
Deng et al. Emerging Microbes & Infections  (2018) 7:60 
DOI 10.1038/s41426-018-0056-7 Emerging Microbes & Infections

ART ICLE Open Ac ce s s

Enhanced protection in mice induced by
immunization with inactivated whole
viruses compare to spike protein of middle
east respiratory syndrome coronavirus
Yao Deng1, Jiaming Lan1,2, Linlin Bao3, Baoying Huang1, Fei Ye1, Yingzhu Chen1, Yanfeng Yao3, Wenling Wang1,
Chuan Qin3 and Wenjie Tan1

Abstract
The persistent public health threat of infection with Middle East respiratory syndrome coronavirus (MERS-CoV)
highlights the need for an effective and safe MERS-CoV vaccine. In this study, we prepared and vaccinated mice with
either a Spike (S) protein or inactivated whole MERS-CoV (IV) with a combined adjuvant (alum+CpG) as a vaccine
formulation. Similar levels of the anti-S protein IgG response and neutralizing activity were induced by both the S
protein and IV vaccines. In addition, immune responses against three other structural proteins, the envelope (E),
membrane (M), and nucleocapsid (N) proteins, were also detected in sera of mice that received IV. No antigen-specific
T-cell immunity was detected after vaccination based on the interferon-γ ELISpot assay. Mice were transduced with
Ad5-hDPP4 after the final immunization and were then challenged with MERS-CoV (1 × 105 plaque-forming units).
Compared with the control group (adjuvant alone), mice immunized with the S protein or IV showed slightly lower
pathological damage in the lung, as well as reduced antigen expression and lung virus titers. Mice that received IV
formulations also showed increased protective immunity (almost no live virus was isolated from the lung). In
conclusion, our data indicate that immunization with our IV formulation induced enhanced protection in mice
compared to immunization with the S protein against MERS-CoV, which should be further tested in camels and clinical
trials.

Introduction
Middle East respiratory syndrome coronavirus (MERS-

CoV) was first isolated in 2012 from a patient suffering
from a severe respiratory illness in Saudi Arabia1. As of
July 2017, a total of 2040 cases in 27 countries have been
reported to the World Health Organization, with 712
deaths (case fatality rate, 35%) (http://www.who.int/

emergencies/mers-cov/en/). Similar to Severe acute
respiratory syndrome (SARS-CoV), MERS-CoV emerged
as a result of zoonotic introduction to the human
population2, 3. Considering the ongoing MERS-CoV
outbreak, it is crucial to develop intervention measures,
including vaccines4. Currently, no licensed therapeutic
treatment or vaccine is available, which highlights the
urgent need for the development of an effective vaccine
against MERS-CoV infection4, 5.
The MERS-CoV genome encodes 16 non-structural

proteins (nsp1–16) and four structural proteins2, the
spike (S), small envelope (E), membrane (M), and
nucleocapsid (N) proteins. The viral structural proteins,
S and N, show the highest immunogenicity6–11. The S
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protein mediates coronavirus entry into host cells by first
binding to a receptor on the host-cell surface via its
receptor-binding domain (RBD)12. Although both the S
and N proteins can induce T-cell responses, neutralizing
antibodies are almost solely directed against the S protein,
which is the major immunodominant factor. Thus, cur-
rent MERS-CoV vaccine candidates primarily use the S
protein or (parts of) the gene coding for this glycopro-
tein4, 5. Vaccines against MERS-CoV infection have been
developed using purified coronavirus S protein, as well as
DNA or viral vector-based vaccines expressing the full-
length MERS-CoV S protein or part of the S protein13–18.
These vaccines have been tested for their ability to induce
virus-neutralizing antibodies in mice or large animals,
such as monkeys or camels7, 17. Several MERS vaccines
have been developed among vaccine platforms but have
been shown to confer variable degrees of immunogenicity,
which necessitates the adjustment of the dose, adjuvant,
and site of administration to induce optimal protective
responses4, 5, 19. Furthermore, ongoing efforts to develop
MERS-CoV vaccines should consider their immunity
profiles against different antigens and correlates of
protection.
An ideal MERS vaccine should induce a potent neu-

tralizing antibody response without inducing harmful
immune effects, such as virus-enhanced antibodies or
immunopathology. Several previous reports relative to
inactivated SARS-CoV or MERS-CoV vaccines have led to
safety concerns in humans20–26, which are reminiscent of
those reported in mice given a formalin-inactivated,
whole-virus respiratory syncytial virus (RSV) vaccine
and challenged with infectious RSV27, 28. However, pre-
clinical evaluations of a subunit or inactivated whole-virus

