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Abstract

Tuberculosis (TB) is an infectious bacterial disease that kills approximately 1.3 million peo-

ple every year. Despite global efforts to reduce both the incidence and mortality associated

with TB, the emergence of drug resistant strains has slowed any progress made towards

combating the spread of this deadly disease. The current TB drug regimen is inadequate,

takes months to complete and poses significant challenges when administering to patients

suffering from drug resistant TB. New treatments that are faster, simpler and more afford-

able are urgently required. Arguably, a good strategy to discover new drugs is to start with

an old drug. Here, we have screened a library of 1200 FDA approved drugs from the Prest-

wick Chemical library using a GFP microplate assay. Drugs were screened against GFP

expressing strains of Mycobacterium smegmatis and Mycobacterium bovis BCG as surro-

gates for Mycobacterium tuberculosis, the causative agent of TB in humans. We identified

several classes of drugs that displayed antimycobacterial activity against both M. smegma-

tis and BCG, however each organism also displayed some selectivity towards certain drug

classes. Variant analysis of whole genomes sequenced for resistant mutants raised to florfe-

nicol, vanoxerine and pentamidine highlight new pathways that could be exploited in drug

repurposing programmes.

Introduction

Tuberculosis (TB) remains a major global health issue, despite it being over twenty years since

the World Health Organisation (WHO) declared TB a global emergency [1]. In 2016, TB killed

around 1.3 million people and now ranks alongside HIV as the leading cause of death globally.

It has been estimated that almost 6.3 million new cases of TB are to have occurred in 2016;

46% of these new TB cases were individuals co-infected with HIV. Alarmingly, an estimated

4.1% of new TB cases and 19% of previously treated TB cases are infections caused by Multi-
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Drug Resistant TB (MDR-TB), and in 2016 an estimated 190,000 people died from this form

of the disease. Furthermore, extensively drug-resistant TB (XDR-TB) has now been reported

in 105 countries, and accounts for approximately 30,000 TB patients in 2016. If these numbers

are to reduce in line with milestones set by the WHO End TB Strategy, alternative therapeutic

agents that target novel pathways are urgently required.

Drug repurposing (or drug redeployment), is an attractive approach for the rapid discovery

and, in particular, development of new anti-TB drugs [2–5]. Due to the time and cost of bring-

ing new molecular entities through the developmental pipeline to clinic, drug repurposing

offers an expedient option, in part due to pre-existing pharmacological and toxicological data-

sets that allow for rapid profiling of active hits [6]. In this study, we used GFP-expressing

strains of M. smegmatis and Mycobacterium bovis BCG (henceforth, BCG) in order to screen

the Prestwick Chemical Library for antimycobacterial drugs. Together with drugs that have

previously been identified from similar screens [7], we identified a number of novel hits that

display good antimycobacterial activity which were also confirmed in Mycobacterium tubercu-
losisH37Rv. We sought to characterise the mode of action of selection of hits, by performing

whole genome sequencing with variant analysis on laboratory resistant mutants supported by

target engagement studies. This study highlights both the usefulness and circumspection

required when utilising M. smegmatis and BCG in drug repurposing screens to identify new

anti-TB agents.

Materials and methods

Bacterial strains, plasmids and growth media

M. smegmatis mc2155 was electroporated with pSMT3-eGFP and transformants were selected

on Tryptic Soy Agar supplemented with hygromycin B (20 μg/ml). Single colonies were used

to inoculate 10 mL of Tryptic Soy Broth supplemented with Tween 80 (0.05% v/v) at 37˚C

with shaking at 180 rpm. M. smegmatis mc2155 harbouring pSMT3-eGFP was diluted 1/100

into Middlebrook 7H9 supplemented with glycerol (2 mL/L) and Tween 80 (0.05% v/v) and

further sub-cultured at 37˚C with shaking at 180 rpm.M. bovis BCG Pasteur strain was electro-

porated with pSMT3-eGFP and transformants selected on Middlebrook 7H10 containing

OADC (10% v/v) and hygromycin B (20 μg/ml). Single colonies were inoculated into 50 mL of

Middlebrook 7H9 containing OADC (10% v/v) and Tween 80 (0.05% v/v) and statically cul-

tured at 37˚C for ~ 5 days. Both M. smegmatis mc2155 and BCG expressing eGFP were quanti-

fied by sampling 200 μL of cells which were 2-fold serially diluted across a black F-bottom

96-well micro-titre plate and fluorescence was measured using a BMG Labtech POLARstar

Omega plate reader (Excitation 485–12 nm, Emission 520 nm).

Validation of eGFP reporter screen

Batch cultures of M. smegmatis pSMT3-eGFP and BCG pSMT3-eGFP were adjusted to give a

basal reading of 20,000 Relative Fluorescent Units (RFU) by diluting into fresh Middlebrook

7H9 containing Tween 80 (0.05% v/v) with additional OADC (10% v/v) for BCG (final well

volume of 200 μL). The anti-mycobacterial drugs isoniazid, ethambutol, streptomycin, pyrazi-

namide and rifampicin were included in over a range of concentrations on assay plates. Wells

containing mycobacterial culture in the presence of 1% DMSO represent high controls, whilst

wells containing only media constitute low controls. Assay plates were cultured for 48 hours in

a Thermo Cytomat plate-shaker incubator (100% humidity at 37˚C with 180 rpm plate agita-

tion) and eGFP fluorescence was measured kinetically every 2 hours.

