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Abstract: Molecularly imprinted mesoporous materials (MIMs) were synthesized to improve the
adsorption performance of Cytochrome c (Cyt c) by using an imidazolium-based amphiphilic
ionic liquid 1-octadecyl-3-methylimidazolium chloride (C18MIMCl) as surfactant in aqueous
solution via the epitope imprinting approach. The surface-exposed C-terminus nonapeptide of
Cyt c (residues 96–104, AYLKKATNE) was utilized as the imprinted template. The nitrogen
adsorption-desorption, thermo-gravimetric analysis, and transmission electron microscopy verified
the successful preparation of MIMs with ordered mesoporous structure. The adsorption isotherm
studies showed that the obtained MIMs exhibited superior adsorption capacity toward Cyt c of
86.47 mg·g−1 because of the high specific surface areas of 824 m2·g−1, and the appropriate pore
size promoted the mass transfer of Cyt c, causing a rapid adsorption equilibrium within 20 min.
Furthermore, these MIMs still remained excellent selectivity and recognition ability according to the
selective as well as the competitive adsorption studies, suggesting that the molecularly imprinted
mesoporous materials is expected to be used in the field of highly efficient separation and enrichment
of proteins.

Keywords: amphiphilic ionic liquids; molecularly imprinted mesoporous silica; epitope imprinting;
Cytochrome c

1. Introduction

Along with the wide development of bioseparetion, biosensing or biomedical materials,
the separation and identification of proteins have drawn great attention recently [1]. In the past,
the detection of proteins was almost always based on the antigen-antibody reactions, however, the high
cost and structural sensitivity somewhat hindered the recycling of antibodies [2]. Molecular imprinting
technology (MIT) is an emerging separation method that could achieve the fast and high selective
separation of the target molecule with an inexpensive and stabilized biomaterial [3,4]. Nowadays,
numerous molecularly imprinted polymers (MIPs) were developed and applied in small template
molecules, while the imprinting of proteins still has limitations because of the huge molecular size,
flexible conformation, and complex structures [5,6]. In order to overcome these challenges, researchers
have proposed epitope imprinting [7,8], which is based on using a specific fragment of protein
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as template. Those obtained MIPs by epitope imprinting had the ability to recognize the whole
protein [9,10]. However, along with the low conformation destructiveness of the epitope imprinting
system, some new problems emerges, i.e., how to get enough surface area to reach a high total amount
of the recognized target proteins.

Ordered mesoporous silica materials [11–13] with a large surface area was a desired substrate
to increase the imprinted sites amounts and enhance the adsorption capacity of target molecule.
By making use of the interactions between the surfactant and template, it could be ensured that
a portion of the template remained at the surface of micelles [14]. Then, functional monomers
and a cross-linker could be copolymerized in the presence of the template protein. After the
elution of template, one-step interfacial molecularly imprinted mesoporous silica was obtained.
Chen et al. prepared an adenosine monophosphate (AMP)-imprinted mesoporous silica nanoparticle
materials (MSNs) with the pore diameter of 2.3 nm and the BET surface area of 833 m2·g−1 [15].
The obtained MIPs significantly improved the imprinting efficiency and binding properties toward
AMP. Moreover, the tunable pore sizes of the mesoporous materials provided an enough space for
the mass transfer of biomacromoleucles, such as proteins [16]. The critical factor is developing a
surfactant to controllably grow a mesoporous with easily accessible mesopore, so as to meet the
requirements in immobilization of template. Unfortunately, the pore size of some mesoporous support
materials by using trimethylammonium bromide (CTAB), as the surfactant is less than the mean size of
proteins [17,18], which would reduce the adsorption performance of imprinted polymers for proteins.
Therefore, suitable alternatives to CTAB, which not only act as a surfactant, but also generate suitable
sizes of mesopores and channels for the diffusion of proteins, are of great importance.

