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The number of people living with Alzheimer’s disease (AD) is increasing

alongside with aging of the population. Systemic chronic inflammation and

microbial imbalance may play an important role in the pathogenesis of AD.

Inflammatory diets regulate both the host microbiomes and inflammatory

status. This study aimed to explore the impact of inflammatory diets on oral-

gut microbes in patients with AD and the relationship between microbes and

markers of systemic inflammation. The dietary inflammatory properties and the

oral and gut microorganisms were analyzed using the dietary inflammatory

index (DII) and 16S RNA in 60 patients with AD. The α-diversity was not

related to the DII (p > 0.05), whereas the β-diversity was di�erent in the

oral microbiomes (R² = 0.061, p = 0.013). In the most anti-inflammatory diet

group, Prevotella and Olsenella were more abundant in oral microbiomes

and Alistipes, Ruminococcus, Odoribacter, and unclassified Firmicutes were

in the gut microbiomes (p < 0.05). Specific oral and gut genera were

associated with interleukin-6 (IL)-6, complement 3 (C3), high-sensitivity C-

reactive protein (hs-CRP), IL-1β, IL-4, IL-10, IL-12, and tumor necrosis factor-

α (TNF-α) (p < 0.05). In conclusion, anti-inflammatory diets seem to be

associated with increased abundance of beneficial microbes, and specific oral

and gut microbial composition was associated with inflammatory markers.

KEYWORDS

oral microbial, gut microbial, dietary inflammatory index, Alzheimer’s disease,

systemic inflammation

Introduction

Alzheimer’s disease (AD), the most common cause of dementia, is an age-related

neurodegenerative disease with an insidious onset that manifests primarily as progressive

cognitive impairment, most often in people over 65 years of age (1). With the aging

process, more and more older adults are at risk of developing AD. The predicted number

of those with AD worldwide is reported to be 66 million in 2030 and 115 million in
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2050 (2), and China will have 8–11 million patients with AD

by 2050 (3). Given the high incidence and the absence of

effective pharmacological treatments for AD, experts emphasize

identifying risk factors for early prevention and intervention

(4). Diet is considered an important means of prevention and

intervention (5).

Aging is accompanied by a chronic, progressive pro-

inflammatory response called inflammaging. Inflammaging

gradually disrupts the balance of microbiota, resulting

in decreased microbial diversity and increased harmful

microorganisms (6, 7). Multiple studies have found that elevated

serum C-reactive protein (CRP), interleukin-6 (IL-6), and

tumor necrosis factor-α (TNF-α) levels were found in those with

AD (8–10), which is associated with neurological and peripheral

inflammation (11, 12). Recent studies suggested a significant

reduction in microbial diversity and alteration of gut microbial

composition in patients with AD (13, 14). These changes had

a significant connection to the diet (15–18), especially diets

with inflammatory components (19, 20). A Western diet—

characterized by high sugar and fat—is associated with chronic

low-level systemic inflammation and reduced gut microbial

diversity (21, 22); altered microbiota have been implicated in

AD development (23, 24). However, a Mediterranean diet based

on fish, grains, vegetables, fruits, nuts, and olive oil not only

increases the diversity of the intestinal microflora (25) and

reduces harmful flora such as those of the Aspergillus, but it also

reduces the level of inflammation in the body and reduces the

risk of AD (26). This suggests that the food consumed by an

individual has an inflammatory potential and that it affects the

microbial community. Inflammatory dietary components can

promote the growth of certain microorganisms, causing changes

in, for example, intestinal permeability and metabolic function,

and leading to inflammation (27). Therefore, the dietary

inflammatory index (DII) was created to measure the potential

for the diet to be inflammatory through comprehensively

assessing the relationship between diet and markers of

inflammation (CRP, interleukin (IL)-1β, IL-4, IL-6, IL-10, and

TNF-α (28, 29). A study shows that participants with higher DII

had lower microflora diversity and a positive correlation with

CRP≥3 mg/L, suggesting that a pro-inflammatory diet reduces

microbial diversity and increases the level of inflammation in the

host (30). In addition, food provides substrates for microflora,

which subsequently produce metabolites that modulate

inflammation (31, 32). For example, the Mediterranean diet

increases the production of short-chain fatty acids (SCFAs)

(33, 34). Refined processed foods, saturated fats, trans fats and

sugars, and a low intake of fruits and vegetables have been

shown to alter the gut microbiota and the function of the

gastrointestinal tract, reducing the formation of SCFAs and

increasing inflammation in the host (35).

These findings suggest that the food consumed affects

an individual’s microbial communities and has the potential

to be inflammatory. In addition to intestinal microbes, oral

microecological are associated with AD pathogenesis. A study

shows that the richness and diversity of saliva microbiota

detected in AD patients are lower than healthy controls (36).

Other studies have reported detecting more oral bacteria in the

brains of AD patients (37, 38). Further oral microecological

dysregulation and intestinal inflammation are directly associated

with intestinal barrier dysfunction and increased intestinal

permeability and may cause malignant destruction of neurons

(39–43). Harding et al. advocate that maintaining oral and

intestinal health greatly benefits the host (44). Despite the

proposed role of diet-related inflammation and oral-gut

microbiota in the development or progression of AD, there have

been no comprehensive surveys of the diet about inflammation

and oral-gut microbiome in individuals with AD. Given that an

inflammation-associated diet may interact with microorganisms

to regulate organismal inflammation. Therefore, the aim of

this study was to investigate the effect of an inflammation-

related diet on oral-gut microbial diversity and composition. In

addition to initially exploring the relationship betweenmicrobial

composition and markers of inflammation.

