ordinates over time, we claim the model to be a spatiotemporal
model.

The code for the hybrid model is freely accessible and can be
downloaded from the GitHub repository [ 25]. The detailed use
instructions on “how to run a simulation,” and codes for creat-
ing specific examples presented here are described in Additional
file S1. The SciCrunch database assigned RRID for ENISI-MSM is
RRID:SCR 016918. The design implementation of the code struc-
ture is depicted in the Additional file Fig. S1. The hybrid model
is implemented in C++ and utilizes the Repast HPC library [ 26,
27]. For the ODEs, we utilized COPASI [28], an ODE-based mod-
eling tool used in computational biology. The rules in the model
that described the interaction of H. pylori with the gastric mu-
cosa and immune responses resulting from the infection are de-
rived from the findings in our previously published studies [ 1,
2]. Specifically, this hybrid model reproduced the immune re-
sponses generated by the interaction of H. pylori and the resident
macrophages as shown in the mouse model of H. pylori infec-
tion [24]. The rules for each cell type in the H. pylori infection are
summarized in Table 1. A pictorial representation of the rules is
depicted in Figure. 1. These cell types, represented as agents,

act according to the rules (as in Table 1), which are updated at
each discrete simulation cycle.

Model description

ENISI-MSM is a multiscale ABM platform for computational im-
munology that was built on our previous work, ENISI-MSM [12],
which integrated COPASI, the ODE solver, and ENISI, an agent-
based simulator.

Spatial discretization

The model has a spatial discretization such that we define the
area being simulated as a simulation environment with a 2D grid
of size 30 mm x 10 mm. Each individual lattice site is 1 mm x 1
mm; however, this is a configurable run parameter and can be
changed without modifying the model. We further want to clar-
ify that the aforementioned units in the model are annotations
and purely aesthetic. The scales described in Table 1 in the pre-
vious version of ENISI-MSM [12] were kept unchanged .

The 4 functionally and anatomically distinct sized compart-
ments are separated by border implementation such that their
dimensions are lumen (2 mm), epithelium (1 mm), LP (5 mm),
and GLN (2 mm). The following compartments are adjacent to
each other: lumen to epithelium, epithelium to LP, and LP to GLN.
The spatial discretization is described in Figure. 2.

The parameters that define the initial concentration of the
agents and the diffusivity of cytokines are obtained from a prop-
erties file (’model.props’ in the ’Howtorunasimulation’ folder in
the GitHub repository). All the values of the parameters are listed
in Table S1 alongwith detailed mechanism that each parameter
corresponds to is described in the second column, ”parameter
description,” of Table S1. We demonstrate below how we obtain
a count of thousands of resident macrophages. For example, if
the initial concentration of resident macrophages in the LP is
30, the total number of these resident macrophages can be cal-
culated as

n(resident macrophages) = sizecompartment (lamina propria)

×concentrationintial(resident macrophages).

n(resident macrophages) = (30 × 5) × 30 = 4, 500.

Time step size

The time step size is 1 tick ∼ 1 day, which was obtained during
the process of qualitatively comparing the output to the results
from the mouse model of H. pylori infection. For example, the
peak of resident macrophages in the LP (see Figure. 3e and f)
is observed at ∼21 days, which is similar to the results obtained
in Fig. 2A described in [24] (also described in detail in Results
section, Hybrid model simulations produce similar immune dynamics
observed in previously published experimental data ).

Updating

Each agent has an “act” function within the code that describes
the rules implemented for each of the agent groups. At every
simulation cycle, each agent inspects its location and updates its
state. If the agents were T cells and macrophages, they obtained

https://scicrunch.org/resolver/RRID:SCR_016918
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Table 1: A list of rules for all the agent types implemented in the hybrid model

Name of agent Agent type Rules

Helicobacter pylori H. pylori Moves across the epithelial cell border if near damaged epithelial layer;
proliferates in the lumen and LP;
dies in LP and in the lumen due to the damage of epithelial cells by Th1 or Th17 cells

Macrophages Monocyte Proliferates in presence of effector DCs or damaged epithelial cells;
proliferates in the LP; differentiates to regulatory macrophage based on the output from the
macrophage ODE;
differentiates to inflammatory macrophages in presence of IFN-γ ;
dies naturally

Resident Proliferates in the presence of H. pylori;
secretes IL-10;
dies naturally;
dies due to Th1 and Treg cells

Regulatory Proliferates and removes bacteria;
dies;
secretes IL-10

Inflammatory Proliferates in the presence of damaged epithelial cells;
dies naturally

Dendritics Immature Moves from LP to epithelium compartment and from the epithelium to the LP; differentiates to
tolerogenic DC in the presence of tolerogenic bacteria, both in epithelium and LP;
differentiates to effector DC in the presence of H. pylori;
proliferates in LP and GLN; dies naturally

Effector Moves from LP to GLN; moves from epithelium to LP;
secretes IL-6 and IL-12;
dies naturally

Tolerogenic Moves from LP to GLN;
moves from epithelium to LP;
secretes TGF-β;
dies naturally

T cells Naive In the presence of effector DCs:
differentiates to Th1 in the presence of IFN-γ or IL-12;
differentiates to Th17 in the presences of IL-6 or TGF-β;
in the presence of tolerogenic DCs: differentiates to iTreg in the presence of TGF-β;
differentiates to Treg in the presences of IL-10;
dies naturally

Th1 Secretes IFN-γ ;
moves from GLN to LP; proliferates in LP and GLN; dies naturally

Th17 Secretes IL-17;
in the presence of tolerogenic DC, transitions to iTreg cells;
moves from GLN to LP;
proliferates in LP and GLN;
dies naturally

iTreg Secretes IL-10;
in the presence of tolerogenic DC, transitions to iTreg cells;
moves from GLN to LP; proliferates in LP and GLN;
dies naturally

Tr Secretes IL-10;
dies naturally;
proliferates in the LP

Epithelial Healthy Damaged by infectious bacteria;
damaged by Th1 and Th17 cells;
proliferates;
secretes IL-6 and IL-12;
dies naturally

Damaged Transitions to healthy state in the presence of IL-10;
dies naturally

the cytokine concentration from the ValueLayers and sent that
information to COPASI, which calculated the differentiation sub-
type of the agent and cytokines to be secreted into the environ-
ment [12]. The input to the ODEs was the cytokine values at the
agent’s location. Thus, the intracellular ODE models were used

to determine and update the state. Each agent proliferated, died,
changed its state, and moved across the compartment, following
the set of rules defined for them.

The COPASI set-up for the solver used the LSODA (Livermore
Solver for Ordinary Differential Equations) differential equation
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Table 1: Continued

Name of agent Agent type Rules

Bacteria Infectious Dies due to Th1 or Th17 or inflammatory macrophages or damaged epithelial cells;
dies naturally;
proliferates in the LP

Tolerogenic Moves from lumen to the epithelium in the presence of damaged epithelial cells;
becomes infectious if moves in the LP compartment;
proliferates in lumen and LP;
dies naturally

Dies = is removed from the simulation; DC: dendritic cell; GLN: gastric lymph node; IFN-γ : interferon γ ; IL: interleukin; iTreg: induced regulatory T cell; LP: lamina
propria; TGF-β: transforming growth factor β; Th: T helper; Treg: regulatory T cell.