Amphiphilic ionic liquids (ILs) consisting of an imidazolium cation and a hydrophobic long alkyl
chain along with a kosmotropic anion could direct the formation of mesophase in the synthesis system
and produce well-ordered mesoporous materials [19–21]. The mesopore size can be tuned by varying
the length of the alkyl chain and the anion [22]. In addition, the researchers have shown that ILs
with an imidazolium cation as the polar group could provide multiple interactions in immobilizing
template molecules [23–25], which ensured the adsorption capacity of MIPs. Recently, our group
reported an interfacial molecularly imprinted microspheres by using imidazolium-based amphiphilic
ionic liquid (IL) as emulsifier and suggested that the amphiphilic IL could immobilize protein at the
liquid-water interface by intermolecular forces [26]. Therefore, taking into consideration the potential
of ILs to adjust mesopore diameter and provide multiple interactions, designing an imidazolium-based
amphiphilic IL as surfactant would improve the adsorption performance of MIPs.

Based on the above reasons, in order to improve the adsorption performance of MIPs, molecularly
imprinted mesoporous materials (MIMs) were synthesized to enrich and detect Cytochrome c (Cyt c)
by using the surface-exposed C-terminal fragment of Cyt c (AYLKKATNE) as template. Amphiphilic
IL 1-octadecyl-3-methylimidazolium chloride (C18MIMCl) was utilized as surfactant to control the
mesopore size and immobilize template. The morphologies and structures of MIMs were characterized
by transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) nitrogen adsorption and
thermo-gravimetric analysis (TGA). Furthermore, the adsorption properties, specific recognition ability,
and reusability of MIMs for Cyt c were systematically investigated.

2. Experimental

2.1. Materials

1-Chlorooctadecane were obtained from Macklin (Shanghai, China). NaOH, HCl, methanol,
ethanol and tetrahydrofuran (THF) were provided by Kermel (Tianjin, China). The monomers
3-Aminopropyltriethoxysilane (APTES, Aldrich, Shanghai, China) and 1-Propyltrimethoxysilane-
3-methylimidazolium chloride (PTESMIC, Cheng Jie, Shanghai, China) were used without further
purification. Tetraethyl orthosilicate (TEOS, 99%) and 1-Methylimidazole were obtained from Aladdin
(Shanghai, China). Cytochrome c (Cyt c, Mw = 12.4 kDa, pI = 11.2) was purchased from Macklin
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(Shanghai, China). Lysozyme (Lyz, Mw = 13.4 kDa, pI = 9.6) and Ovalbumin (OVA, Mw = 45.0 kDa,
pI = 4.7) were provided by MP Biomedicals. Bovine hemoglobin (BHb, Mw = 64 kDa, pI = 6.9)
and Bovine serum album (BSA, Mw = 67 kDa, pI = 4.9) were purchased from Sigma-Aldrich.
The peptide chains, including C-terminal fragment of Cyt c (AYLKKATNE), were synthesized by
KareBay (Ningbo, China).

2.2. Synthesis of Amphiphilic Ionic Liquid C18MIMCl

The synthesis of C18MIMCl was performed according to a reported route [27]. As a typical
synthesis process, 1-Methylimidazole (0.1 mol) was mixed with 1-Chlorooctadecane (0.1 mol).
The above-mixture was put into a 250 mL flask with refluxing at 90 ◦C for 24 h. When cooling
to room temperature, a kind of white solid was obtained. Then, the product was further purified
by recrystallization in THF. After washing several times with THF, the resulting white powder was
collected by filtration and dried under vacuum at room temperature. The structure of C18MIMCl is
shown in Figure 1.

1H NMR (400 MHz, CDCl3): δ 10.34 (s, 1H), 7.58 (s, 1H), 7.38 (s, 1H), 4.28 (t, J = 7.4 Hz, 2H), 4.09 (s,
3H), 1.92–1.80 (m, 2H), 1.35–1.10 (m, 22H), 0.84 (t, J = 6.8 Hz, 3H).
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Figure 1. 1H NMR spectrum of C18MIMCl in CDCl3.