Materials and methods

Participants

A total of 60 subjects with AD aged between 60 and 80 years

and community-dwelling Han residents were recruited from the

Memory Clinic of Fujian Provincial Hospital (Fujian, China)

between February 2020 and December 2021. The participants

with AD in this study were diagnosed according to the 2018

National Institute of Aging and Alzheimer’s Association (NIA-

AA) guidelines and the Diagnostic and Statistical Manual of

Mental Disorders (fifth edition) by experienced neurologists

(45). And the patients with AD were divided into mild,

moderate, and severe AD groups according to the mini-mental

state examination (MMSE) scores (mild: 21–26, moderate: 11–

20, and severe: 0–10) (46). The exclusion criteria included: (1)

other causes of dementia or other types of dementia; (2) a

family history of dementia; (3) any kind of neurodegenerative

disease, such as Parkinson’s disease; (4) confirmedmental illness,

such as schizophrenia; (5) severe cardiac, pulmonary, hepatic,

or renal disease, or any tumor; (6) intestinal diseases, such as

irritable bowel syndrome; (7) taking antibiotics, glucocorticoids,

or probiotics within 1 month; (8) known active infections, such

as viral, bacterial, or fungal infections, or other autoimmune

diseases; (9) infected with a SARS-CoV-2; (10) with severe

auditory, visual, or motor deficits that may interfere with

cognitive testing were also excluded. In addition, the oral health

status of the participants with AD was measured to exclude

subjects with the following conditions in the 2months before the

study: oral or dental surgery, inflammation of the oral or perioral

tissues, or other chronic diseases of the oral cavity.
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The study was registered at the Chinese Clinical Trial

Registry (ChiCTR2100041749) and approved by the Ethics

Committee of Fujian Provincial Hospital (ref no. K2020-

09-025). All participants provided written informed consent

before participation.

Dietary data collection

A validated Chinese annual semi-quantitative food

frequency questionnaire (FFQ), which has good reliability and

validity and contains 17 food groups with a total of 149 food

items, was repeated six times over one-year to collect 24-h

recalls for 3 days from each subject every 2 months to elucidate

daily variation and seasonality of food changes, as well as

medium-term changes in dietary habits during the study period.

In our study, FFQ was used to assess subjects’ dietary intake

data for the past year (47). Subjects quantified their food intake

by referring to the Retrospective Dietary Survey Supplementary

Reference Physical Atlas, which provided photographs of food

items in different portion sizes. For example, consumption

of edible oil and condiments by those in the household was

measured monthly. Participants with >20% of missing FFQ

items and abnormal total energy intake were excluded from this

study to avoid outlier effects, i.e., an overall intake for males

<800 or >4,000 kcal/day and for females <500 or >3,500

kcal/day (48). It is worth mentioning that each AD patient

had a relative or guardian present at the time of the survey to

confirm the patient’s dietary habits. And when patients were

unable to fill out the questionnaire on their own, we completed

it by consulting their family members, with priority given to

partners and co-residents, to confirm the authenticity of the

questionnaire content.

Dietary inflammatory index

The DII is a literature-based tool that computes the

inflammatory properties of a diet, based on the association of

certain food and dietary constituents with defined inflammatory

hallmarks: CRP, TNF-α, IL-1β, IL-4, IL-6, and IL-10 (28). In this

study, based on the actual food parameters obtained from the

FFQ, 24 food parameters were ultimately included to calculate

the DII. Pro-inflammatory ingredients include carbohydrates,

energy, fat, protein, saturated fat, cholesterol, and iron, and

anti-inflammatory ingredients include carotenoids, caffeine,

fiber, monounsaturated fatty acids, polyunsaturated fatty acids,

riboflavin, green tea, onions, garlic, ginger, vitamin A, vitamin

C, vitamin E, magnesium, zinc, selenium, thiamin (Table 1)

(28). Components such as eugenol, saffron, isoflavones, pepper,

thyme/oregano, and rosemary were excluded because of a lack

of related information in the FFQ recordings.

TABLE 1 Pro-inflammatory and anti-inflammatory ingredients.

Anti-inflammatory

ingredients

Pro-inflammatory

ingredients

Carotenoids (mg/day) Carbohydrates (g/day)

Caffeine (g/day) Energy (Kcal/day)

Fiber (g/day) Fat (g/day)

MUFA (g/day) Protein (g/day)

PUFA (g/day) SFA (g/day)

Riboflavin (mg/day) Cholesterol (mg/day)

Green tea (g/day) Iron (mg/day)

Onions (g/day) -

Garlic (g/day) -

Ginger (g/day) -

Vitamin A (RE/day) -

Vitamin C (mg/day) -

Vitamin E(mg/day) -

Magnesium (mg/day) -

Zinc (mg/day) -

Selenium(mg/day) -

Thiamin (mg/day) -

To avoid randomness caused by the use of individual initial

intake values, the actual intake of each food parameter was

normalized to a z-score based on the global average intake and

standard deviation for 11 countries. Individual z-scores were

then converted to centered percentiles. Each centered percentile

was multiplied by the standardized overall inflammatory

effect score. Finally, the DII scores for all food parameters

were summed to obtain the individual DII scores. The final

score is a continuous measure, interpreted as strongly anti-

inflammatory (the lowest score) to strongly pro-inflammatory

(the highest score).

The international physical activity
questionnaire

Physical activity (PA) in the most recent week was

assessed using the short form of the International Physical

Activity Questionnaire (49). The questionnaire asked whether

subjects had performed any activities from the following

categories during the previous week: walking; moderate activity

(household activity or child care); and vigorous activity

(running, swimming, or other sports activities). Metabolic

equivalent (MET) hours per week were calculated using

corresponding MET coefficients (3.3, 4.0 and 8.0, respectively)

according to the following formula: MET coefficient of activity

× duration (hours) × frequency (days). Total PA levels were

assessed by combining the scores for different activities.
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Sample collection and handling

Participants were instructed not to brush their teeth on the

morning of the sampling day and the night before. After a

trained dentist scratched the supragingival debris with sterilized

cotton balls, a subgingival plaque was collected with 40#

sterilized paper points (Gapadent, Tianjin, China) that were

gently inserted into the deep periodontal pocket for 20 s.

Once removed from the periodontal pocket, the paper point

was placed into a 1-mL sterile cryopreservation tube (50).

No sample was collected if a patient had no teeth or dental

implants. All subgingival plaque samples were stored at −80◦C

before processing.

Each participant was asked to collect a fresh fecal

sample in the morning. Because several community-dwelling

older subjects could not send their samples to the hospital

immediately, they were given fecal collection containers

(SARSTEDT, Germany) with approximately 5mL of special

cytoprotective agents to preserve the DNA in the stool at an

approximate temperature for 10–14 days. The fecal samples

were then transferred to the laboratory and stored at −80◦C

before processing.

Blood samples were collected from the participants after an

overnight fast by trained laboratory staff. Immediately after the

sample of venous blood was collected, it was centrifuged and

stored at −80◦C before processing. The serum concentrations

of IL-6, complement 3 (C3), high-sensitivity (hs-CRP), IL-1β,

IL-4, IL-10, IL-12, as well as TNF-α, were determined with an

enzyme-linked immunosorbent assay method according to the

manufacturer’s directions (Elabscience, Wuhan, China). Oral

and blood samples were collected on the same day, except for

fecal sample.