Figure 1: Helicobacter pylori infection schematic diagram of the hybrid ABM ODE model. The model comprises of 4 compartments, (i) the lumen that contains H. pylori

and bacteria; (ii) epithelium that contains epithelial cells and dendritic cells; (iii) lamina propria (LP) that contains a variety of immune cells including the infiltrating

effector (eDCs) and tolerogenic dendritic cells (tDCs), monocytes, regulatory macrophages (Mreg; both resident and monocyte-derived macrophages), T helper (Th)
cells, and naive CD4+ T cells (nT), Th1, iTreg, Th17, regulatory T (Treg) cells; and (iv) gastric lymph node compartment that contains eDCs, tDCs, Th1, Th17, iTreg, and
nT. The Treg cells in the LP are the type 1 regulatory (Tr1) T cells with regulatory function whose expansion is largely dependent on environmental IL-10. These are

different from iTreg, which are T cells differentiated from naive T cells in the presence of tDCs and TGF-β cytokines. The 2 calibrated ODEs for T cells and regulatory
macrophages are integrated as the ODE components in the hybrid model. The cellular agents are simulated in a 2D grid space with their behavior defined by a set of
rules during a course of H. pylori infection..

solver. The default values for the set-up such as the relative tol-
erance (1e−6), absolute tolerance (1e−12), and maximum inter-
nal steps of 10,000 were maintained. The ENISI MSM sends the
current concentrations of the cytokines to COPASI. COPASI uses
those values to integrate the deterministic model for 1 tick, i.e.,
1 day. The resulting time series of cytokine concentrations are
used to update the cytokine value in the ABM/PDE system. CO-
PASI simulates a different model for each relevant cell type.

The ENISI-MSM PDE solver uses a simple numerical scheme
to solve the PDEs [29] and process the distributed value layer
[30]. The ValueLayer stores the value for a grid space and pro-
vides methods to change the values of each individual lattice
site. The Diffuser is used to diffuse the values of the ValueLayer

using diffusion (d) and degradation (δ) constants as described by
Mei el al. [12]. The diffusion constant determines the migration
of values of a lattice site to its neighboring lattice site. The table
below shows the constants used for each immediate neighbor
during the PDE integration. Lets index the neighbors based on
their position relative to the current lattice position, where the
following table specifies the integration constants K for each
neighbor relative to any lattice point. For example, here (0,0) is
a lattice point and (-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1),(1,0) and
(1,1) are its relative neighbors.

This leads to the equation shown below for each lattice point.
Note that summing over the neighbors includes the lattice point
(0,0). Here, vn is the value of the lattice site itself at step n, deltaT
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Figure 2: A pictorial representation of the spatial discretization of the 2D grid.

Relative location -1 0 1
-1 0.3 1.2 0.3
0 1.2 −6.0 1.2
1 0.3 1.2 0.3

is the integration step, the values of cδ and cd are the degra-
dation and diffusion constant, respectively. The PDE solver uses
the above number scheme K neighbor for the diffusion process. The
step size is automatically adjusted at the beginning of the simu-
lation based on the degradation and diffusion constants to avoid
underflow errors; i.e., multiple PDE steps are in general executed
per tick. The grid size is identical with the spatial discretization
for the agents.

vn = vn−1 + deltaT ∗ {cd ∗
∑

[K neighbor ∗ v
neighbor
n−1 ] − cδ ∗ vn−1}

Movement

The cells and bacterial agents presented in the model have
Brownian motion and move randomly within the compartment.
Brownian movement is an inherent property of a cell. Depend-
ing on cell phenotypes the movement can vary, but all cells with
the same phenotype exhibit similar movements. Additionally,
chemokine-driven movement is dependent on chemokine con-
centration in a tissue site. The capability of chemokine-driven
movement exists in ENISI-MSM if the right chemokines are rep-
resented in the model. However, the focus of this model was
to investigate changes in cell phenotype and not chemokine-
driven movement of cells. Thus, the chemokines driving the
movement are not represented in the present model. Cell migra-
tion is implemented in the code as the move() function for each
of the cells and agents, which calls the moveRandom() function
from the [31] file.

The hybrid model simulations were run on an Ivy Bridge-EX
E7-4890 v2 2.80 GHz (3.40 GHz Turbo) with quad processor nodes.
The code was parallelized such that the simulation time on a

single node with 4 parallel tasks varied between 9 and 10 min-
utes. This runtime was based on the model parameters at the
initiation stage, which included the numbers of immune cells,
bacteria, epithelial cells, and time steps and the size of the 2D
grid. To facilitate the investigation of the mechanisms under-
lying host responses during H. pylori infection, anatomical and
functional compartments were spatially linked such that the
agents had both unidirectional and bidirectional movement. All
the agents worked in a synchronous format wherein the 2 agent
populations (macrophages and T cells) made function calls to
their respective ODE models [2, 23]. These agents used the vary-
ing cytokine concentration (i.e., environment variable) in their
grid spaces as inputs to the ODE model, and these models were
run using COPASI [28].

Table 2 shows information on the agents and the states that
they can acquire.

Furthermore, we included the screenshots of 1 actual in silico
simulation of H. pylori infection to highlight the spatiotemporal
aspects of the modeling outputs. The time snapshots were cre-
ated using VisIt version 2.12 [32], an interactive visualization and
analysis tool. As shown in Additional file Fig. S2, the screenshots
at time points 2, 4, 5, and 6 represent the spatial distribution of
different agent cells over time across the 2D grid.

Global sensitivity analysis

To conduct the global SA, we determined a list of 38 parameters
to be varied that were selected on the basis of the calibration pro-
cess (wherein the parameters that did not show much variation
were not included). A range of values (maximum and minimum)
was specified for each of the parameters (refer to Additional file
Table S1) by expert judgment, summarized by bounded inter-
vals. The practice of using expert judgment is recognized in the
SA field [33]. As discussed by Thorne et al. [34], one of the chal-
lenges encountered in using ABM is the process of determining
the parameter values; e.g., this may include the lack of the avail-
ability of experimental techniques to measure such parameters.
The values of the parameters for the model presented here are
obtained via the best guess based on the qualitative comparison
of the computer model outputs with that of the experimental
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Figure 3: Time course simulations representing the immune response during Helicobacter pylori infection. The upper half of the plot in both panels shows the dynamics
of the population cells over time representing the number of cells (y-axis) vs time (x-axis) in wild type (WT) (black), CD4Cre (green), clodronate (red), and LysMCre
(blue) simulated in silico groups during H. pylori infection (see Results section, Hybrid model simulations produce similar immune dynamics observed in previously published

experimental data for details about the groups). A side-by-side comparison with the bacterial load and macrophage population as observed in the mouse model of
H. pylori infection is also included (a and d). The cell populations include (b) H. pylori, (e) the resident macrophages, and (g) monocyte-derived macrophages in the
lamina propria compartment. The graphs in the lower half (c, f, h) of these panels show the results for statistical comparison between the groups using ANOVA with the
post hoc analysis. The letters “a,” “ab,” and “b” represent statistically significant differences (P < 0.05) between the groups obtained after running the Tukey honestly

significant difference. The groups with letter ”a” are statistically significant different than the group with letter ”b”, groups with same letter are not statistically
significantly different than each other. The group with letter ”ab” is not statistically significantly different than group ”a” and ”b”. In the box plots, the horizontal line
is the median of the respective cell population, the box contains the interquartile range, the whiskers show the 95% confidence interval, and the dots are the outliers.
cfu: colony-forming units.

results obtained from the mouse model of H. pylori infection [24]
(as described in detail in Results section, Hybrid model simulations
produce similar immune dynamics observed in previously published
experimental data). Because the source of the parameters is not
known, we estimated the values to fit the data obtained from
the mouse model of infection.