2.3. Preparation of Molecularly Imprinted Mesoporous Materials (MIMs)

Firstly, the C18MIMCl and NaOH (0.17 g) were dissolved in distilled water (288 mL)
simultaneously. Then, the solution was transferred into a 500 mL three-necked round-bottomed
flask and was stirred at 80 ◦C for 15 min at a speed of 700 rpm. Subsequently, 15 mg of template
(C-terminal peptides of Cyt c, as AYLKKATNE), TEOS (2.5 mL), APTES (0.1 mL) and PTESMIC (0.38 g)
were added dropwise to the mixture and then reacted at 400 rpm for 2 h. Finally, the obtained white
powder was washed with ethanol for several times and evaporated under vacuum at 40 ◦C for further
use. Additionally, the complete removal of C18MIMCl and nonapeptide from MIMs was implemented
with Soxhlet extraction method by mixing HCl (36%, 2.5 mL) and methanol (150 mL). After that,
these imprinted materials (MIMs) were dried under vacuum at 40 ◦C for 72 h to remove residual
solvent within the mesoporous materials.

In a parallel, non-imprinted mesoporous materials (NIMs) was prepared by the same procedure,
but in the absence of template nonapeptide.
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2.4. Characterization

1H NMR spectra of ILs was obtained from a Varian spectrometer at 400 MHz using CDCl3
as the solvent. The morphologies and structures of MIMs and NIMs were determined by
transmission electron microscopy (TEM, Talos F200X G2). The surface areas and the pore size
distributions were calculated by the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH)
methods. The content of functional monomers was measured by thermo-gravimetric analysis (TGA,
Q50, TA Instruments, Shanghai, China). For the detection of template peptides (AYLKKATNE),
Cyt c, and comparative protein, UV-vis spectra were obtained using a UV-2550 spectrophotometer
(Shimadzu). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed
using a DYY-6C electrophoresis system (Beijing Liuyi Instrument Plant, Beijing, China).

2.5. Isothermal Rebinding and Dynamic Adsorption

The dried MIMs/NIMs (50 mg) were dispersed in 5 mL buffer solution (pH = 7.4) with different
concentrations of Cyt c (from 0.2 to 1.4 mg·mL−1). After incubation with shaking at room temperature
for 24 h, the supernatant was further filtrated through a 0.1 µm polyethersulfone syringe filter. Then,
the concentration of Cyt c in the supernatant was determined using a UV-vis spectrophotometer.

The adsorption dynamic studies were performed by detecting the adsorption amount of
MIMs/NIMs for Cyt c at regular incubation time. First, 50 mg dried MIMs/NIMs were incubated
in 5mL phosphate buffer (pH = 7.4) containing 1.0 mg·mL−1 of Cyt c at 25 ◦C for 24 h. Then,
the concentration of residual Cyt c solution was measured by UV at different incubation time.

The adsorption amount Qe (mg·g−1) of MIMs/NIMs for protein was evaluated according to
Equation (S1), and the imprinting factor (IF) was calculated by Equation (S2).

2.6. Selectivity and Competitive Adsorption Experiments

In order to estimate the selectivity recognition of MIMs for Cyt c, 50 mg dried MIMs/NIMs
were incubated in 5 mL phosphate buffer solution (pH = 7.4) containing target protein Cyt c and
protein analogue (Lyz, BHb and BSA) separately with a concentration of 1.0 mg·mL−1, and the mixture
was shaken at 25 ◦C for 24 h. The amount of each protein that was adsorbed by MIMs/NIMs was
determined by measuring the UV absorbance.

The competitive adsorption experiment was conducted with adding 50 mg dried MIMs/NIMs
into 5 mL phosphate buffer (pH = 7.4) containing both Cyt c and its competitor at 25 ◦C with each
protein concentration of 1.0 mg·mL−1. After incubation for 24 h under gentle shaking, MIMs/NIMs
were removed from the solution by centrifugation and treated first with 5 mM NaCl to rinse the weakly
adsorbed proteins on the mesoporous surface of MIMs/NIMs and then with 0.5 M NaCl to elute the
specifically adsorbed proteins. The specifically adsorbed proteins were desalted by using dialysis
tubing with a molecular cutoff of 500 Da, and were then freeze-dried for 24 h. Thereafter, the obtained
protein was dissolved in 5 mL phosphate buffer (pH = 7.4) and was analyzed by SDS-PAGE using
12.5% polyacrylamide separating gel and 5% polyacrylamide stacking gel.