DNA extraction and 16S rRNA gene
amplicon sequencing

DNA extraction and 16S rRNA gene amplicon sequencing

DNA extraction, PCR amplification, and the sequencing of

the V3–V4 hypervariable regions of the bacterial 16S rRNA

gene based on all oral and gut DNA samples were undertaken

at the DNA Sequencing and Genomics Laboratory of Sangon

BioTech (Shanghai). Following the manufacturer’s instructions,

total community genomic DNA extraction was performed using

an E.Z.N.A. Soil DNA Kit (Omega, USA). PCR was started

immediately after the DNA was extracted. The 16S rRNA

V3–V4 amplicon was amplified using KAPA HiFi Hot Start

Ready Mix (2×) (TaKaRa Bio Inc., Japan). Two polyacrylamide

gel electrophoresis-purified universal bacterial 16S rRNA gene

amplicon PCR primers were used: the amplicon PCR forward

primer (5
′

-CCTACGGGNGGCWGCAG-3
′

) and the amplicon

PCR reverse primer (5
′

-GACTACHVGGGTATCTAATCC-3
′

).

PCR was performed using a thermal cycler (Applied Biosystems

9700, USA) using the following program: one cycle of

denaturing at 95◦C for 3min; five cycles of denaturing at 95◦C

for 30 s, annealing at 45◦C for 30 s, and elongation at 72◦C for

30 s; 20 cycles of denaturing at 95◦C for 30 s, annealing at 55◦C

for 30 s, and elongation at 72◦C for 30s; and a final extension

at 72◦C for 5min. The PCR products were checked through

a separation with electrophoresis in 1% (w/v) agarose gels in

Tris, boric acid, and EDTA (TBE) buffer, staining with ethidium

bromide, and visualizing under ultraviolet light.

Sequencing was then performed using the Illumina MiSeq

system (Illumina MiSeq, California, USA). The raw sequencing

reads were detected using FastQC software to remove the primer

region and low-quality sequences. The chimera sequences

arising from the PCR amplification were detected and

excluded using Mothur (http://www.mothur.org) based on the

GreenGenes database. The high-quality reads that reached a 97%

nucleotide similarity were clustered into operational taxonomic

units (OTUs) according to the Ribosomal Database Project

database. Summaries of the taxonomic distributions of OTUs

were constructed using these taxonomies and were used to

calculate the relative abundance of microbiota at the phylum and

genus taxonomic levels.

Bioinformatic analysis

The α- (Shannon, Simpson, Chao1, and ACE index) and

β-diversity analyses (Bray–Curtis dissimilarity and principal

coordinate analysis [PCoA]) were conducted using QIIME and

R software to compare the similarity among samples in terms

of the diversity of species. Analysis of variance (ANOVA) or

the Kruskal–Wallis test was performed to evaluate α-diversity

among the different groups. Permutational multivariate analysis

of variance (PERMANOVA) was employed to identify the

different microbial communities among groups. The relative

abundance diagram of flora species was mainly used to visualize

the results of species annotation. STAMP analysis was used to

identify species that differed in abundance between two or more

groups. The key taxa responsible for the differences in the oral

and gut microbiota between AD groups were identified using

the linear discriminant analysis effect size (LEfSe) for biomarker

discovery (51). Spearman correlation coefficients were used to

detect relationships between the taxa and inflammatorymarkers.

A significant α of 0.05 and an effect size threshold of 2 were used

for all biomarkers discussed in this study.

Statistical analysis

Baseline characteristics of participants are presented as

means ± SD, medians (interquartile ranges [IQRs]), and

numbers (percentages). Comparisons of continuous variables
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TABLE 2 Baseline characteristics of DII levels and inflammatory indicators in patients with AD.

Variable T1 (n = 20) T2 (n = 20) T3 (n = 20) F/χ2 p-Value

<–0.021 –0.021–1.308 ≥1.308

DII score −0.5± 0.9 1.2± 0.2 2.4± 0.6 99.502 <0.001

Age (years) 75.9± 11.92 73.0± 9.25 76.1± 9.11 1.481 0.558

BMI (kg/m2) 22.2± 2.48 23.2± 3.44 24.7± 3.54 5.779 0.066

Energy intake (kcal/day) 2,457.7± 445.46 1,931.1± 280.41 1,462.0± 399.13 34.269 <0.001

Sex, n (%) 3.636 0.162

Male 12 (60.0) 9 (45.0) 6 (30.0)

Female 8 (40.0) 11 (55.0) 14 (70.0)

Education level, n (%) 11.917 0.044

None 0 (0.0) 7 (35.0) 5 (25.0)

Primary school 5 (25.0) 5 (25.0) 5 (25.0)

Middle school 9 (45.0) 6 (30.0) 9 (45.0)

High school or higher 6 (30.0) 2 (10.0) 1 (5.0)

Income (yuan), n (%) 4.602 0.626

<3,000 4 (20.0) 3 (15.8) 5 (25.0)

3,000–5,000 5 (25.0) 2 (10.5) 2 (10.0)

5,000–10,000 3 (15.0) 7 (36.8) 7 (35.0)

>10,000 8 (40.0) 7 (36.8) 6 (30.0)

Smoking status, n (%) 1.543 0.821

Never 12 (63.2) 16 (80.0) 15 (75.0)

Former 4 (21.1) 2 (10.0) 3 (15.0)

Current 3 (15.8) 2 (10.0) 2 (10.0)

Alcohol status, n (%) 5.434 0.347

Current 1 (5.0) 2 (10.0) 1 (5.0)

Former 6 (30.0) 2 (10.0) 7 (35.0)

Never 13 (65.0) 16 (80.0) 12 (60.0)

Diabetes, n (%) 0.745 0.799

Yes 4 (20.0) 4 (20.0) 6 (30.0)

No 16 (80.0) 16 (80.0) 14 (70.0)

Hypertension, n (%) 1.833 0.400

Yes 6 (30.0) 7 (35.0) 10 (50.0)

No 14 (70.0) 13 (65.0) 10 (50.0)

Hyperlipidemia, n (%) 1.111 0.863

Yes 2 (10.0) 1 (5.0) 3 (15.0)

No 18 (90.0) 19 (95.0) 17 (85.0)