The values of these parameters were normalized within the
range of 0 to 1 for SA purposes. We used a 2-stage metamodel-
ing methodology to determine the influence of each input pa-
rameter on the model output, in a high dimensional screening
setting inspired by Moon et al. [35]. The step-wise procedure is
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Table 2: List of all the agents and the states they can acquire

Name of agent States it can acquire
Name of the states in the hybrid

model

Helicobacter pylori 0 H. pylori
Macrophage 0 Monocyte

1 Resident
2 Regulatory
3 Inflammatory

Dendritic cell 0 Immature
1 Effector
2 Tolerogenic

T cell 0 Naive
1 Th1
2 Th17
3 iTreg
4 Tr

Epithelial cell 0 Healthy
1 Damaged

Bacteria 1 Infectious
2 Tolerogenic

All agents can acquire ≥1 and at most 5 states. The names chosen for the acquired states are closely related to their functional
properties based on the underlying “rules”.

described in Additional file Fig. S3. All the files for global SA are
freely accessible and can be downloaded from GitHub [36].

The 2-stage global SA is described in detail in the next sec-
tion. To summarize, for the first stage the input parameter ma-
trix was designed using the method described by Moon et al. [35]
and simulations were run using the hybrid computer model. The
simulation output from the first stage was analyzed using PRCC
because it was computationally efficient, and the active inputs
(significant effect) were screened to reduce the input parame-
ter space. Second, the active parameters were varied whereas
the inactive parameters from the first stage were maintained
at a nominal value for the input parameter matrix design to be
used for the second stage. Third, the simulation outputs from
both stages were combined and used as a training dataset to fit
a spatiotemporal metamodel. Fourth, the unknown model pa-
rameters for the spatiotemporal metamodel were estimated us-
ing the maximum log-likelihood function. The spatiotemporal
metamodel was used as a substitute for the hybrid computer
model, and the variance decomposition method was used to
compute the Sobol’ total and first-order indices. Overall, we em-
ployed both approaches, PRCC based (for screening) and Sobol’
indices calculation, to perform a complete global SA of the hy-
brid computer model. The following sections explain the proce-
dure step by step.

Design of 2-stage experiments and analysis
The inputs for the hybrid model are varying parameter values
obtained from the design matrix and the outputs are the number
of cells (agents) that vary over time. The first-stage experiment
was focused on the screening of the input variables to reduce
the number of input parameters to vary for the SA and to limit
the computational cost. Computational costs are often a limit-
ing factor that play an important role in the inclusion of model
parameters in the SA [21]. For the design, we assumed the to-
tal number of input parameters under consideration d (in our
case, 38). With an assumption of a maximum of 50% active in-
puts that is aimed to improve the screening performance, the
number of runs for stage 1 was fixed to n1 = 4d, such that n1

> 5 × d × 0.5 = 2.5d as in Moon et al. [35]. To construct a n1 ×

(n1 − 1) preliminary input parameter design matrix, X∗ needed
to be constructed ([35]). The input parameter design matrix for
first-stage sampling was drawn from X∗.

The algorithm for the first-stage design generated a design
matrix X(1) that satisfied the following 3 properties as in [35]:

i) The columns of X∗were uncorrelated, thereby facilitating the
independent assessment of the effects due to the input pa-
rameters.

ii) The maximum and minimum value in each input parameter
column were ensured to be 0 and 1, respectively, thereby pre-
venting any input values with larger values to have a larger
influence on the response, induced by the design.

iii) The designs defined by X∗had “space-filling” properties such
that all the regions of the input space were exhaustively ex-
plored.

First-stage sampling plan
The first-stage input parameter design matrix X(1) was obtained
by selecting the first d columns of X∗, i.e., X(1) = (ξ1, . . . ., ξd). The
hybrid computer model was run and the simulation outputs at
these n1 design points were obtained.

In our case, the model comprised d = 38 input variables. The
total number of distinct input parameter design points obtained
using the above procedure was n1 = 152 = 4 × d = 4 × 38. To
account for the variability in the output, we ran 20 replicates
r. Thus, the total number of simulations run using the hybrid
model computer simulator with X(1) as input parameter design
matrix was r x n1 = 20 × 152 = 3,040.

First-stage analysis
We analyzed the outputs from first-stage analysis and screened
the active inputs from using PRCC. To measure the effect of
the input parameters on output, we performed both PRCC and
Spearman rank correlation coefficient (SRCC) analysis. PRCC and
SRCC were chosen because they were computationally efficient
(accounting for the low computational budget). A correlation
analysis provides a measure of the strength of linear association
between input and output variables [37]. The correlation coeffi-
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cient between xj and y is calculated as follows:

rxj y = cov (xj , y)√
var (xj ) var (y)

=
∑N

i=1 (xi j − x̄) (yi − ȳ)√∑N
i=1 (xi j − x̄)2 ∑N

i=1 (yi − ȳ)2
,

j = 1, 2, . . . , k.

where cov(xj, y) stands for the covariance between xj and y and
var(xj) and var(y) are the variance of xj and y, respectively.

PRCC is performed when (i) a non-linear but monotonic re-
lation exists between the input and outputs, and (ii) when lit-
tle or no correlation exists between the input variables (which
is guaranteed by the property [i] of our input parameter matrix,
X(1) described above). As described in Marino et al. [37], the PRCC
between rank-transformed xj and y is the correlation coefficient
between the 2 residuals (xj − x̂j ) and (yj − ŷj ), where x̂j and ŷj

are rank transformed and follow the linear regression models as
follows:

x̂j = co +
∑k

p = j
p �= j

cpxp and ŷj = co +
∑k

p = j
p �= j

cpxp.

We performed the PRCC analysis on the outputs obtained
from the hybrid computer model with X(1) as an input, using
the “epi.prcc” package in R [38]. The significance test evaluated
the strength of influence of each input parameter and assessed
whether the PRCC coefficients were significantly different from
zero [37]. We ran the PRCC analysis for 13 output cell populations
( Figure. 4 shows data for 2 output populations; the rest of the
data are not shown) and identified the active input parameters
using the significance test. PRCC and SRCC produced identical
outputs; hence, results from SRCC are not shown here. If an in-
put parameter was shown to be significant (P < 0.05) in 1 of the 13
output cell populations, it was considered as an active input for
the second-stage input parameter design matrix. Additionally,
domain expert knowledge was employed to include additional
parameters, based on the biological significance, that were oth-
erwise shown to be non-significant. In all, based on the PRCC
analysis performed on the outputs obtained from the first-stage
simulations and domain expert knowledge, we chose 23 input
parameters as active inputs for the second stage (see Additional
file Fig. S4). Thus, PRCC-screened inputs at significance level P
< 0.05 and inputs based on expert knowledge were selected as
active inputs to be varied for the second-stage sampling plan.