vaccine and Th1-type adjuvant for SARS-CoV have
shown induction of serum neutralizing antibodies and
protection against infection in mice challenged with an
infectious virus21. Therefore, an appropriate adjuvant or
even an adjuvant combination is required for an effective
and safe vaccine formulation.
CpG oligodeoxynucleotides (namely, CpG), which are

short synthetic DNA sequences consisting of
unmethylated CG dinucleotides, are currently being
developed as vaccine adjuvants that promote Th1-type
immune responses27. Our previous data demonstrated the
advantages of combination of two adjuvants, CpG and
alum, for the induction of both Th1 and Th2 immunity in
mice15, 16, 29, 30. The current study determined the effects
of a inactivated whole MERS-CoV(IV) or S protein
vaccine with a combined (alum+CpG) adjuvant on pro-
tection against MERS-CoV and the risk of lung immu-
nopathology in mice. Furthermore, vaccination with a IV
formulation containing other structural proteins
(N, M, and E) than the S protein enhanced protection
against MERS-CoV, as well as led to reduced viral
antigen expression and pathological damage and
almost no virus isolation from the lungs of mice post-
challenge.

Results
S protein and IV formulations induced similar levels of the
anti-S IgG response
Immunogens of the IV and S proteins were first char-

acterized by Western blotting using anti-S (Fig. 1a) and
anti-N monoclonal (Fig. 1b) antibodies produced by our
laboratory31, 32. The S protein migrates as three poly-
peptides that are specifically recognized by antibodies in

Fig. 1 Vaccine candidates and immunization schedule. Western blot analyses of Middle East respiratory syndrome coronavirus (MERS-CoV) S and
inactivated whole MERS-CoV(IV) vaccines using mouse anti-S (a) and anti-NP monoclonal antibodies (mAbs) (b). Schematic of the study (c)
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Western blot analysis: ~157-kDa band, which represents a
monomer of the S protein ectodomain; ~110-kDa band,
which represents S glycoprotein cleavage into an amino-
terminal domain (S1); and ~210-kDa band, which might
represent a dimer of the S1 protein8, 18, 33. IV migrates as
two polypeptides, and the upper band represents an N-
glycosylated full-length S protein and the lower band
represents S18, 18, 33. In addition, IV was loaded onto
SDS–PAGE gels and characterized by Western blotting
using anti-N mouse monoclonal antibodies that were
produced by our laboratory (Fig. 1b). The results showed
a 46-kDa band, which was the predicted molecular mass
of IV in a previous report32.
To assess the immunity induced by vaccines developed

from the S protein and IV and a combined adjuvant, adult
female BALB/c mice (six per group) were given three i.m.
immunizations at 4-week intervals of combined adjuvant
alone or a formulation with either the S protein or IV at a
dosage of 1 μg of S protein (Fig. 1c). After the first priming
(at 2 weeks), a robust S protein-specific immunoglobulin
response was detected in both the S and IV vaccine
groups; the titers in mice immunized with IV were sig-
nificantly higher than the titers in those immunized with
the S antigen (Fig. 2a). After the second immunization, S
the protein-specific IgG titers were 105 at 6 weeks and did
not significantly different between the S protein and IV
vaccine groups (Fig. 2a). However, the S protein-specific

IgG titer was not increased in either group after the third
immunization.
The IgG isotypes of the S protein induced by both

vaccines were tested at 10 weeks. Anti-S protein IgG1,
IgG2a, and IgG2b were induced in the S protein and IV
vaccine groups (Fig. 2b). The IgG2a/IgG1 and IgG2b/
IgG1 ratios were ~1 (a balanced Th1- and Th2-type
immune response) in the S protein vaccine group. How-
ever, the IgG2a/IgG1 and IgG2b/IgG1 ratios were >1
(a Th1-biased immune response) in the IV vaccine group.