Coronary heart disease, n (%) 2.353 0.474

Yes 2 (10.0) 2 (10.0) 5 (25.0)

No 18 (90.0) 18 (90.0) 15 (75.0)

Cerebrovascular disease, n (%) 2.143 0.532

Yes 0 (0.0) 2 (10.0) 2 (10.0)

No 20 (100.0) 18 (90.0) 18 (90.0)

Physical activity (METs×h/wk), medians (IQR) 35.88 (17.70–49.76) 74.20 (11.55–181.30) 24.33 (11.55–67.55) 3.374 0.185

Systolic blood pressure (mmHg) medians (IQR) 120.50 (112.00–136.00) 127.00 (120.00–141.00) 128.50 (118.00–139.00) 1.593 0.511

Diastolic blood pressure (mmHg) 77.9± 11.57 81.8± 10.50 77.7± 8.75 4.312 0.408

Severity of AD 1.459 0.241

Mild 10 (50.0) 7 (35.0) 9 (45.0)

Moderate 10 (50.0) 9 (45.0) 9 (45.0)

(Continued)
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TABLE 2 (Continued)

Variable T1 (n = 20) T2 (n = 20) T3 (n = 20) F/χ2 p-Value

<–0.021 –0.021–1.308 ≥1.308

Severe 0 (0.0) 4 (20.0) 2 (10.0)

IL-1β (pg/mL) 3.5± 0.78 3.5± 0.68 3.6± 0.70 1.433 0.789

IL-4 (pg/mL) 3.2± 0.62 3.0± 0.65 3.3± 0.55 1.999 0.412

IL-10 (pg/mL) 5.8± 0.65 5.9± 0.84 5.7± 1.12 1.390 0.522

IL-12 (pg/mL) 3.2± 0.40 2.8± 1.25 2.9± 0.89 1.057 0.459

TNF-α (pg/mL) 4.2± 0.42 3.8± 0.57 4.0± 0.56 3.689 0.164

hs-CRP (mg/L) 2.1± 0.63 2.1± 0.49 1.8± 0.61 2.561 0.341

IL-6 (pg/mL) 2.8± 0.61 2.8± 0.52 2.8± 0.66 0.095 0.942

C3 (µg/mL) 5.8± 0.53 5.6± 1.00 5.8± 0.62 0.035 0.911

Data are presented as mean± SD, medians (interquartile range, IQR), or numbers (%). According to the DII score, the tertiles were divided from low to high, T1 (tertile 1) means the most

anti-inflammatory diet group, T2 (tertile 2) means no anti-inflammatory/pro-inflammatory diet group, and T3 (tertile 3) means the most pro-inflammatory diet group. The MMSE score

was used for AD severity according to the guidelines, with 21 to 26 as mild cognitive impairment, 11 to 20 as moderate cognitive impairment, and 0 to 10 as severe cognitive impairment.

METs, metabolic equivalents; BMI, body mass index; IL-1β, interleukin-1; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, interleukin-10; IL-12, interleukin-12; TNF-α, tumor necrosis

factor-α; C3, complement C3; hs-CRP, high-sensitivity C-reactive protein.

between groups were made using ANOVA or rank sum tests,

and group differences were compared using a chi-squared test

or Fisher’s exact test for categorical variables. Kruskal-Wallis test

was used to analyze the skewness distribution data. Furthermore,

when the distribution of variables was skewed (as for IL-6, C3,

hs-CRP, IL-1β, IL-4, IL-10, IL-12, and TNF-α), the values were

converted to their natural logarithm.

DII scores were ranked and split into approximately

equal tertiles, with tertile 1 (T1) representing the most anti-

inflammatory diet group and tertile 3 (T3) representing the

most pro-inflammatory group. We performed multiple linear

regression analysis to examine associations between each tertile

of DII scores and inflammatory indicators, and tertile 1 (T1)

was considered the reference. In Model 1, we did not adjust

for covariates. In Model 2, we adjusted for age and gender.

In Model 3, we adjusted for the variables in Model 2 with

the addition of education, body mass index (BMI), smoking,

alcohol consumption, physical activity, hypertension, diabetes,

hyperlipidemia, coronary heart disease, and cerebrovascular

disease. Tests for trends were performed by assigning the

median value for each tertile and modeling this as a continuous

variable. Energy adjustment was done using the residual

approach that was explained previously by Willett et al. (52).

For calculating energy-adjusted dietary intakes, each of the

dietary components is regressed on their total energy intake

and residual values were added to their actual mean intake

to estimate energy-adjusted values. Statistical analysis was

performed using SAS version 9.4 software (SAS Institute Inc.,

Cary, USA) and STAMP v2.1.3 (53). The R package and

GraphPad Prism v6.0 were used to prepare the graphs. All tests

of significance were two-sided and p < 0.05 was considered

statistically significant.

Results

Baseline characteristics of DII levels and
inflammatory indicators in patients with
AD

The DII range was−0.021 (themost anti-inflammatory diet)

to 1.38 (the most pro-inflammatory diet). According to the DII

score, the tertiles were divided from low to high, T1 (tertile

1) means the most anti-inflammatory diet group, T2 (tertile 2)

means no anti-inflammatory/pro-inflammatory diet group, and

T3 (tertile 3) means the most pro-inflammatory diet group. The

baseline characteristics of 60 patients with AD including T1 (n=

20), T2 (n = 20), and T3 (n = 20) are shown in Table 2. Among

all the variables examined, significant differences were observed

only for the DII score, mean total daily energy intake, and

education level (p < 0.05). Patients with higher DII scores (i.e.,

more pro-inflammatory diets) tended to have lower total energy

intakes and education levels. However, there was no statistically

significant difference across DII levels in the distribution of

other baseline characteristics and inflammation markers (p >

0.05). To further analyze whether there is an association between

each tertile of DII scores and inflammatory indicators, we

used multiple linear regression with model adjustment for con-

founders. The results still showed that none of the inflammatory

indicators was statistically significant among the groups (see

Supplementary material for details).

The energy-adjusted dietary intakes for participants in

the different inflammatory diet groups are presented in

Table 3. Compared to the most anti-inflammatory diet group,

individuals with the most pro-inflammatory diet group

consumed significantly lower amounts of energy, protein, fat,
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TABLE 3 Food group and nutrient intake of AD patients in di�erent inflammatory diet groups.