Second-stage sampling plan
The number of active inputs obtained from the first-stage anal-
ysis amounted to 23 parameters out of the initial set of 38 pa-
rameters. We followed the design described by Moon et al. [35]
for the second stage and the number of design points amounted
to n2 = 100% × 5 × a, where a stands for the number of active
inputs from the first stage. This resulted in n2 = 23 × 5 = 115
parameter combinations for the second-stage input parameter
design matrix. Because outputs from both stages are to be com-
bined for second-stage analysis [35], the design for the second-
stage was chosen to build on top of X(1). The sampling phase
design algorithm ensured that the columns satisfied the prop-
erties (i) (uncorrelated design points) and (ii) (between values 0
and 1) as listed in the previous section. We constructed the 115 ×
38 (115 parameter settings and 38 parameters) design matrix for

the second-stage that incorporated the 23 active inputs obtained
from the PRCC screening in the first-stage output analysis. After
combining the design points from both stages, the parameter
design matrix X with space-filling properties contained 267 (152
from the first stage and 115 from the second stage) design points.

Second-stage analysis
We ran the computer code for the hybrid model with the second-
stage input parameter design matrix (with 115 [n2] design points)
for 20 (r) replicates, which amounted to 115 × 20 = 2,300 runs.
The outputs from the first stage (152 × 20 runs) and second stage
(115 × 20 runs) were combined to provide the training data to
build a spatiotemporal metamodel. For the second-stage anal-
yses, we utilized a metamodeling-based approach. Metamodels
are surrogate models that can be used as a substitute for the
simulation model [39]. The use of metamodels reduces the com-
putational budget and cost of analysis and is a useful option in
cases when the simulation model is expensive to run (in our case
9–10 minutes for 1 design point) [39]. The various metamodeling
techniques used to build surrogates for a computer model out-
put include linear regression models, neural networks, high di-
mensional model representation methods, GP regression mod-
els, polynomial chaos expansion, and more that are discussed in
length by Rasmussen and Williams [40] and Santner et al. [41].
Among these, GPs are one of the most popular emulators be-
cause this method allows modeling of fairly complex functional
forms. The GPs provide not only prediction at a new point but
also an estimate of the uncertainty in that prediction [40]. A GP
is a stochastic process for which any finite set of y-variables has
a joint multivariate Gaussian distribution [42, 40]. Suppose yj (w),
the simulation response obtained on the jth simulation repli-
cate, at a design point w = (XT , t)T ∈ χ x T. It can be described
as follows:

yj (w) = Y (w) + ε j (w) = β0 + M (w) + ε j (w) , (1)

where Y(w) represents the mean function of yj (w), the quantity
of interest that we intend to estimate at any design point w. The
β0 is a constant trend term and is assumed to be unknown. The
input parameter X ∈ χ ⊂ Rd and the time t ∈ T ⊂ R+; and X is
independent of t. The ε j (w) represents the sampling variability
inherent in a stochastic simulation, which is assumed to be in-
dependent and identically distributed across the replications at
any given design point [43].

The term M(w) represents a stationary GP with mean = 0,
and covariance between any points was modeled as the Gaus-
sian covariance defined in [44]. Thus, the covariance between
any design points wa = (Xa

T , ta)T and wb = (Xb
T , tb)T in the ran-

dom field can be modeled as

cov (M (wa) , M (wb)) = �2 exp
(
−

∑d

r = 1
θr (Xar − Xbr )2

)
R (ta − tb; γ ) ,

(2)

where exp(− ∑d
r = 1 θr (Xar − Xbr )2) models the spatial cor-

relation between 2 input design points Xa and Xb in the
input parameter space, whereas R(ta − tb; γ ) also given by
exp(− ∑d

r = 1 γr (tar − tbr )2 ) models the temporal correlation be-
tween time points ta and tb. The parameters θ and γ represent
the rate at which (i) spatial correlation decreases as the points
move farther in space with the same time index and (ii) temporal
correlation decreases as the time points are farther apart in time
at the same input vector, respectively. Both the spatial correla-
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Figure 4: Bar plots for the partial rank correlation coefficients. The magnitude of the bar-plot indicates the value of the partial rank correlation coefficient. Blue bars
indicate input parameters shown to be significantly different than 0 at P < 0.05 as influential, whereas the gray bars indicate the non-influential parameters on (a) H.

pylori and (b) resident macrophages, in the lamina propria compartment. The detailed explanation of the abbreviations for the parameters are in Table S1.

tion and temporal correlation are modeled using the Gaussian
covariance. The parameter �2 can be interpreted as the vari-
ance of M(w) for all w. The input parameter design consists of
(wa, ni )k

i = 1 design points to run independent simulations with
replicates applied to each of the design points. Let k × 1 de-
note a vector of sample averages of simulation responses given
by ȳ = (ȳ(w1), ȳ(w2), . . . ., ȳ(wk))T , where ȳ(wi ) is the resulting es-
timate of performance measure obtained at design point wi and
ε̄(wi ) is the sampling variability inherent in a stochastic simula-
tion [43]. The equations associated with ȳ(wi ) and ε̄(wi ) are de-
scribed in equation (3):

ȳ(wi ) = 1
ni

∑ni

j=1
yj (wi ) = Y(wi ) + ε̄(wi ) and

ε̄(wi ) = 1
ni

∑ni

j=1
ε j (wi ), i = 1, 2, . . . , k. (3)

Similar as in Ankenman et al. [43], shown in equation (4), let∑
M be the k x k covariance matrix across all design points and

let
∑

M(wo, .) be the k x 1 vector, (cov[M(w0, w1)], cov[M(w0, w2)],
..., cov[M(w0, wk)]T, that contains spatial covariance between the
k design points and a given prediction point wo. Also, let

∑
ε be

the k x k covariance matrix of the vector of simulation errors as-
sociated with the vector of point estimates ȳ, across all design
points. As described by Ankenman et al. [43], the best linear pre-
dictor Y(wo) that has the minimum mean squared error (MSE)
among all linear predictors at a given point wo = (Xo

T , to)T can

be given by equation (4):

Ŷ (wo) = β̂o +
∑

M
(w0, .)

T
(∑

M
+

∑
ε

)−1
(ȳ − 1kβ̂0), (4)

where 1k is the k x 1 vector of ones and β̂o is estimated to be
1. The corresponding optimal MSE as in Ankenman et al. [43] is
given by equation (5):

MSE
(
Ŷ (wo)

)
=

∑
M

X0, wo −
∑

M
(w0,.)

T
(∑

M
+

∑
ε

)−1 ∑
M

(wo, .) .

(5)

To implement the metamodeling approach as described
above, the unknown model parameters are estimated through
maximizing the log-likelihood function. The underlying stan-
dard assumption is that (Y(wo), ȳT )T follows a multivariate nor-
mal distribution (e.g., see [43] and [45]). The function imple-
mented in the mlegp package in R [46] is used for the estima-
tion of the parameters. Once the parameters are estimated the
prediction then follows equations (4) and (5).

Sensitivity index calculation
To determine the effect of input variables on the output, we em-
ployed the variance decomposition method. These methods in-
volve the decomposition of the variance of the output as a sum
of the variance produced by each input parameter [42].