2.7. Reusability Experiments

Reusability is one of an important property of MIPs in practical applications. To evaluate the
reusability of the MIMs and NIMs, 50 mg dried MIMs/NIMs were suspended in 5 mL protein
solution (pH = 7.4) with a concentration of 1.0 mg·mL−1. After adsorption and centrifugation,
the concentration of Cyt c residue was determined by UV-vis spectrophotometer. Thereafter,
the recovered MIMs were eluted for the removal of the template and were then further reused
for subsequent adsorption-desorption cycles. The reusability adsorption experiments were performed
six times at ambient temperature by the same batches of MIMs.
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3. Results and Discussion

3.1. The Effect of Alkyl Chain Length of ILs on Mesoporous Diameter

The appropriate mesopore size could promote the mass transfer and recognition of protein [28].
Cytochrome c (Cyt c), a structurally robust heme protein with dimensions of ~2.6 nm × 3.2 nm
× 3.3 nm, was used as the target protein to explore the adsorption and recognition process of
proteins that were entering the imprinted sites [29]. In order to explore the suitable pore size for
recognition Cyt c, three kinds of ILs were synthesized as surfactants to prepare three mesoporous silica
nanoparticle materials (MSNs), which were 1-octyl-3-methylimidazolium chloride (C8MIMCl)-MSNs,
1-tetradecyl-3-methylimidazolium chloride (C14MIMCl)-MSNs, and 1-octadecyl-3-methylimidazolium
chloride (C18MIMCl)-MSNs, respectively. The detailed synthesis process of C8MIMCl, C14MIMCl,
and CnMIMCl-MSNs were explained in supplementary materials. The structure of C8MIMCl and
C14MIMCl are shown in Figures S1 and S2. The synthetic schematic of CnMIMCl-MSNs with different
pore size was displayed in Scheme S1. Firstly, the ionic liquid was dissolved in an aqueous solution to
form micelles, and then the mesoporous material was synthesized by a one-step sol-gel method.

The TEM images of CnMIMCl-MSNs were showed in Figure S3. It was employed to investigate
the morphologies of CnMIMCl-MSNs. The obtained CnMIMCl-MSNs exhibited a spherical shape
with ordered mesopores, which confirmed that the CnMIMCl-MSNs were prepared successfully.
The average pore diameter and specific surface areas of MSNs were conducted by nitrogen
adsorption-desorption. As shown in Table 1, the BJH average pore diameters of these materials
increased as the alkyl chain of the ILs lengthened. The pore size varied approximately in the range of
1.80–3.60 nm with the varied carbon chain lengths of the used ILs. It was because that the concentrations
of ILs were higher than there critical micelle concentration (CMC) in water system, hydrophobic alkyl
chain will gather to form the micelles with different diameters. When the micelle rods were removed,
mesoporous channels with different diameters were obtained. When compared with C8MIM-MSNs
and C14MIM-MSNs, C18MIM-MSNs possessed the most optimal and suitable pore diameter for the
mass transfer of Cyt c in the pore. Therefore, using the amphiphilic IL C18MIMCl as surfactant could
provide satisfied pore diameter for adsorption of Cyt c by MIMs in rebinding tests.

Table 1. Nitrogen Sorption Data of CnMIM-mesoporous silica nanoparticle materials (MSN) Materials.