Specific immune responses against the N, M, and E
structural proteins induced by the IV formulation
We next evaluated the N, E, and M-specific immune

responses in mice that received vaccines. Significant NP-
specific IgG antibodies were induced in mice 2 weeks after
the first immunization with IV, but not in those that
received the S protein vaccine or adjuvant alone (Fig. 2c).
More robust NP-specific IgG titers reached 105 dilutions
of serum in mice that received the IV vaccine after
the second immunization (at 6 weeks). After the third
immunization, the NP-specific IgG response was further
enhanced in mice that received the IV vaccine.
Samples were collected from 293 T cells that were tran-

siently transfected with the pCAGGS-E (E), pCAGGS-M
(M) or control pCAGGS plasmid at 24 h post-transfection
and subjected to Western blotting (Fig. 3a) or IFA (Fig. 3b)

Fig. 2 Antigen-specific IgG response after vaccination. Anti-S (a) and anti-NP (b) specific IgGs were detected at 2, 6, and 10 weeks. S protein-
specific antibody isotypes induced by vaccination after 10 weeks (c). Values are the means ± standard error of the mean (SEM). Significant values are
defined by *P < 0.05, **P < 0.01 and ***P < 0.001
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using IV or S protein-immunized mouse serum as the
primary antibody at a dilution of 1:400. E and M were
detected at their predicted sizes by IV-immunized mouse
serum, indicating induction of an E and M-specific
immune response. Our IFA results demonstrated that
specific staining for MERS-E or M protein was also
observed when IV-immunized mouse serum was used as
the primary antibody. However, no specific band or stain-
ing was detected using the S-immunized mouse serum as
the primary antibody (data not shown).

S protein and IV formulations induced similar levels of
neutralizing activity but no detectable CMI
Mouse sera were subjected to pseudovirus neutraliza-

tion and PRNT assays after the second immunization. The
serum MERS-CoV neutralization assay results largely
mirrored the S protein-specific IgG results, with some
notable exceptions. No serum MERS-neutralizing anti-
body was detectable in the mock group or other groups
pre-vaccination. Robust neutralizing antibody responses
were elicited by the S protein and IV combined adjuvant
formulations at 6 weeks. On the basis of the pseudovirus

neutralization assay, sera at a dilution of 1:6400 showed
>80% neutralizing activity in the IV group, which was
significantly higher than that in the S protein group
(neutralizing activity ~70%; Fig. 4a). However, no sig-
nificant difference in neutralizing activity in sera was
found between the S protein and IV groups after the third
immunization (at 10 weeks), with sera at a 1:12,800
dilution showing ~80% neutralizing activity between the S
protein and IV groups (Fig. 4b). On the basis of the PRNT
assay, sera at a 1:1000 dilution showed >80% neutralizing
activity in the IV group at 6 weeks, which was significantly
higher than that in the S protein group (neutralizing
activity ~60%; Fig. 4c). No significant neutralizing activity
difference in sera was found between the S protein and IV
groups after the third immunization (at 10 weeks), with
sera at a 1:4000 dilution showing ~ 80% neutralizing
activity between the S protein and IV groups (Fig. 4d).
Representative microscopy graphs of the RRNT assay are
shown in Fig. 4e. As shown, the data were consistent
between the pseudovirus neutralization and PRNT assay.
To evaluate CMI, mice were euthanized and splenocytes

were isolated at 2 weeks after the final immunization
(10 weeks). However, no significant CMI against antigens
(including the S, N, M, and E proteins) were detected in
any mice by the IFN-γ ELISpot assay using several syn-
thesized 18-mer peptide libraries that overlapped with the
S, E, N, and M proteins of MERS-CoV (data not shown).

Enhanced protection of MERS-CoV was found in mice with
the IV formulation
To assess the effect of vaccination on the mouse lung,

multiple independent sites in the lung tissue samples were
subjected to IE and IHC analyses at 3 days post-challenge.
As shown in Fig. 5a and 5b, severe lesions including the
loss of pulmonary alveoli and diffuse inflammatory cell
infiltration, were detected in lung tissue of control mice.
By contrast, milder lesions were observed in mice
immunized with the S protein or IV, as the pulmonary
alveolus was visible and infiltration of inflammatory cells
was less marked. On a severity scale of 0–3 (none, mild,
moderate, and severe), the adjuvant alone group was
graded 3 for mononuclear cell infiltration, including
lymphocytes and macrophages/monocytes, while both
vaccine groups were graded 2 at 3 days post-challenge.
These results indicate that S protein or IV vaccination
ameliorated the respiratory tract pathology in mice after
challenge with MERS-CoV (Fig. 5a). In addition, S or N
protein expression was detected in lung tissue of all of the
immunized groups (Fig. 5b), indicating that protection
was incomplete. However, either S protein or NP
expression was weaker in the lungs of mice immunized
with IV compared to those immunized with S.
To assess the ability of the vaccine formulations to