We independently generated 10,000 × 38 sampling matrices,
such that the parameter combinations were generated via Latin
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hypercube sampling as described by Saltelli et al. [47]. Simu-
lations were performed using the GP spatiotemporal model as
described in the previous section Second-stage analysis, and the
Sobol’ indices were computed as described in [48, 47]. The Sobol’
method quantitatively measured the contribution of each input
parameter by computing the first order and total order index
[47]. For output Y, input parameter matrix Xi , where i is the in-
put parameters of the model, the Sobol’ indices are computed
as follows:

SIXi
1 = V[E (Y|Xi )]

V (Y)
,

and

SIXi
tot = V[E (Y|X∼i )]

V (Y)
.

The Sobol’ first-order sensitivity index SIXi
1 measures the im-

pact of a single parameter on the model output, whereas the
Sobol’ total order index measures the influence of Xi including
all the interactions with other parameters. The first-order in-
dices were computed using the Sobol-Saltelli method [47, 49],
whereas the total order indices were computed using Sobol-
Jansen [47, 50].

Results
Hybrid model simulations produce similar immune
response dynamics observed in previously published
experimental data

We first aimed to simulate the findings observed in previous gut
models [24] to ensure that we obtained similar response dynam-
ics from the hybrid ENISI model of H. pylori infection. As in Vi-
ladomiu et al. [24], to demonstrate that the gastric mucosa har-
bors a system of macrophages that contribute to the outcome of
H. pylori infection, we created an in silico peroxisome proliferator-
activated receptor γ (PPARγ ) macrophage-specific knockout (KO)
model. PPARγ is an important transcription factor that controls
the expression of genes that contribute to the inflammatory
response once this is initiated. To disrupt the downregulation
of pro-inflammatory responses, we simulated a PPARγ KO sys-
tem in either macrophage or T-cell populations and compared
the response to a wild-type (WT) system. In the model, we cre-
ated 4 different macrophage populations, comprising “resident”
macrophage agents that mimic the properties of the F4/80hi
CD11b+CD64+CXCR1+ macrophages reported by Viladomiu et
al. [24], monocyte-derived (infiltrating) macrophage populations
with regulatory properties (M2, or alternatively activated), pro-
inflammatory function (M1, or classically activated) and mono-
cytes (see Table 2).

We simulated an in silico H. pylori infection by creating 4
groups, (i) a control—WT (representing a WT group), (ii) CD4Cre
(T-cell−specific PPARγ KO—lacks PPARγ gene in all CD4 T cells),
(iii) LysMCre (myeloid cell−specific PPARγ KO—lacks PPARγ gene
in all macrophages), and (iv) clodronate group (simulating the
removal of macrophages by chemical depletion via clodronate
treatment). To simulate the CD4Cre group, the probabilities of a
naive T cell transitioning to an iTreg cell (p nTtoiTreg) and Th17
cell differentiating to iTreg (p Th17toiTreg) were reduced to 5%
and 10% of the control value, respectively (refer to Table S1). As
described by Carbo et al. [23], to simulate the LysMCre experi-
mental conditions, the probabilities of (i) a monocyte transition-

ing to a regulatory macrophage (p Mregdiff) and (ii) immature
DCs switching to tolerogenic DCs (p iDCtotDC) were reduced to
∼60% and ∼30% of the control value, respectively (refer to Ta-
ble S1). A complete set of parameters for each of the biological
KOs are included as separate columns in Table S1. Last, the re-
moval of macrophages by clodronate was simulated by decreas-
ing the initial numbers of the macrophage population includ-
ing the resident macrophages. The rationale to include the clo-
dronate group (macrophage removal) was to evaluate whether
depletion of phagocytic cells (terminology with respect to model,
i.e., monocytes, residents, monocyte-derived regulatory , and
inflammatory macrophages) would affect H. pylori colonization
levels, as we have previously reported in an in vivo model [24].
Furthermore, to simulate the myeloid cell PPARγ KO system, the
initial population of resident macrophages were also reduced.

All the groups were initialized with equal loads of H. pylori
agents. Ten replicates of the simulations were performed for
each of the input parameter settings specific to each group. The
outputs were averaged, and standard errors of the means were
plotted as ribbons (shaded regions) across the graphs. After run-
ning the 10 replicates of the time series in silico simulation, the
hybrid model showed significantly (P < 0.05) higher levels of H.
pylori in the WT and CD4Cre groups as compared to LysMCre KO
and macrophage-depleted groups ( Figure. 3b and c).

In addition to the increase in H. pylori, the WT and CD4Cre
in silico experimental groups had a higher population of resi-
dent as well as monocyte-derived regulatory macrophages as
compared to the clodronate (macrophage-depleted) and LysM-
Cre groups ( Figure. 3e, f, g, and h). The results in the mouse
model indicated that between weeks 2 and 3 after infection a de-
crease in bacterial burden in the stomach of LysMcre mice was
observed as shown in Fig. 1A of Viladomiu et al. [ 24]. The de-
crease in bacterial burden led to significant and sustained lower
colonization levels when compared to WT and CD4Cre. Simi-
lar to the results observed in the mouse model, we observed
a significant decrease ( Figure. 3b and c) in the bacterial bur-
den in the simulated LysMcre group as compared to the simu-
lated WT and CD4cre groups. Furthermore, the results from the
mouse model indicated that a significant increase in numbers of
F4/80 hiCD11b+CD64+CX3CR1+ cells (herein referred to as res-
ident macrophages) was observed in WT mice in comparison
with LysMcre mice as shown in Fig. 2A and E of Viladomiu et al.
[24]. These cells accumulated in the stomach mucosa starting
on day 14 post-infection in the WT mice but not in the LysM-
cre mice. We observed a similar increase ( Figure. 3e, f, g, and
h) in the number of resident macrophages as well as monocyte-
derived macrophages in the simulated WT groups in compari-
son to the simulated LysMcre group. We estimated the parame-
ter values to fit the data obtained from the mouse model of H.
pylori infection. Thus, the observations were qualitatively simi-
lar to the findings of Viladomiu et al. [24], where the stomach of
WT mice was enriched in a population of F4/80+CD11b+CD64+

myeloid cells, compared to LysMCre mice.
Overall, with the results in Figure. 3, we showed the ability

of the hybrid model to replicate the experimental results of Vi-
ladomiu et al. [24], and these preliminary data were used as a
base calibration setting for SA and other in silico findings.

Partial correlation coefficient analysis screened the
influential parameters

To reduce the computational complexity of varying an input
parameter space of 38 parameters, we divided the SA pro-
cess in 2 stages. For first-stage analysis, we utilized the PRCC
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regression−based SA method to screen the influential inputs
and used it for the second-stage design of the experiments (see
Methods section, Global sensitivity analysis ). Using PRCC, we de-
termined the impact of the input parameters on the output cell
populations in the model. The parameters with significant cor-
relation with H. pylori in the gastric LP compartment and resi-
dent macrophages are shown in Figure. 4, along with their PRCC
values. The blue bars highlight the parameters that are signifi-
cantly different than 0, at P < 0.05, compared with gray bars,
which indicate no significant difference. It is important to note
that at this stage the analysis using PRCC was non-temporal.