Ionic Liquids BET Surface Areas Pore Volume BJH Average Pore
(ILs) (m2/g) (cm3/g) Diameter (nm)

C8MIMCl 1031 0.673 1.85
C14MIMCl 692 0.662 2.23
C18MIMCl 795 0.810 3.58

3.2. Preparation and Characterization of MIMs and NIMs

The MIMs was prepared by combining the epitope imprinting technique and sol-gel method
(Scheme 1). Based on above pore size experiment results, the amphiphilic IL with an imidazole ring
(C18MIMCl) was utilized as surfactant. The nonapeptide template was anchored on the surface of
C18MIMCl micelle rods through multiple interactions [30] generating surfactant-template complexes.
After removal of the surfactant-template complexes, all of the imprinted sites were formed on the
surface of mesoporous channels. The obtained MIMs could be an ideal sorbent for the selective
enrichment of Cyt c.
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Scheme 1. Schematic illustration of the synthesis procedure of MIMs and the selective process for the
enrichment of Cytochrome c (Cyt c) using MIMs.

The TEM images of MIMs and NIMs were showed in Figure 2a,b. It is noted that the
nonapeptide-imprinted and non-imprinted mesoporous materials displayed a fibrous porous
morphology that is directed by C18MIMCl. Both the MIMs and NIMs were nearly spherical in
shape with an average diameter about 200 nm. The smaller spherical size and regularly ordered
mesopores produced a large specific surface area of imprinted mesoporous materials, which will be
beneficial to the adsorption performance of MIMs. The average size of MIMs was investigated by
dynamic light scattering (DLS). As shown in Figure S4, the size distribution of MIMs was about 200 nm,
which was consistent with TEM.
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The N2 adsorption-desorption isotherms and pore size distribution of MIMs and NIMs were
also performed. As shown in Figure 3a,b, the pore diameter of MIMs and NIMs were measured to be
3.62 and 3.43 nm, and the specific surface areas were calculated to be 824 and 665 m2·g−1, respectively.
According to the mechanism of mesoporous formation, these differences may be attributed to the
imprinted cavities mostly embedding in the surface of mesoporous channel of MIMs, which made a
local expansion of the regular mesopores. Therefore, the average pore size and specific surface areas
were increased. Additionally, the appropriate pore diameter and the larger surface areas of MIMs will
contribute to the mass transfer of Cyt c in the mesopores.
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The solid content of MIMs and NIMs were studied by TGA, and the results were showed in
Figure 4. All materials had slightly decline before temperature rising to 200 ◦C, which were the
weight loss of adsorbed moisture and surface organogels or inorganic gels. When the temperature
was increased above 200 ◦C, the loss of MIMs and NIMs were due to the decomposition of APTES
and PTESMIC. This phenomenon demonstrated that the heat losses of MIMs and NIMs were almost
identical, indicating that the degree of polymerization of both was consistent. Therefore, the measured
value of adsorption property for Cyt c would not be affected by differences in polymerization.
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3.3. Adsorption Properties of MIMs and NIMs

For investigating the imprinting efficiency and binding properties of MIMs for target protein Cyt
c, adsorption isotherm experiments were conducted in Cyt c solutions with a certain concentration.
From the Figure 5a, it is easy to observe that the adsorption capacity enhanced with an increasing Cyt
c concentration. The adsorption equilibrium capacity Qe of MIMs increased sharply with the initial
concentration of Cyt c, and then saturated over 1.0 mg·mL−1, while the maximum adsorption capacity
of Cyt c reached 86.47 mg·g−1. However, the Qe of NIMs for Cyt c was much lower than that of MIMs
and the maximum adsorption amount was only 24.85 mg·g−1, which showed that MIMs had a higher
binding ability than that of NIMs. The relative high adsorption capacity might be attributed to the
multiple interactions (such as hydrogen bonding, π–π stacking, ion-ion electrostatic, and van der Waals
interactions, etc.) afforded by C18MIMCl [31]. Particularly, the ion-ion electrostatic interaction provided
by imidazolium group of C18MIMCl and PTESMIC is much stronger than the other interactions [32],
which could induce the aggregation of oppositely charged nonapeptide around the micelles and
facilitated the formation of more imprinting sites on the mesoporous surface. The maximum IF was
calculated to be 3.48, indicating that the MIMs had better specific recognition when compared with
NIMs, because the specific recognition cavities were generated on the surface of mesoporous channels
of MIMs in the imprinting process.
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The experimental data was fitted by different isotherm models, including Langmuir model
(Equation (S3)) and Freundlich model (Equation (S4)). The Langmuir model assumes that adsorption
took place on a homogeneous surface with identical active sites and uniform energies, while the
Freundlich model assumes that adsorption occurred on a heterogeneous surface with the exponential
distribution of active sites and energies [33]. The calculated parameters were listed in Table 2. As shown
in Table 2, the Langmuir model gave a better fitting in the range of concentrations than that of
Freundlich model via the correlation coefficient (R2) value, which showed that the adsorption of
MIMs to the target protein Cyt c is monolayer adsorption. Because the MIMs was prepared by using
nonapeptide as template via epitope imprinting approach to separate and recognize Cyt c. The pore size of
the imprinted sites is slightly larger than the average mesopore size around 3.62 nm. Therefore, the MIMs
was more likely to form a single specific adsorption for Cyt c at the imprinted sites in a limited space.