inhibit MERS-CoV replication in the lung, homogenized

Fig. 3 Envelope (E) and membrane (M)-specific immune
responses following vaccination with IV vaccine as determined
by Western blotting (WB) and indirect immunofluorescence
assay (IFA). Samples were collected from 293 T cells that were
transiently transfected with the pCAGGS-E (E), pCAGGS-M (M) or
control plasmid pCAGGS at 24 h post-transfection and subjected to
WB (a) or IFA (b) using IV-immunized mouse serum at a 1:400 dilution
as the primary antibody
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lung tissue of mice killed at day 3 post-challenge was
subjected to virus isolation and titration. At day 3 post-
challenge, the adjuvanted vaccine groups had significantly
lower lung virus titers compared to the adjuvant-alone
group. Furthermore, significant differences in the lung
virus titers were detected between the two vaccine for-
mulations at day 3 post-challenge, and the lowest lung
virus titer (almost zero) was found in the group that

received the IV antigen formulated with combined adju-
vant (Fig. 5c). Therefore, vaccination with IV induced
more effective protective immunity in mice compared to
vaccination with the S protein.

Discussion
In this study, we assessed the protective efficacy of the S

protein and IV antigens of MERS-CoV against virus

Fig. 4 Neutralizing antibodies induced by S protein and IV vaccine against MERS-CoV pseudovirus particles and MERS-CoV. Neutralizing
antibody titers against MERS-CoV pseudovirus particles. (a, b) and MERS-CoV (c, d) were determined by plaque reduction neutralization assays at 6
and 10 weeks. Representative results of the plaque reduction neutralization (PRNT) assay for the detection of neutralization activity in the sera of mice
(e). Approximately 30 pfu of the virus stock (hCoV-EMC) was used to infect Vero cells in 12-well plates with or without heat-inactivated sera from
immunized mice 2 weeks after the third immunization. PRNT50 was calculated after the plaques were counted. Significant values are defined by **p
< 0.01.
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infection and lung immunopathology, the latter of which
was previously reported to be exacerbated by alum-
formulated vaccines20. The data suggest that S protein

and IV vaccines formulated with combined adjuvant
induced protective and safe immunity in mice. The
enhanced protection induced by the IV vaccine containing

Fig. 5 The IV formulation provides enhanced protection in mice compared to the S formulation, indicating ameliorated lung pathology,
reduced viral titers and expression of virus antigens in the lungs of mice with IV or S. Representative results of hematoxylin-eosin (HE) staining
(×400) in the lungs of mock-treated or immunized mice (a). Immunohistochemistry staining (×400) with anti-S and anti-NP mAbs (b). Lung virus titers
3 days after MERS-CoV challenge (c) as detected by virus isolation and titration at day 3 post-challenge. Values are the means ± SEM. Significant
values are defined by ***P < 0.001
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a combined adjuvant significantly correlated with antigen-
specific immunity against other structural proteins (N, M
and E) compared to the vaccine formulated with the S
protein of MERS-CoV. However, we also could not com-
pletely exclude the impact of the quality of the antibody
response to a viral spike using recombinant protein versus
those presented on inactivated virus, which need to be
further clarified.
It has been reported that immunization with IV leads to

lung immunopathology in mice upon challenge with live
virus20. Therefore, inactivated MERS-CoV vaccines may
present a risk of a hypersensitive-type lung pathology
following a MERS-CoV infection, similar to SARS-CoV21,

24. Our work differs from that of Tseng et al. in several
respects, including the preparation of IV (inactivated with
0.4% formaldehyde vs. gamma [γ] irradiation), adjuvant
formulation (Al+CpG vs. Al or MF59), and animal model
(Ad5-hDPP4 transduced mice vs. hCD26/DPP4 trans-
genic mice). These differences might have contributed to
the different phenotypes and effects (without enhanced
lung pathology vs. increased infiltrates that contained
eosinophils in mice with IV) in the two studies regarding
the immunity and pathology post-challenge; therefore,
further work is needed.
We explored the adjuvant activity of CpG/alum com-