Variable T1 (n = 20) T2 (n = 20) T3 (n = 20) p-Value

<-0.021 −0.021–1.308 ≥1.308

Nutrients

Energy (Kcal/day) 2,457.7± 445.46 1,931.1± 280.41 1,461.9± 399.13 <0.001

Protein (g/day) 91.0± 17.00 74.1± 15.81 52.9± 16.09 <0.001

Fat (g/day) 41.0± 12.61 33.7± 9.87 23.4± 9.93 <0.001

Carbohydrate (g/day) 428.6± 88.18 326.8± 53.9 259.9± 75.07 <0.001

Fiber (g/day) 19.7± 3.47 13.9± 1.59 9.4± 2.94 <0.001

Cholesterol (mg/day) 440.5± 167.86 334.6± 170.03 291.8± 137.14 0.014

Vitamin A (RAE/day) 3,466.9± 723.21 2,540.7± 627.98 1,682.8± 695.81 <0.001

Carotenoids (µg/day) 2,614.9± 601.17 1,846.1± 485.93 1,155.5± 560.73 <0.001

Thiamin (mg/day) 1.1± 0.24 0.9± 0.32 0.63± 0.19 <0.001

Riboflavin (mg/day) 1.2± 0.19 0.9± 0.19 0.7± 0.24 <0.001

Vitamin C (mg/day) 100.8± 31.92 61.9± 19.59 43.9± 19.97 <0.001

Vitamin E (mg/day) 23.6± 8.72 16.3± 7.55 9.2± 3.73 <0.001

Magnesium (mg/day) 502.2± 94.90 398.9± 64.30 286.3± 90.71 <0.001

Iron (mg/day) 36.7± 6.35 28.4± 4.71 20.0± 5.59 <0.001

Zinc (mg/day) 15.3± 2.29 12.7± 1.99 9.2± 2.85 <0.001

Selenium (µg/day) 68.3± 21.32 50.5± 16.40 41.8± 18.64 <0.001

SFA (g/day) 7.3± 2.96 5.9± 3.18 4.4± 2.69 0.003

MUFA (g/day) 7.6± 3.56 5.98± 3.02 4.3± 2.55 0.003

PUFA (g/day) 6.0± 3.09 3.9± 1.78 2.61± 1.51 <0.001

Food groups (g/day)

Onions 5.6± 6.04 6.2± 15.56 1.9± 3.19 0.221

Ginger 0.5± 1.21 0.8± 1.65 0.7± 1.00 0.679

Garlic 0.9± 4.02 0.05± 0.15 0.03± 0.11 0.786

Green tea 51.5± 120.15 28.6± 112.10 0 0.051

Caffeine 10.0± 44.72 0 0 0.368

Data are presented as mean ± SD and medians (interquartile range, IQR). P-value was obtained from analysis of variance (ANOVA) for continuous variables, and Kruskal-Wallis tests

were used for skewness distribution data. All nutrients have been adjusted for total energy intake using a residual method. SFA, Saturated fatty acid; MUFA, Monounsaturated fatty acid;

PUFA, Polyunsaturated fatty acid.

carbohydrate, fiber, vitamin A, carotenoids, thiamin, riboflavin,

vitamin C, vitamin E, magnesium, iron, zinc, selenium, and

PUFA (all p < 0.05).

Baseline characteristics and inflammatory
factors in di�erent severity of AD

Considering the progression of AD, we further analyzed the

association between baseline characteristics and inflammatory

factors with different severity of AD (Table 4), significant

differences were observed only for the education level, MMSE

scores, and IL-4 (p < 0.05). After pairwise comparison

(Figure 1), the IL-4 levels in patients with moderate and severe

AD were significantly higher than those in mild AD (p < 0.05).

The α- and β-diversity of the oral and gut
microbiomes in participants with AD

As shown in Figure 2, when the number of samples

reached 60, the number of species observed was nearly parallel,

indicating that the sample size of our experiment was sufficient.

There were no significant differences among the three groups

in the oral microbiomes in the Shannon, Simpson, Chao, or

ACE indices (Figure 3, p > 0.05). Furthermore, there were no

differences in the α-diversity of gut microbiomes across the

different DII tertiles in patients with AD (Figure 4, p > 0.05).

Interestingly, the PCoA based on weighted UniFrac distances

showed (Figure 5) that the oral microbiomes of PT1 largely

overlapped with themicrobial distribution of PT2, whereas there

were statistical differences in the microbial distribution of PT2

and PT3 (PERMANOVA, Bray–Curtis: PT2 vs PT3, R² = 0.061,
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TABLE 4 Baseline characteristics and inflammatory factors in di�erent severity of AD.

Variable Mild AD (n = 26) Moderate AD (n =

29)

Severe AD (n = 5) F/χ2 p-Value

21–26 11–20 0–10

Age (years) 75.5± 1.76 75.6± 2.13 68.6± 2.37 1.085 0.345

BMI (kg/m2) 22.8± 0.75 23.5± 0.53 24.8± 3.96 0.892 0.416

Energy intake (kcal/day) 1,958.3± 132.68 1,962.83± 86.91 1,835.8± 188.63 0.113 0.894

DII score 0.8± 0.33 1.11± 0.21 1.36± 0.16 0.523 0.595

Sex

Male 10 (38.5) 14 (48.3) 3 (60.0) 1.029 0.598

Female 16 (61.5) 15 (51.7) 2 (40.0)

Education level, n (%) 36.472 <0.001

None 0 (0.0) 9 (31.0) 3 (60.0)

Primary school 1 (3.8) 12 (41.4) 2 (40.0)

Middle school 12 (46.2) 1 (3.4) 0 (0.0)

High school or higher 13 (50.0) 7 (24.1) 0 (0.0)

Income (yuan), n (%) 3.635 0.726

<3,000 4 (16.0) 8 (27.6) 0 (0.0)

3,000–5,000 4 (16.0) 4 (13.8) 1 (20.0)

5,000–10,000 6 (24.0) 9(31.0) 2 (40.0)

>10,000 11 (44.0) 8 (27.6) 2 (40.0)

Smoking status, n (%) 3.969 0.410

Never 19 (76.0) 22 (75.9) 2 (40.0)

Former 4 (16.0) 3 (10.3) 2 (40.0)

Current 2 (8.0) 4 (13.8) 1 (20.0)

Alcohol status, n (%) 8.058 0.234

Current 1 (3.8) 2 (6.9) 1 (20.0)

Former 8 (30.8) 6 (20.7) 1 (20.0)