Table 2. Isotherm model and constants of MIMs, NIMs for Cyt c.

Isotherm Model Langmuir Freundlich

Materials Qmax (mg·g−1) KL (mg·mL−1) R2 KF (mg·g−1) n R2

MIMs 156.05 1.0192 0.9632 77.29 1.6931 0.9340
NIMs 38.61 1.3998 0.9256 22.12 1.9729 0.9291
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For NIMs, the Freundlich model and the Langmuir model yielded a similar fit to the equilibrium
data in terms of the correlation coefficients (R2) values, which was related to the random arrangements
of functional groups and the absence of specific recognition sites in NIMs.

To determine the rate of adsorption and the binding capacities as a function of time, the adsorption
dynamics of MIMs and NIMs were carried out by using 1.0 mg·mL−1 Cyt c buffer solution at 25 ◦C.
As shown in Figure 5b, both MIMs and NIMs showed a rapid increase during the first 20 min, and then
the adsorption process reached equilibrium after 20 min. Obviously, the adsorption rate and adsorption
capacities of MIMs for Cyt c in the initial phase were higher than that of NIMs. When compared
with the previous works of our group [26,34], the imprinted mesoporous materials showed a faster
adsorption rate for target protein. It is attributed to the specific recognition sites increased by the
large internal surface areas of mesoporous silica, and highly accessible sites locating on the wall of the
mesoporous, which also be responsible for the excellent adsorption performance of MIMs. Moreover,
it also implied that the imprinted mesoporous materials prepared by epitope imprinting method can
achieve rapid and specific adsorption of Cyt c.

The controlling mechanism of dynamic binding process was further investigated by the
pseudo-first-order and pseudo-second-order kinetic models via Equations (S5) and (S6). In general,
the pseudo-first-order model indicates that the occupation rate of adsorption sites is proportional to
the number of unoccupied sites, whereas the pseudo-second-order model assumes that the adsorption
rate is controlled by chemical adsorption [35]. According to the correlation coefficient (R2) value in
Table 3, the pseudo-second-order kinetic model showed a better correlation with the MIMs, which
demonstrated that chemical adsorption might be the rate-limiting step in the process of recognition,
indicating that imprinted sites were actually formed and that they are functionally and sterically
complementary affinity to nonapeptide fragment on Cyt c.

Table 3. Kinetic constants of the pseudo-first-order and pseudo-second-order.

Pseudo-First-Order Pseudo-Second-Order

Materials Qe,e
a (mg·g−1) Qe,c

b (mg·g−1) K1 (min−1) R2 Qe,c
b (mg·g−1) K1 (g mg−1·min−1) R2

MIMs 86.47 87.86 0.1209 0.9784 101.10 0.0015 0.9948
NIMs 24.85 25.11 0.1048 0.9753 29.71 0.0040 0.9919

a Qe,e is the experimental value of Qe; b Qe,c is the calculated value of Qe.