binations on the S protein and IV vaccine-induced
immunity in mice. As is known, S protein or IV vac-
cines with alum adjuvant induce a Th2-biased response.
Our data demonstrated the advantages of the combina-
tion of the two adjuvants, namely, CpG and alum, for the
induction of robust antibody responses, as the S protein-
specific IgG titers reached 105 and a >60% neutralizing
activity, which were achieved in sera at a 1:1000 dilution
in both vaccine groups after the second immunization. In
addition, vaccines formulated with CpG/alum combina-
tions generated a balanced ([IgG2a+IgG2b]÷IgG1=1) or
Th1-biased ([IgG2a+IgG2b]÷IgG1>1) response against
the S protein in mice vaccinated with the S protein or IV,
respectively. A Th1/Th2 balanced or Th1-biased immune
response is generally associated with more effective con-
trol of viral infections. In Fig. 2a, mice immunized with IV
produced more anti-S antibodies than those immunized
with a recombinant spike protein in the 2-week post
immunization group. We believe that this difference
might be caused by the particle-like conformation of the S
protein preserved in the immunogen of IV compared to
the recombinant S protein as a soluble subunit.
The S and N proteins of CoVs are characterized by high

humoral and cellular immunogenicity34–37. The M and E
proteins are structural proteins that are anchored in the
envelope of MERS-CoV particles2. The E protein is a
small integral membrane polypeptide that forms an ion
channel38, 39. The M protein is a typical transmembrane
glycoprotein and the most abundant structural protein

in CoV virions40. Buchholz et al.37 reported that the M
and E proteins expressed in BHPIV3 vectors did not
induce detectable resistance to a SARS-CoV challenge in
hamsters. However, other reports suggest that M plays a
significant role in the virus-specific humoral response and
induces production of neutralizing antibodies in SARS
patients36. In addition, the N, M, and E proteins may
be antigens for antiviral cytotoxic T cells, which induce
short-term resistance against a virus challenge in the
absence of monoclonal antibodies in mice, as has been
shown to be the case with several coronaviruses40, 41. In
our study, the S protein and IV vaccines induced almost
identical S protein antigen-specific IgG antibody respon-
ses and neutralizing activity after the last immunization.
However, the antigen-specific humoral immune response
against structural proteins (N, M, and E) other than the S
protein was only detected in mice with IV. In addition, the
level of S protein or N protein expression in the lungs of
mice receiving IV was slightly lower than that in mice that
received the S protein vaccine. Furthermore, a more mild
pathology and lower virus titers were detected in the lungs
of mice that received IV (Fig. 5), indicating that the IV
formulation induced a greater protective effect in mice
than the S protein formulation. Therefore, our findings
indicate that this enhanced protective effect might be
derived from antibodies against the N, M, and E structural
proteins contained in IV.
In conclusion, the novel IV formulation (inactivated

with 0.4% formaldehyde and contains the alum+CpG
adjuvant) induced protective immunity but did not
result in enhanced pulmonary immunopathology, which
highlights the importance of the inactivation strategy and
adjuvant. Interesting, although the S and IV formulations
induced similar levels of the anti-S protein IgG response
and neutralizing activity, the IV formulation induced a
greater protective effect in mice than the S protein for-
mulation. We suggest that immunization with the IV
formulation induces enhanced protection in mice com-
pared to the S protein against MERS-CoV, which should
be further tested in camels and clinical trials.

Materials and methods
Ethics statement
Animal studies were conducted in strict accordance

with the Guide for the Care and Use of Laboratory Ani-
mals of the People’s Republic of China. The study pro-
tocol was approved by the Committee on the Ethics of
Animal Experiments of the Chinese Centre for Disease
Control and Prevention (China CDC).
All experimental procedures were performed under

ethyl-ether anesthesia, and every effort was made to mini-
mize suffering. Following inoculation with MERS-CoV, all
experiments were conducted in an animal biosafety level 3
(ABSL-3) facility that was constructed and accredited
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according to National Standard GB19489 of the Laboratory
Animal Science of the Chinese Academy of Medical Sci-
ences and Peking Union Medical College, Beijing, China.