Never 17 (65.4) 21 (72.4) 3 (60.0)

Diabetes, n (%) 4.079 0.130

Yes 7 (29.2) 3 (10.3) 2 (40.0)

No 17 (70.8) 26 (89.7) 3 (60.0)

Hypertension, n (%) 1.927 0.382

Yes 11 (45.8) 8 (27.6) 2 (40.0)

No 13 (54.2) 21 (72.4) 3 (60.0)

Hyperlipidemia, n (%) 3,155 0.207

Yes 5 (20.8) 2(6.9) 0 (0.0)

No 19(79.2) 27 (93.1) 5 (100.0)

Coronary heart disease, n (%) 0.448 0.800

Yes 2 (8.3) 2 (6.9) 0 (100.0)

No 22 (91.7) 27 (93.1) 0 (0.0)

Cerebrovascular disease, n (%) 0.309 0.857

Yes 3 (12.5) 5 (17.2) 1 (20.0)

No 21 (87.5) 24 (82.8) 4 (80.0)

Diastolic blood pressure (mmHg) 77.04± 2.30 80.08± 1.81 85.0± 4.65 1.429 0.249

Physical activity (METs×h/wk), medians (IQR) 37.1 (11.55–71.48) 26.95 (14.55–83.30) 58.1 (10.1–180.42) 0.146 0.930

Systolic blood pressure (mmHg) 131.04± 4.56 129.92± 3.65 125.4± 5.63 0.165 0.848

MMSE 22.46± 0.23 17.62± 0.33 8.40± 1.95 191.050 <0.001

IL-1β (pg/mL) 3.59± 0.16 3.53± 0.11 3.47± 0.41 0.094 0.911

IL-4 (pg/mL) 2.91± 0.11 3.32± 0.11 3.62± 0.16 5.118 0.009

(Continued)
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TABLE 4 (Continued)

Variable Mild AD (n = 26) Moderate AD (n =

29)

Severe AD (n = 5) F/χ2 p-Value

21–26 11–20 0–10

IL-10 (pg/mL) 5.61± 0.19 6.00± 0.15 6.02± 0.30 1.395 0.256

IL-12 (pg/mL) 3.06± 0.13 2.96± 0.20 2.62± 0.50 0.461 0.633

TNF-α (pg/mL) 4.09± 0.99 3.88± 0.99 4.11± 0.26 1.196 0.310

hs-CRP (mg/L) 1.93± 1.28 2.01± 0.10 2.25± 0.15 0.678 0.512

IL-6 (pg/mL) 2.73± 0.13 2.88± 0.10 2.74± 0.28 0.448 0.641

C3 (µg/mL) 5.60± 0.16 5.88± 0.11 5.70± 0.45 0.961 0.388

Data are presented as mean± SD and obtained from analysis of variance (ANOVA).

p = 0.013). As for the gut microbiomes, no differences were

found among the FT1, FT2, and FT3 groups.

Alterations of the oral and gut
microbiomes in participants with AD

The relative abundance at the phylum and genus levels

revealed similar overall microbiome composition among the

three groups in the oral microbiomes. The most abundant phyla

were Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and

Actinobacteria; these five phyla accounted for more than 95% of

the total abundance of all the species (Figure 6A). At the genus

level, Neisseria, Prevotella, Streptococcus, Fusobacterium, and

Leptotrichia were the top five most abundant bacterial taxa, as

shown in Figure 6B. We also found that in the gut microbiomes,

Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and

Verrucomicrobiawere identified as themost abundant sequences

at the phylum level (Figure 6C). At the genus level, Escherichia,

Shigella, Bacteroides, Klebsiella, Faecalibacterium, and

Prevotella were the most abundant bacterial taxa, as shown in

Figure 6D.

The STAMP results showed that there were no significant

differences in the percent relative abundance of any phylum

among the groups. At the genus level, the abundance of

Prevotella and Olsenella in the oral microbiomes was much

higher in PT1 (the most anti-inflammatory diet group) than in

PT3 (the most pro-inflammatory diet group). The differences

in the relative abundance of Abiotrophia, Neisseria, and

Parvimonas between the PT2 (no anti-inflammatory/pro-

inflammatory diet group) and PT3 groups were statistically

significant (Figure 7A). In addition, the abundance of

genera Alistipes, Ruminococcus, Odoribacter, and unclassified

Firmicutes in the gut microbiomes were lower in the FT3 group

than in the FT1 group. The differences in the relative abundance

of Sphingobium, Microbacterium, Centipeda, and Gp6 were

statistically significant between the FT2 and FT3 groups, and

FIGURE 1

Di�erences in serum IL-4 levels in di�erent AD groups (mean ±

SEM). *p < 0.05.

the other branching genera Pseudoxanthomonas, Firmicutes,

Bacillariophyta, Oxalobacter, Alistipes, and Rhodocyclaceae were

also found to be significantly different between the FT1 and FT2

groups (Figure 7B).

To further explore the differences in oral and gut

microbiomes between the anti-inflammatory diet and pro-

inflammatory diet groups, we used LEfSe (linear discriminant

analysis score cut off >2.0) analysis to identify the key taxa

responsible for the differences in the compositions of the

oral and gut microbiota. However, there were no significant

differences among the three groups of patients with AD

(Supplementary material for details).
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FIGURE 2

Pan/Core OTU species analysis of the oral (A) and gut microbiomes (B). The Pan/Core plot reflects the rate of emergence of species under

continuous sampling. The curve flattens out as the sample size increases, indicating that species don’t increase significantly with sample size.

FIGURE 3

The oral microbial α-diversity, as assessed with ACE (A), Chao (B), Shannon (C), and Simpson (D) indexes among three groups. PT1 (tertile 1)

means the oral microbiomes of the most anti-inflammatory diet group, PT2 (tertile 2) means the oral microbiomes of the no

anti-inflammatory/pro-inflammatory diet group, and PT3 (tertile 3) means the oral microbiomes of the most pro-inflammatory diet group.

Frontiers inNutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2022.974694
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2022.974694

FIGURE 4

The gut microbial α-diversity, as assessed with the ACE (A), Chao (B), Shannon (C), and Simpson (D) indexes among three groups. FT1 (tertile 1)

means the gut microbiomes of the most anti-inflammatory diet group, FT2 (tertile 2) means the gut microbiomes of the no

anti-inflammatory/pro-inflammatory diet group, and FT3 (tertile 3) means the gut microbiomes of the most pro-inflammatory diet group).