The SA from first-stage results showed that the epithelial
damage due to infectious bacteria (epiinfbctdam), with a coeffi-
cient value of ∼0.2, was positively correlated with the coloniza-
tion of H. pylori in the LP compartment, indicating the important
role of epithelial cell damage during the course of infection, sim-
ilar to our previous findings [51]. Another parameter included
the probability of the release of interleukin-6 (IL-6) with a coef-
ficient value in the range (0.3–0.4).

Next, the epithelial cell damage parameters [epiinftbctdam
= (0.2–0.3), epiTh17dam = (0–0.2)] were shown to have posi-
tive influence on the resident macrophage cells, whereas the
T-cell type transition parameters [p iTregtoTh17 = (0.3–0.4) and
p Th17toiTreg = (0.1–0.2)] showed a negative impact on the res-
ident macrophages. Similarly, we performed the PRCC analysis
for all the cell populations under consideration during the infec-
tion (not shown).

The significant parameters (marked in blue bars) obtained
from the SA of the output from the first-stage design of exper-
iments (152 parameter settings with 20 replicates; see Methods
section, Global sensitivity analysis) were selected to be varied for
the second-stage design. All the selected inputs are shown in
Additional file Fig. S4. In all, we obtained 23 active inputs from
the first stage.

Metamodel-based spatiotemporal sensitivity analysis

The outputs obtained after running the first (152 × 20 runs)
and second (115 × 20 runs) stage simulations, wherein x 20 de-
notes the 20 replicates, were combined to be used as a training
dataset. The combined output was utilized to build a GP-based
spatiotemporal metamodel (see Methods section, Global sensitiv-
ity analysis), using the mlegp package in R [46].

The outputs from the training dataset were subdivided into
6 datasets, corresponding to 6 time periods (Days 1–14, 15–21,
22–30, 31–42, 43–90, 91–201), and averaged across these peri-
ods. The subdivision of output across the time periods aided
the temporal analysis over the initiation (Days 1–14), peak of
infection (Days 15–30), and chronic phase (after Day 31) stages
[ 24]. We then fit a GP model (with nugget) and evaluated the
performance of the fitting of the metamodel for H. pylori, resi-
dent macrophages, and monocyte-derived macrophages in the
LP compartment, and tolerogenic DC in the GLN, using the di-
agnostic plots (see Additional file Fig. S5). After fitting the mod-
els, we performed variance-based global SA by computing the
Sobol’ total order and first-order sensitivity index (see Methods
section, Global sensitivity analysis ). The estimates of the Sobol’
total order indices for the input parameters calculated over the
6 time periods are shown in Figure. 5.

As shown in Figure. 5a, the metamodel-based global SA
showed that the input parameters, epithelial cell proliferation
(Epiprolifer), and epithelial cell death (Epicelldeath) had the
strongest impact on the population of H. pylori in the LP com-
partment. As time progressed from initiation of the infection

(Days 1–14) through peak (Days 15–30), the epithelial cell prolif-
eration had a continued impact on the colonization of H. pylori.
Next, the influence of the probability of epithelial cell death de-
creased over the course of infection. Furthermore, Figure. 5b
highlighted the impact of epithelial cell proliferation (Epipro-
lifer) and epithelial cell death (Epicelldeath) on the monocyte-
derived macrophages.

For the resident macrophage population in the LP, which
have emergent properties similar to those characterized in [24],
we observed that the resident macrophage replication param-
eter (ResmMacRep) has an impact during the initiation and
peak stages of the infection, which indicates that these sub-
sets of macrophages replicate during the course of H. pylori
infection. This result highlights the reliability of the 2-staged
global SA method used here because these findings are consis-
tent with those in [24] wherein we observed that these subsets
of macrophages expand in the gastric stomach LP during the
course of H. pylori infection.

Finally, for the tolerogenic DCs in Figure. 5d, we observed
that epithelial cell death (Epicelldeath) seemed to have an im-
pact. Another parameter that stands for the probability of naive
T cell transitioning to iTreg cell (nTtoiTreg) was shown to have
an impact on the tolerogenic DCs. Tolerogenic DCs are involved
in the rule that transitions the naive T cells to iTreg cells in the
GLN, and the stronger impact of the nTtoiTreg during the initi-
ation and peak stages of the infection highlights the role of the
tolerogenic DCs during the course of infection.

The global SA data suggested that the main contributors to
the chronic colonization of H. pylori in the LP are epithelial cells,
specifically the epithelial cell proliferation parameter.

Effect of different ranges of epithelial cell proliferation

An interesting prediction derived from the metamodel-based
global SA is that epithelial cell proliferation is one of the param-
eters that has a strong impact on the size of the H. pylori popu-
lation. The biological hypothesis derived from this prediction is
that epithelial cell proliferation is responsible for the higher col-
onization of H. pylori. Prior to conducting any experimental stud-
ies, we wanted to explore the hypothesis using our hybrid com-
puter model in silico and study the model outputs obtained after
we changed the epithelial cell proliferation parameter. Thus, we
varied the epithelial cell proliferation parameter across different
ranges (0.1–0.9, with 0.6 being the value for baseline conditions)
and ran the simulations using the hybrid model and studied its
effect on the different output cell population (obtained after run-
ning the simulations). These outputs were the ones obtained af-
ter running the simulation using the hybrid computer model,
as we varied the epithelial cell proliferation parameter. We an-
alyzed the outputs from the hybrid computer model and, inter-
estingly, observed that upon decreasing the Epiprolifer from a
range of values 0.9–0.1, the output cell populations with regula-
tory function, namely, regulatory macrophages and tolerogenic
DCs, were found to vary. We observed a decreasing effect ( Fig-
ure. 6) on H. pylori, monocyte-derived macrophages, resident
macrophages in the LP compartment, and tolerogenic DCs in the
GLN. Overall, these cell populations varied due to the variation
in the epithelial cell proliferation parameter.

For clarification, such connection was not embedded in the
mechanisms included in Table 1, but it represents an emer-
gent behavior from the simulations predicting the involve-
ment of regulatory and tolerogenic DCs in the mechanisms of
immunoregulation during H. pylori infection. Finally, the sim-
ulations targeting the epithelial cell proliferation resulted in
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Figure 5: Heat maps of Sobol’ total order index for the input parameters across different output populations. The values in the heat map indicate the Sobol’ total
order sensitivity index obtained from the metamodel for the 38 input parameters with respect to the cell populations. The values with darker color indicate a stronger

influence on the cell population as compared to the ones with lighter shade that indicate non-influential parameters for the cell populations: (a) H. pylori, (b) monocyte-
derived macrophages, and (c) resident macrophages in the lamina propria compartment and (d) tolerogenic DCs in the gastric lymph node compartment. The indexes
are calculated over 6 time points ranging across the 3 stages of infection, including initiation (Day 1–14), peak (Days 15–42), and recovery stages (Days 43–201). The
detailed explanation of abbreviations for the parameters are in Table S1.

changes in the regulatory and tolerogenic DC populations. This
shows that the simulations indirectly targeted the regulatory
and tolerogenic DC population. Thus, we hypothesize that ep-
ithelial cell proliferation might be responsible for the higher col-
onization of H. pylori through an immunoregulatory mechanism
that involves regulatory macrophages and tolerogenic cells. This
is in line with our own conclusions drawn from a previous arti-
cle [24] where we show that the presence of cells with regulatory
phenotype favors higher levels of H. pylori colonization. The re-
sults from the SA presented in this article suggest that epithe-

lial proliferation might be a crucial part of the mechanisms by
which these regulatory responses are induced and that there is
a link between these parameters. The exact biological process
however cannot be inferred from the current model and it will
be investigated in follow-up in vivo studies.