S Protein and inactivated MERS-CoV
Purified recombinant S protein (Sino Biological, Inc.,

Beijing China) was derived from baculovirus-insect cells
expressing the extracellular domain of the spike protein of
MERS-CoV (Human beta coronavirus 2c EMC/2012),
which comprises 1289 amino acids. As described7, MERS-
CoV (strain EMC/2012) was kindly provided by Professor
Ron Fouchier (Erasmus Medical Centre, Rotterdam,
The Netherlands). The virus was propagated in Vero cells
(American Type Culture Collection, Manassas, VA, USA)
in Dulbecco’s modified Eagle’s medium supplemented
with 2% fetal calf serum, 100 international units/mL
penicillin and 100 μg/mL streptomycin at 37 °C in 5%
CO2. All experiments related to live MERS-CoV were
performed according to the standard operating proce-
dures of the biosafety level-3 (BSL-3) facility at the China
CDC. Quantified MERS-CoV was inactivated with 0.4%
formaldehyde for 7 days. Inactivated MERS-CoV (IV) was
then centrifuged at 3000 rpm for 1 min at 4 °C, and the
supernatant was collected after confirmation that it was
non-infectious by titration in Vero cells. Subsequently,
the supernatant was concentrated by centrifugation at
24,000 rpm for 2 h at 4 °C, and the pellet was collected and
dissolved in phosphate-buffered saline (PBS) overnight.
Concentrated IV was quantified using a BCA-based pro-
tein quantification kit (Applygen Technologies, Inc.,
Beijing, China) and stored at −80 °C until use.

Western blotting (WB) and indirect immunofluorescence
assay (IFA)
The S protein and IV were loaded onto SDS-PAGE gels

and characterized by Western blotting using anti-S mouse
monoclonal or anti-N monoclonal antibodies, which were
produced by our laboratory31, 32 (Fig. 1a). To characterize
the expression of the E or M protein, 293 T cells were
seeded and transfected with the empty vector pCAGGS
(Mock) or a plasmid encoding the MERS-CoV E or M
protein, pCAGGS-E (E) or pCAGGS-M (M), respec-
tively42. For IFA, cells were seeded onto glass coverslips in
a 24-well plate and transfected with the indicated
expression plasmids using the HD transfection reagent
(Promega, Madison, WI, USA). At 24 h post-transfection,
the cells were fixed in 4% formaldehyde, permeabilized in
0.5% Triton X-100, blocked in 5% BSA in PBS, and probed
with primary antibodies (immunized mice serum) for 1 h
at room temperature. The cells were washed with PBS and
incubated for 1 h with goat anti-mouse Ig conjugated
to Alexa fluor 405 at a dilution of 1:500 (Invitrogen,
Shanghai, China). The cells were washed and stained with
4,6-diamidino-2-phenylindole (DAPI) (Molecular Probes)

to detect nuclei. Fluorescence images were obtained
and analyzed. For WB, the samples were collected at
24 h post-transfection and separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS–PAGE)
for Western blotting as described previously31, 41, 42. IV
immunized mouse serum was used as the primary anti-
body at a 1:400 dilution to detect the E and M proteins
after vaccination with the IV formulations.

Mice immunization and MERS-CoV challenge
The CpG ODN motif containing unmethylated cytosine

preceding guanosine (5′-TCCATGACGTTCCT-
GACGTT-3′) was synthesized with a full phosphor-
othioate backbone by TAKARA BIO, Inc.). Around 6–8-
week-old female BALB/c mice were divided into three
groups randomly and intramuscularly (i.m.) injected with
1 μg of recombinant S protein (Sino Biological, Inc.,
Beijing China) or IV protein, which comprised the same
dose of the S protein adjuvant with 100 μL of alum and
10 μg of CpG. For quantitative determination of the S
protein of IV, a certain amount of S protein and a serial
dilution of IV were loaded onto SDS–PAGE gels and
characterized by Western Blotting. The S protein content
in IV was evaluated by gray level screening and quanti-
zation. The control group was immunized with alum and
CpG without an immunogen. The day before vaccination,
the alum was mixed with the protein to a final con-
centration of 1 mg/mL and mixed every few hours to
maintain homogeneity. As shown in Fig. 1c, mice were
immunized three times at 4-week intervals. For determi-
nation of the IgG levels and neutralization activity, mice
were bled by venae angularis 2 weeks after each immu-
nization (i.e., at 2, 6, and 10 weeks). To evaluate the cell-
mediated immunity (CMI), three mice from each group
were euthanized and splenocytes were isolated at 2 weeks
after the last immunization (10 weeks). All of the eval-
uated experiments were independent.
After 9 days of the last immunization, the remaining

mice were lightly anesthetized with isoflurane and trans-
duced intranasally with 2.5 × 108 plaque-forming units
(pfu) of Ad5-hDPP443. After 5 days, transduced mice were
infected intranasally with MERS-CoV (1 × 105 pfu) in 50
μL of DMEM. Three days post-infection with MERS-CoV,
mice were killed and their lungs were harvested. All work
with MERS-CoV was conducted in ABSL-3 facilities.