3.4. Selectivity Study

The selective adsorption experiment of MIMs and NIMs for different proteins was performed
in buffer solution (pH = 7.4) with a feed concentration of 1.0 mg·mL−1. Three proteins of BSA, BHb,
and Lyz were chosen as reference proteins for Cyt c. As presented in Figure 6, the adsorption capacities
of MIMs for BSA and BHb were much lower than that for Cyt c. Owing to the conformational
differences among Cyt c, BSA, and BHb, the imprinted cavities of MIMs more matched with the
C-terminal nonapeptide of Cyt c. However, the adsorption capacities of MIMs for another reference
protein, Lyz, was slightly higher than that for BSA and BHb because Lyz has the close isoelectric point
(pI) and molecular wight (Mw) with Cyt c and can enter the mesopores causing high non-specific
adsorption capacity. The corresponding imprinting factor IF of MIMs for BSA, BHb and Lyz were
also reported in Figure 6. IFs of these proteins decreased in the order of Cyt c > BSA > BHb > Lyz,
which indicated that the imprinted sites were closely match with Cyt c in the interaction sites and the
three-dimensional space.
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Figure 6. Selectivity of MIMs and NIMs in the adsorption of proteins.

The above selective adsorption experiment showed that Lyz is a potential competitor to
Cyt c. In order to further investigate the selective recognition of MIMs for Cyt c, the binary
competitive adsorption experiments were performed in complex samples containing Cyt c and Lyz
with concentration of 1.0 mg·mL−1. As presented in Figure 7, the adsorption capacity of MIMs for Cyt
c was higher than that of Lyz, suggesting that the functional groups that were located at imprinted
cavities could offer functionally complementary affinity toward Cyt c in above complex environment,
as compared with reference protein Lyz, and thus imprinted cavities had excellent specificity for Cyt c.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 14 

 

 
Figure 6. Selectivity of MIMs and NIMs in the adsorption of proteins. 

The above selective adsorption experiment showed that Lyz is a potential competitor to Cyt c. 
In order to further investigate the selective recognition of MIMs for Cyt c, the binary competitive 
adsorption experiments were performed in complex samples containing Cyt c and Lyz with 
concentration of 1.0 mg·mL−1. As presented in Figure 7, the adsorption capacity of MIMs for Cyt c 
was higher than that of Lyz, suggesting that the functional groups that were located at imprinted 
cavities could offer functionally complementary affinity toward Cyt c in above complex 
environment, as compared with reference protein Lyz, and thus imprinted cavities had excellent 
specificity for Cyt c. 

 
Figure 7. Selective binding of MIMs and NIMs for Cyt c and Lyz, respectively. 

3.5. Competitive Batch Rebinding Tests 

To further illustrate the specific recognition property of the MIMs for the Cyt c, BSA, and OVA 
were used as the competitive proteins in the buffer solution. As shown in Figure 8, lane 2 presented 
BSA, OVA and Cyt c sequentially with each concentration of 1.0 mg·mL−1. After the adsorption by 
MIMs, the content of Cyt c in the mixed solution decreased significantly (lane 2 to lane 3). The 
intensity of the template Cyt c band eluted from MIMs (lane 4) was higher than that of 
corresponding NIMs (lane 5), revealing that the MIMs had a better ability to specifically recognize 
Cyt c. Moreover, the bands of BSA and OVA in lane 4 were shallower than the lane 2, suggesting that 

Figure 7. Selective binding of MIMs and NIMs for Cyt c and Lyz, respectively.