Association between inflammatory
markers and microbiota in patients with
AD

Spearman correlation analysis showed significant

correlations between inflammatory markers and specific

oral and gut microbiota (Figure 8). In the analysis of

oral microorganisms, IL-4 was positively correlated with

Fusobacterium (p = 0.008, r = 0.34) and Selenomonas (p

= 0.012, r = 0.32); IL-1B was positively correlated with

Peptostreptococcaceae_incertae_sedis (p = 0.018, r = 0.31);

IL-12 was positively correlated with Haemophilus (p = 0.013,

r = 0.32) and Rothia (p = 0.005, r = 0.36) and negatively

correlated with Selenomonas (p = 0.001, r = −0.4); TNF-α was

positively correlated with Alloprevotella (p = 0.013, r = 0.32)

and Selenomonas (p = 0.014, 0.32) and negatively correlated

with Haemophilus (p = 0.018, r = −0.31); CRP was positively

correlated with Gemella (p = 0.006, r = 0.35); and IL-6 was

negatively correlated with Granulicatella (p = 0.022, r = −0.3).

Furthermore, in the analysis of intestinal microorganisms, IL-4

was positively correlated withMegamonas (p = 0.016, r = 0.31)

and Anaerostipes (p = 0.014, r = 0.31); IL-12 was negatively

correlated with Weissella (p = 0.013, r = −032); TNF-α was

positively correlated with Lactobacillus (p = 0.019, r = 0.3);

and IL-6 was positively correlated with Clostridium_XlVb (p

= 0.008, r = 0.34), Morganella (p = 0.005, r = 0.36), and

Providencia (p= 0.002, r= 0.39).

Discussion

In the present study, no association was found between DII

and inflammatorymarkers, but IL-4 was related with the severity

of AD. More importantly, we found no significant differences

in diversity among the groups stratified by DII, except for

differences in the β-diversity of the oral cavity. At the same time,

the abundance of microbial composition in the oral cavity and
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FIGURE 5

The β-diversity analysis of the oral (A) and gut (B) microbiomes among di�erent DII tertiles in patients with AD. The PCoA based on the

Bray–Curtis of β-diversity analysis is presented. PCoA, principal coordinate analysis.

intestine was different between the anti-inflammatory and pro-

inflammatory diet groups. In addition, oral and gut microbiota

is considered associated with markers of inflammation.

Although DII has been demonstrated to be associated with

inflammatory markers, no association was found in the present

study. Similar findings were found in several studies that did not

find an association with hs-CRP (54, 55). This may be related to

memory bias and homogeneity as well as to the small number

of components included. Firstly, the FFQ relies on the memory

of the respondents and there may be recall bias. Secondly, the

inflammatory index profile of the AD population is possible

similar. Finally, only 25 food components were counted in this

study; however, the richness and diversity of foods in China

may underestimate inflammatory levels. And our study found

a higher intake of anti-inflammatory antioxidant foods in the

anti-inflammatory diet group. A prospective study found that

a diet characterized by high consumption of anti-inflammatory

foods (monounsaturated fatty acids, polyunsaturated fatty acids,

antioxidant foods) was associated with lower DII scores (56).

The anti-inflammatory dietary composition in this study is

similar to that of the Mediterranean diet. It is well known

that the Mediterranean diet consists mainly of high-quality

fatty acids, low in saturated fatty acids and cholesterol, an

appropriate ratio of polyunsaturated fatty acids omega-3 to

omega-6, and high in carotenoids and fiber, which have anti-

inflammatory effects and can significantly reduce inflammation

levels (57, 58). In addition, we found that only IL-4 of the eight

inflammatory markers (IL-1β, IL-10, IL-6, IL-12, TNF-α, hs-

CRP, and C3) was associated with the severity of AD, and IL-

4 levels were higher in patients with severe AD. It has been

proposed that inflammatory markers appear early in AD and

that inflammatory levels decline with disease progression (59).

The study shows that significantly higher levels of IL-10, IL-1β,

IL-4, and IL-2 inmild cognitive impairment (MCI) groups, while

there was no significant difference in inflammatory markers

between dementia, suggesting that peripheral inflammationmay

occur in the early stages of AD (60). IL-4 has been reported

to have anti-inflammatory effects and reduce inflammation

production (61, 62). In conjunction with this study, it is boldly

speculated that IL-4 may be associated with lower levels of

inflammation in AD. Although no other inflammatory markers

were found to be associated with AD severity in this study,

this may be due to the lack of a healthy control group and the

small sample size. Further validation with larger sample size and

well-designed studies is needed in the future.

There are no significant differences in diversity among the

groups stratified by DII, except for differences in the β-diversity

of the oral cavity, suggesting that the community structure

of the oral cavity may be influenced by inflammatory diet.

The abundance of microbial composition in the oral cavity

and intestine was altered. Anderson et al. (63) also observed

differences in β-diversity in the oral microbiome across levels
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FIGURE 6

Distribution of oral and gut microbiomes between the most anti-inflammatory diet group, no anti-inflammatory/pro-inflammatory diet group,

and the most pro-inflammatory diet group. (A,B) represent the relative abundance of oral microbiomes at the phylum level and genus level,

respectively; (C,D) represent the relative abundance of gut microbiomes at the phylum level and genus level, respectively.

of intake of total carbohydrates, fiber, sucrose, and galactose

(64). Another study showed that β-diversity was significantly

altered in patients with gingivitis on a nitrate-rich diet compared

to that in healthy participants (65). These findings show that

differences in the distribution of abundance of oral microbes

are affected significantly by foods. Little is currently known

about the significance of this change, and more mechanistic

studies are thus needed to explore its role. A study by Zheng

et al. showed results similar to ours, in which DII was not

associated with gut microbial diversity but was associated with

gut microbial composition (66). Tian et al. also found that diets

with highDII scores were associated with the presence of specific
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FIGURE 7

Di�erences in the relative abundance of bacterial genera in the oral (A) and gut (B) microbiomes from the most anti-inflammatory diet group

and the most pro-inflammatory diet group. The left of the figure shows the di�erential species between the two groups, and the right shows the

di�erence in the mean proportions of the target species (p < 0.05).

microbes but not the overall diversity of the gut microbiome

(67). Other studies comparing the relationship between different

diets and gut microbial diversity have had similar findings, with

diet affecting specificmicroflora composition and having a lower

or no effect on overall diversity (68, 69). Furthermore, oral-

gut α-diversity was not associated with DII and may be related

to unmeasured confounding factors, individual variability, and

small sample size. Reducedmicrobial diversity has been reported
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FIGURE 8

Heatmap of the correlation between Spearman’s analysis of

inflammatory markers and the relative abundance of oral (A) and

gut microbiota (B) at the genus level. Orange and gray represent

positive and negative correlations, respectively, with color

intensity proportional to the degree of association between

indices, and numbers represent r values.

in patients with AD, and microorganisms are stable over a time

frame (6), which may diminish the role of dietary inflammation.