Enzyme-linked immunosorbent assay
Antigen-specific IgG antibody responses were deter-

mined by enzyme-linked immunosorbent assay (ELISA),
as described previously15, 18. For analysis of the S protein-
specific antibody isotypes, recombinant S protein was
absorbed to ELISA plates and incubated overnight at 4 °C.
At the same time, the recombinant NP protein32 expres-
sed in prokaryotic cells and purified by a nickel column
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was coated on ELISA plates for analysis of NP-specific
antibodies. Serum samples diluted in 1% bovine serum
albumin-PBS were incubated for 2 h at room temperature
(RT) and washed, followed by the addition of 100 μL of
biotinylated anti-mouse IgG, IgG1, IgG2a, and IgG2b
(Abcam, Cambridge, UK) conjugated to streptavidin-
horseradish peroxidase (HRP; BD Biosciences, Beijing,
China) and incubation for 1 h at RT. The samples were
incubated with TMB (3,3′,5,5′-Tetramethylbenzidine)
substrate for 10min, and the reaction was stopped with 1
M phosphoric acid. The optical density at 450 nm
(OD450) was measured using an ELISA plate reader
(Molecular Devices, Sunnyvale, CA, USA).

Pseudovirus neutralization assay
Serum neutralizing activity was determined using a

MERS-CoV pseudovirus system as reported previously15,
18. The neutralizing antibody efficiency was calculated as:
(relative luciferase units of mock sera-relative luciferase
units of immune serum for a given dilution) ÷ relative
luciferase units of mock sera.

Plaque reduction neutralization assay
Plaque reduction neutralization assays (PRNT) were

conducted in a BSL-3 facility, as reported previously15, 17.
Briefly, heat-inactivated serum from immunized mice was
serially diluted. After co-incubation with the same volume
of MERS-CoV (hCoV-EMC), the mixtures were trans-
ferred to 12-well plates with confluent Vero cells for 1 h.
Virus incubation with DMEM was used as the control.
The cells were cultured at 37 °C for an additional 72 h and
fixed with paraformaldehyde for 20min. The plaques
were counted after dying with gentian violet. Plaque
reduction was calculated as follows: inhibition percentage
= 100 × [1−(plaque number incubated with sera ÷ plaque
number without sera)].

Enzyme-linked immunospot assays
To evaluate antigen-specific T-cell responses to the

vaccination regimes, interferon (IFN)-γ enzyme-linked
immunospot (ELISpot) assays were performed, as
described previously15, 18. A synthesized 18-mer peptide
library that overlapped with the S, E, N, and M proteins of
MERS-CoV was used. IFN-γ spot-forming cells were
counted using a Bioreader (Biosys, So. Pasadena, CA).

Hematoxylin-eosin (HE) and Immunohistochemistry(IHC)
After mice were euthanized, the lungs were collected for

HE and IHC examination. Tissues were fixed using 10%
neutral buffered formalin, embedded in paraffin, sectioned
sequentially to a 4 μm thickness, and stained with HE prior
to examination by light microscopy. For immunohis-
tochemistry (IHC), the sections were then incubated with
a rabbit-serum-derived polyclonal antibody against

nucleoprotein (Sino Biological, Inc., Cat. No. 100213-
RP02) or mouse-serum-derived monoclonal antibody
against S protein (produced in our laboratory) at a 1:1000
dilution. The secondary antibodies were goat anti-rabbit
(ZSGB-Bio, Beijing, China; Cat. No. pv-9001) and goat
anti-mouse at 1:2000 dilutions. The results were evaluated
by light microscopy. Multiple independent sites in the lung
tissue samples were used for IHC analysis. Finally, four or
five slides per animal were evaluated.

Statistical analysis
Statistical analyses were conducted by one-way analysis

of variance with Bonferroni post-test using SPSS for
Windows software (ver. 17, SPSS, Inc., Chicago, IL, USA).
Unpaired two-tailed Student’s t-test was used to compare
the means between the different groups. A value of P <
0.05 was taken to indicate statistical significance. The
results are expressed as the means ± standard deviations
(s.d.). All figures were rendered using Prism 5 software
(GraphPad Software, La Jolla, CA, USA).
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