The in silico findings suggested the involvement of regulatory
macrophages (both resident as well as monocyte-derived) and
tolerogenic DCs on the colonization of H. pylori in the gastric LP.
This highlighted and validated the role of epithelial cell prolifer-
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Figure 6: In silico study of the effect of the epithelial cell proliferation parameter on the cell populations. The plots show the effect of varying the epithelial cell
proliferation (p Epiprolifer) parameter (with values 0.1, 0.5, 0.6 [WT], and 0.9) on the output cell population of (a) H. pylori, (b) tolerogenic dendritic cells, (c) resident
macrophages, and (d) monocyte-derived macrophages. The parameter has a decreasing effect on the cellular populations under consideration, wherein a decrease

in the parameter value decreases the abundance of the cells over time. The lower half of each panel shows the results for statistical comparison between the groups
using ANOVA with the post hoc analysis. The letters “a,” “b,” “c,” and “bc” represent statistically significant differences (P < 0.05) between the groups obtained after
running Tukey’s honestly significant difference. The groups with letter ”a” are statistically significantly different than groups with letter ”b” and ”c”. The group with
letter ”bc” are statistically significantly different different than group ”a” but they do not differ from groups ”b” and ”c”. The groups with same letter are not statistically

significantly different than each other.

ation as one of the main factors affecting H. pylori levels in the
gastric niche.

Discussion

H. pylori is the dominant indigenous bacterium of the gastric
microbiota. In the majority of individuals, H. pylori colonizes
the stomach without causing adverse effects, with little to no
activation of inflammatory pathways. However, certain mem-
bers of the population lose immune tolerance to the bacterium
thereby contributing to the development of chronic gastric dis-
eases. The immunological mechanisms underlying its ability to
persist in a harsh acidic gastric environment and its dual role
as a pathogen and beneficial organism remain unknown. A sub-
set of macrophages helps create a regulatory microenvironment
that promotes the chronic colonization of H. pylori [24]. However,
the immune regulatory mechanisms are incompletely under-
stood. Computational models of the immune system featuring
immune responses are powerful tools for testing the different
“what-if” scenarios. Multiscale models of the immune response
are attractive in terms of modeling the responses at different
spatiotemporal scales [52].

In this study, we developed a HPC-driven hybrid, high-
resolution, multiscale model to simulate the complex im-
munoregulatory mechanisms during H. pylori infection. The hy-

brid model was integrated with 2 intracellular ODEs capturing
the dynamics of CD4+ T cells and regulatory macrophages. The
inputs to the hybrid model are the set of parameters whose vari-
ation governs the immune system dynamics during infection.
The obtained outputs were emergent patterns of different cell
types, cytokines, and bacterial levels, e.g., the levels of H. pylori,
and that qualitatively matched the patterns observed in an in
vivo infection model [1, 24]. We presented an in silico framework
that evaluated the global SA of the hybrid model and studied
how the variation in the biological parameters affected the sim-
ulation outputs. The 2-stage global SA indicated that epithelial
cell parameters, specifically, the proliferation of epithelial cells,
affected the colonization of H. pylori in the gastric mucosa. These
results were validated in silico and highlighted the involvement
of regulatory macrophages and tolerogenic DCs in facilitating H.
pylori colonization of the gastric mucosa. Previous studies high-
lighted that H. pylori inhabits the apical surfaces of the epithelial
cells and maintains a persistent infection [53].

Furthermore, Mimuro et al. [54] demonstrated that H. pylori
promotes epithelial gastric cell survival by attenuating apop-
tosis. These events showed how H. pylori regulated the gastric
niche and utilized epithelial cells to facilitate its persistence
within the stomach [54, 55]. Thus, the findings in the present
study are in line with the literature that suggests that epithelial
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cell proliferation favors the colonization of H. pylori in the stom-
ach.

Our group also showed another mechanism used by H. py-
lori to create a gut microenvironment that involved the in-
duction of an IL-10−driven regulatory mechanism mediated by
CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes, which
facilitated bacterial colonization [24]. Additionally, in this article,
we reported that regulatory macrophages were involved in the
process of colonization with H. pylori when we varied the epithe-
lial cell proliferation parameter in silico. Zhang et al. [56] demon-
strated that H. pylori directed active tolerogenic programming of
DCs that favored chronic bacterial colonization, by altering the
balance of Th17/Treg cells. Rizzuti et al. [57] demonstrated that
H. pylori−mediated IL-10 release caused the activation of signal
transducer and activator of transcription 3 (STAT3) in DCs. This
activation of STAT3 via IL-10 release was shown to induce the
production of the tolerogenic DC phenotype. The findings from
this article also indicated the involvement of tolerogenic DCs in
affecting the mucosal levels of H. pylori. Therefore, the literature,
combined with the results from this study, collectively suggests
that during H. pylori infection, the epithelial cell favors the colo-
nization of H. pylori by creating a regulatory microenvironment.
This process is mediated by the regulatory macrophages and
tolerogenic programming of DCs. Based on the results from this
article and findings from the literature, this leads us to propose
that the induction of IL-10 by the regulatory macrophages is po-
tentially involved in directing the tolerogenic programming of
DCs. All experimental evidence combined with our model pre-
diction suggests the action of an underlying biological mech-
anism that links the presence of H. pylori in the gastric mu-
cosa with changes in the rates of epithelial cell proliferation,
which ultimately affects the levels of colonization. Our predic-
tion points towards a link between epithelial cell proliferation
and the action of tolerogenic DCs and regulatory macrophages.
The exact cellular mechanism induced during this process how-
ever cannot be inferred from the current model, and it will be
investigated in follow-up in vivo studies.

At its current stage, the hybrid ENISI model reproduces the
overall immune system dynamics observed during an H. py-
lori infection. The parameters of calibrated ODEs were kept un-
changed, whereas the ABM parameters were calibrated by qual-
itatively matching the patterns of the output simulations as ob-
served in an in vivo model of H. pylori infection [24]. For ABM,
its calibration and validation remain the major key issues, dis-
cussed elsewhere [21, 58, 59]. Furthermore, developing targeted
methods of SA has been identified as an important challenge
in the field [21, 60, 61]. In this article, we highlighted the use of
SA methods with a 2-stage global SA framework composed of
first screening the input parameters (using PRCC) and second
building a surrogate model (using GP) of the hybrid model to un-
derstand the emergent behavior of the represented system. It is
important to note that each SA method known has its own mer-
its and produces useful information; however, none provides a
complete picture of the emergent model behavior [21]. First, we
employed PRCC methods as the initial step in our 2-staged SA
that aided the screening of active inputs and reduced the param-
eter space. The choice of PRCC was advantageous and justified
by the low computational cost and low complexity in the compu-
tation of the coefficients. Another advantage of the regression-
based PRCC method is that the complex output from our hybrid
model was condensed into a descriptive relationship that can
be described by statistical measures such as R2[21]. As described
by ten Broeke et al. [21], the results from PRCC are good descrip-
tors of the outputs produced if the regression function consti-

tutes a good fit to the output. However, if the function does not
yield a good fit, the regression-based SA is proven to be useful in
screening the influential parameters for further analysis [21], as
described in our analysis.