3.5. Competitive Batch Rebinding Tests

To further illustrate the specific recognition property of the MIMs for the Cyt c, BSA, and OVA
were used as the competitive proteins in the buffer solution. As shown in Figure 8, lane 2 presented
BSA, OVA and Cyt c sequentially with each concentration of 1.0 mg·mL−1. After the adsorption by
MIMs, the content of Cyt c in the mixed solution decreased significantly (lane 2 to lane 3). The intensity
of the template Cyt c band eluted from MIMs (lane 4) was higher than that of corresponding NIMs
(lane 5), revealing that the MIMs had a better ability to specifically recognize Cyt c. Moreover, the bands
of BSA and OVA in lane 4 were shallower than the lane 2, suggesting that a little amount of BSA and
OVA was captured by MIMs. In general, MIMs could selectively capture and effectively enrich Cyt c
from the complex protein mixture.
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Figure 8. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results of competitive
adsorption experiment. Lane 1, protein molecular weight marker; Lane 2, solution of mixture of Bovine
serum album (BSA), Ovalbumin (OVA), and Cyt c; Lane 3, the protein in the mixed solution after
adsorption by MIMs; Lane 4, the protein eluted from MIMs; Lane 5, the protein eluted from NIMs.

3.6. Comparison of Imprinting Methods for Cyt C

To check the superior adsorption performance of MIMs with amphiphilic ILs as the surfactant to
control pore size and immobilize template, we investigated the adsorption capacity and the equilibrium
rate of MIMs for Cyt c in other related researches. As shown in Table 4, owing to advantages of
the high specific surface areas of mesoporous silica and the epitope imprinting method, this new
imprinting strategy could obtain much higher binding capacity toward Cyt c than that of others
imprinted polymers [36–38]. From the comparison of the adsorption rate, we could conclude that this
approach still displayed the rapid adsorption equilibrium on the basis of a superior adsorption
capacity. That further demonstrated the MIMs have the potential to be applied in the field of
molecular imprinting.

Table 4. Comparison of different methods of imprinting Cyt c.

Carrier Imprinting Strategies Recongation Interactions Adsorption Equilibrium Q (mg·g−1) Ref.

BC nanofibers Protein imprinting metal ion coordination 10 min 36.4 [36]
Fe3O4@SiO2 Epitope imprinting Multiple 2 h 67.6 [37]

Organic polymers Protein imprinting Hydrogen bond 4 h 67.4 [38]
Mesoporous silica Epitope imprinting Multiple 20 min 86.47 This method

3.7. Reusability

Reproducibility is one of an important criterion to evaluate the property of imprinted materials in
the practical purposes. Therefore, the reusability of MIMs for six adsorption-desorption cycles was
investigated in Cyt c solution (pH = 7.4) with a feed concentration of 1.0 mg·mL−1. As shown in
Figure 9, the adsorption capacity of MIMs decreased slightly after each elution step, and 13.43 mg·g−1

adsorption capacity was lost after six cycles. In order to observe the decreased adsorption amount
of each elution step more directly, the statistical analysis of the reusability of MIMs was showed in
Table S1. Because some recognition sites in the mesopore might be destroyed or blocked during the
washing procedure, which were not helpful to recognize the Cyt c anymore. When compared to MIMs,
there was little decrease in case of adsorption capacity of NIMs because no specific adsorption sites
were located in them.
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4. Conclusions

In this work, we have synthesized molecularly imprinted mesoporous materials (MIMs) via
epitope imprinting and the sol-gel method. Amphiphilic IL C18MIMCl was used as the surfactant
to direct the formation of mesopores and immobilize template. The multiple interactions between
C18MIMCl and nonapeptide could ensure the positioning of nonapeptide at the micelle interface,
which was primary for the generation of imprinted cavities at the surface of mosoporous channels.
The prepared imprinted mesoporous materials provided a suitable pore diameter to promote the
mass transfer of Cyt c spaciously. The large specific surface areas of MIMs guaranteed enough
recognition sites. Due to these advantages, the MIMs not only exhibited high adsorption capacity
(86.47 mg·g−1) and rapid adsorption equilibrium (20 min), but also displayed superior specificity
and selectivity toward Cyt c by analyzing the selectivity and competitive adsorption experiments.
Furthermore, the reusability makes it an ideal candidate to be applied in protein purification and
separation science. We concluded that the strategy of combining molecular imprinting mesoporous
materials and amphiphilic ILs can yield smart imprinted materials with rapid adsorption rate, excellent
adsorption performance, and high specificity and selectivity, thus advancing the field of protein
imprinting one step further.
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