This study revealed a decreased abundance of Prevotella

and Olsenella in the oral cavity of patients with patients

consuming the most pro-inflammatory diet and reduced

intestinal abundance of Alistipes, Ruminococcus, Odoribacter,

and unclassified Firmicutes compared to those in the most anti-

inflammatory diet group. Prevotella and Olsenella are normal

in the oral cavity (70, 71) and produce SCFA metabolites like

butyrate (72). Prevotella has been reported to be associated

with a fiber-rich diet (73), which, in turn, is associated with

better cognition (74). In addition, studies have reported that

Odoribacter was reduced in the gut of AD compared to the

normal population (75) and the abundance of Alistipes was

reduced in the gut ofmild cognitive impairment population (76).

It is worth mentioning that the most anti-inflammatory diet led

to a significant increase in the abundance of Ruminococcus and

Prevotella, the main genera that produce SCFAs. SCFAs have

important regulatory effects on the blood-brain barrier and the

nervous system and are associated with the development of AD

(77–79). Furthermore, Ruminococcus and Prevotella are closely

associated with the intake of plant-based diets (17, 69, 80). Plant-

based diets are well-known as being beneficial to overall health,

including the prevention of AD (81, 82). In summary, it is shown

that an anti-inflammatory diet may be associated with increased

abundance of beneficial microbes in AD patients, especially

microorganisms that produce anti-inflammatory compounds.

The study observed higher levels of pro-inflammatory

cytokines (e.g., IL-6 and IL-1β) and reduced levels of the

anti-inflammatory cytokine IL-10 in patients with cognitive

dysfunction (83). Abundant E. coli/Shigella were positively

correlated with IL-1β levels, whereas rectal eubacteria were

negatively correlated with IL-1β levels and positively correlated

with IL-10 levels. These findings suggest that intestinal

components may drive peripheral inflammation, leading

to brain amyloidosis and possibly neurodegeneration and

cognitive symptoms in AD. Another study demonstrated that

inflammation levels and intestinal flora may contribute to AD-

related neuroinflammation (84). It is suggested that the altered

inflammatory state in patients with AD may induce neuropathy

by affecting the growth and reproduction of microorganisms

within the host or indirectly by affecting the interactions

between genera, causing microecological dysregulation. It is

boldly speculated that the altered microbiota may be associated

with a systemic inflammatory response.

To further support our speculation, we correlated systemic

inflammatory markers with microbiota and found that a

specific oral and gut microbial composition was associated

with inflammatory markers. Fusobacterium and Selenomonas

have been reported to be associated with unhealthy microbial

characteristics in patients with gingival and periodontal

disease, whereas Fusobacterium may be a major indicator

of microbial transformation into inflammatory pathogenic

bacteria (85, 86) and a potential biomarker of periodontitis and

gingivitis episodes (87, 88). In addition, Rothia, Haemophilus,

and Alloprevotella are normal in the oral cavity (70);

Anaerostipes and Weissella are common in the intestine, with

Anaerostipes facilitating acetate formation (89, 90), whereas

Weissella is an emerging genus with potential health benefits,

capable of inhibiting pathogenic microbial growth through

the production of bacteriocins (91, 92). One study found
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Morganella enrichment and reduced abundance of Megamonas

in patients with AD (93). Megamonas has been shown to

produce SCFAs that favor host metabolism and slow the

development of AD (94), whereas Clostridium_XlV has also

been found to be associated with cognitive impairment

(95). Providencia is likely to promote inflammation (96, 97).

Lactobacillus is the most abundant in the human intestine,

and experimental studies in animals and humans have shown

that the administration of Lactobacillus probiotics facilitates the

recovery of dysregulated intestinal flora and improves cognitive

function (98–100). The data above highlight the inflammatory

markers that are associated with normal microorganisms in

the oral cavity and intestine. It has been proposed that an

enhanced inflammatory response allows for the conversion of

non-pathogenic microorganisms to pathogenic microorganisms

(101). Corrêa et al. (102) found a positive correlation between

the presence of pathogenic bacteria and the level of systemic

inflammation as indicated by CRP levels. A study by Xiao et al.

(103) demonstrated that the pathogenicity of oral microflora

was diminished when IL-17 was inhibited. Combined with the

analysis of the results of this study, increased inflammation may

be associated with the conversion of the normal microbiota of

the host oral-intestinal tract to pathogenic microorganisms.

Our research is innovative and comprehensive, analyzing

for the first time the relationship between DII and markers

of systemic inflammation and exploring its relationship

with systemic inflammation by analyzing the microbiological

characteristics of the oral cavity and gut in patients with

AD. Nevertheless, there are shortcomings. Firstly, this was

a cross-sectional study, and no causal conclusions could be

drawn. Secondly, the small sample size included only the

AD population, making the findings not generalizable. And it

would be interesting to explore the relationship between DII

scores, energy intake and AD severity, this can be explored

in the future in a larger sample size. In addition, we did

not include a control group in this study. As a result,

it is unclear whether our findings can apply to all older

adults. Finally, the microbial community in this study was

down only to the genus level, and a more in-depth species

analysis was not possible. No metabolic function analysis

was performed.

Conclusions

Anti-inflammatory diets seem to be associated with

increased abundance of beneficial microbes in the

oral-gut axis in patients with AD, whereas microbes

are related with specific inflammatory markers and

inflammation accumulation may drive a shift from normal

microbial composition to pathogenicity. Therefore, it

is proposed that targeting the modulation of oral and

gut microbiota, especially the improvement of SCFA-

producing bacteria and reduction of pathogens, may be

an effective and important strategy for the treatment of

inflammatory disorders. More long-term, large-sample

follow-up studies based on AD populations are needed

in the future to explore the mechanistic role of dietary

inflammation plays with oral-gut microbiota and systemic

inflammation to provide a basis for precise dietary

intervention strategies.
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