Furthermore, the interaction effects between the parame-
ters are not considered in regression-based methods, and hence
it was followed by the use of variance-based methods in later
stage analysis. Second, we employed a metamodeling-based ap-
proach and the Sobol’ method because they provided informa-
tion on the interaction between the input variables and the use
of metamodels allowed the sensitivity indices to be computed.
One of the advantages of the Sobol’ method is that it is model-
free and no fitting functions are used to decompose the output
variance [39]. It considers the averaged effect of parameters over
the whole parameter space but fails to explore the different pat-
terns within the space [21]. Furthermore, the method is not suit-
able for quantification of output variability if the output distri-
butions deviate from a normal distribution [21]. ten Broeke et al.
[21] provide a detailed comparison of different SA methods used
for the global SA of ABMs. Thus, we used both the PRCC and com-
putation of Sobol’ indices approaches to evaluate the influence
of the input parameter variation and identified the parameters
involved in the successful colonization of the gastric niche by H.
pylori.

Some limitations of the model include implementation
through a 2D grid system and including all cells of the same size.
Although we parallelize the computation of the hybrid model
output, the large number of simulations required for the global
SA compensates for the benefits of parallelization. To improve
the calibration process and overall usability of the model, the
data required for model calibration would include tissue biop-
sies from people infected with H. pylori that can be used to
quantify the cells and take into account their spatial arrange-
ment. The current version is also limited in terms of the inter-
actions that are based on epithelial cells and DCs because they
are strictly rule based. Building ODE models for these cells and
integrating them with the ABM model will help capture the dy-
namics of epithelial cells and DCs more in depth. Overall, the im-
munoregulatory mechanisms underlying the chronic coloniza-
tion of H. pylori and the predictive capacity of the model can be
further improved by incorporating cell-specific models for ep-
ithelial cells and DCs.

In summary, a high-resolution, hybrid, multiscale spatiotem-
poral stochastic model of H. pylori infection was built and global
SA was performed. The results from the global SA highlight the
key role played by epithelial cells in affecting the levels of H. py-
lori colonization. The in silico validation of varying the epithe-
lial cell proliferation parameter demonstrated the involvement
of regulatory macrophages and the tolerogenic DCs. The next
steps aimed to enrich the model will involve the validation of the
findings in vivo to study the underlying mechanisms involved in
the successful immune evasion by H. pylori. The computational
modeling predictions will be further validated experimentally
and clinically.

Potential Implications

The computational model of the gut contains high-resolution
information processing representations of immune responses
that are generalizable for other infectious and autoimmune dis-
eases. Complex diseases such as autoimmune disorders, infec-
tious diseases, and cancer all require integration of multiscale-
level data, information, and knowledge, ranging from genes,
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proteins, cells, and tissues to the organ level. The ENISI model
of the gut presented here can be generalized to other diseases
by implementing the agents and rules specific to that disease,
plus recalibrating the model based on data that are specific to
the new indication. Because ABMs have modular architectures,
new agent types can be added and rules can be modified without
restructuring the entire simulation set-up [19]. The use of ABM
in such hybrid models not only facilitates the implementation of
already known mechanisms but also helps validate and predict
any unforeseen new mechanisms using data analytics methods
such as global SA to analyze emerging behaviors at the systems
level. The finer details regarding intracellular and intercellular
interactions that contribute towards the nonlinear and complex
behavior of the gut can also be studied by integrating the intra-
cellular ODE models as implemented here.

Availability of supporting data and materials

The datasets and files supporting the results of this article are
available in the ENISI-MSM GitHub repository, RRID:SCR 01691
8 [25]. Further data supporting this work and snapshots of our
code are available in the GigaScience repository, GigaDB [62].

Availability of source code and requirements
� Project Name: ENISI MSM
� Project homepage: https://github.com/NIMML/ENISI-MSM
� Operating system(s): Linux, Mac OSX
� Programming language: C++, R, MATLAB
� Other requirements: CMake 3.7.2
� ENISI Dependencies: https://github.com/NIMML/ENISI-Dep

endencies
� License: Apache License 2.0
� RRID:SCR 016918

Additional files

File S1—The detailed instructions to install ENISI MSM (Step I),
run a simulation (Step II), and conduct SA (Step III) are described.
Fig S1. Design implementation of the hybrid multiscale model
used to simulate Helicobacter pylori infection. The figure shows
the class structure used in the ENISI MSM hybrid agent-based
ODE model. Each group consists of an act() function that in-
cludes the implemented rule for each agent. The previously pub-
lished ODE models for T cells and macrophages are used to in-
tegrate in the ABM code.
Table S1 Table describing the input parameters used in the sen-
sitivity analysis and their ranges used.
Fig S2. Time screenshots of an H. pylori infection modeled in a
30 mm (length) x 10 mm (width) 2D grid. The thickness of the
compartment is shown on the y-axis, such that the lumen spans
0–2 units, epithelium spans 2–3 units, lamina propria spans 3–
8 units, and gastric lymph node spans 8–10 units on the scale.
The 2D distribution of different cell subsets over the time steps
(ticks) 2, 4 (top panels), 5, and 6 (bottom panels) is shown. The
insets in each image show a zoomed-in portion of the respective
grids across the time steps 2, 4, 5, and 6. The agents represented
in the screenshots below are only for visual representation and
do not represent the actual size of the biological cells.
Fig S3. Flow chart for the 2-staged global sensitivity analysis.
Fig S4. The active and inactive inputs selected from the stage 1
analysis. The rows represent the input parameters and columns
represent the output cell populations. The green boxes highlight

the “active” input parameters (row) that are shown to have a
significant influence (calculated based on the results obtained
from partial correlation coefficient analysis) on an output cell
(columns) under consideration.
Fig S5. Diagnostic and residual plots obtained for the Gaus-
sian processes fitted metamodels. The upper panel represents
the diagnostic Q-Q plots, where the open circles represent the
cross-validated predictions and solid black lines represent ob-
served response. The “observed simulations” data in the first
half of the lower panel refer to the observed output values of
the simulations obtained after running the hybrid computer
model, whereas the y-axis refers to the predicted simulation val-
ues obtained from the cross-validated model. Each point rep-
resents 1 output point obtained as an output from the simula-
tion. The second half of the lower panel refers to the standard
residual plot wherein the x-axis represents the observed simu-
lation values obtained from the simulation and the y-axis refers
to the residual error [error (predicted values – observed val-
ues)/standard deviation (error)] obtained. The diagnostic plots
denote the black circles, which are the cross-validated predic-
tion. Cross-validation is in the sense that for predictions made
at design point x, all observations at design point x are re-
moved from the training set. The lower panel represents the
residual plots for the cell populations: (a) H. pylori, (b) resident
macrophages, (c) monocyte-derived macrophages in the LP, and
(d) tolerogenic DCs in the GLN compartment.
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