FDA drugs active against mycobacteria
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Medium throughput screen of the Prestwick Chemical Library

The Prestwick Chemical Library (1200 drugs) was purchased from Specs.net preformatted in

master plates so that all compounds were solubilized in 100% DMSO at a final concentration

of 10 mM. A fully automated Hamilton Star work-station was used for all liquid handling pro-

tocols. Compounds were loaded into black F-bottom 96-well assay ready plates (Greiner) fol-

lowed by 200 μL of either M. smegmatis pSMT3-eGFP or BCG pSMT3-eGFP resulting in a

final drug concentration of 20 μM in the primary screen. Wells containing only cells (high

control) or cells in combination with 50 μg/mL rifampicin (Sigma) (low control) were

included on each assay plate to establish positive and negative controls, respectively. Assay

plates were cultured at for 48 hours in a Thermo Cytomat plate-shaker incubator (100%

humidity at 37˚C with 180 rpm plate agitation) and eGFP fluorescence was measured kineti-

cally every 2 hours to generate growth curves for individual wells of each assay plate. Data

from the final 48 hr read was normalized using the following equation:

%Survival ¼
x � �x ðnegative controlsÞ

�x ðpositive controlsÞ � �x ðnegative controlsÞ

� �

� 100

Each assay plate was checked for robustness and reproducibility by calculating the Z’-factor

using the following equation:

Z0 ¼ 1 �
3ðspþ snÞ
jmp � mnj

For the primary screen, positive controls and negative controls were included in columns 1

and 2 respectively. The Z’ was found to be on average 0.75, well above the Z’>0.5 which is

widely regarded as being suitable for HTS. All 1200 drugs from the Prestwick Chemical

Library were screened in duplicate and hits were identified as inhibiting cell growth by�75%,

as determined by measuring eGFP fluorescence.

Validation of selected hits and MIC determination in liquid media

Drugs selected for further study were purchased from a variety of commercial vendors. Drugs

were dissolved into 100% DMSO resulting in a 10 mM stock that was subsequently used to

generate a 10-point 3-fold serial dilution which provided a dose response curve with maxi-

mum and minimum drug concentration of 500 μM and 0.0254nM, respectively. Data was nor-

malised as described above. The concentration of drug that is required to inhibit cell growth

by 99% was calculated by non-linear regression (Gompertz equation for MIC determination,

GraphPad Prism).

MIC determination on solid agar. Selected compounds identified from the secondary

MIC screen were further tested for MIC evaluation using solid agar media. Drugs were diluted

from a 10mM stock, mixed individually in 2 mLs of molten 7H10 agar and dispensed in square

partitioned petri plates. Plates were incubated at 37˚C and solid MIC was determined based on

absence of colonies.

MIC determination against M. tuberculosis H37Rv. To investigate the effects of repur-

posed compounds on growth of M. tuberculosis H37Rv using an Alamar Blue based MIC assay

using the resazurin reagent. This assay was performed in 7H9 medium containing Middleb-

rook broth and 0.5% glycerol and supplemented with oleic acid, albumin, dextrose, and cata-

lase. Clear- 96-well plates were inoculated with 100 μL of drug diluted with 90 μl of 7H9

medium and 10 μL DMSO. Serial 3-fold dilutions of each drug in 100 μL of 7H9 medium were

prepared at various ranges. Growth controls containing no antibiotic and sterility controls

without inoculation were also included. 200 μL of sterile deionized water was added to the

FDA drugs active against mycobacteria
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outer perimeter wells to prevent evaporation during plate incubation. Plates were incubated

plate at 37˚C for 3–4 days. After incubation, the plates were removed and 10 μL of resazurin

(0.02% w/v) was added to each well that contained bacteria. Assay plates were reincubated at

37˚C for 24–48 hours and visually assessed for colour development. OD 570 nm readings were

taken to provide further quantitation provide an interpretation of the dose response of the bac-

terium to repurposed compounds.

HepG2 cytotoxicity assay

Actively growing HepG2 cells were removed from a T-175 tissue culture flask with 5 mL of

Eagle’s MEM containing 10% FBS/1%NEAA/1% Penicillin and Streptomycin) and mixed

with gentle pipetting. Cell cultures were observed to ensure monolayers did not exceed

50% confluence at the time of cell harvest. The cell suspension was added to 250 mL of the

same medium at a final density of 6 X 107 cells per mL. This cell suspension (100 μL, typi-

cally 6,000 cells per well) was dispensed using multichannel pipette into the wells μClear

F-bottom 96-well assay plates (Greiner) pre-loaded with 2-fold serially diluted compounds

(final concentration range 250 μM– 0.5 μM). Plates were allowed to incubate at 37˚C at a

relative humidity of 80% and 5% CO2 for 48 hours. After incubation, the plates were

allowed to equilibrate at room temperature for 30 mins before 25 μL of CellTitre-Glo (Pro-

mega) reagent was added to each well using a multichannel pipette. Plates were left at

room temperature for 30 mins before relative luminescence was read using a BMG Labtech

POLARstar Omega plate reader. Data was normalised and IC50 values determined as con-

centrations of drug required induce 50% cell viability and was calculated by non-linear

regression (GraphPad Prism).

Spontaneous mutant generation

Spontaneous mutants were generated by plating 108 cells (M. smegmatis and/or BCG) per

plate on 7H10 agar with drug concentrations of 2.5x, 5x and 10x the solid MIC values. Plates

were incubated at 37˚C for a week or 30 days forM. smegmatis and BCG, respectively. Colo-

nies that appeared on plates containing drug at 10X MIC were inoculated into 7H9 re-plated

onto 7H9 agar in the presence drugs at 10X MIC in order to confirm resistance. Genomic

DNA was isolated for both wild type M. smegmatis and BCG strains together with resistant

mutants [8,9]. Genomic DNA was submitted to MicrobesNG (https://microbesng.uk/) for

whole genome sequencing and SNP variant analysis of the sequence in comparison to the wild

type genomic DNA for each strain.

Over-expression of aroB and echA12 in BCG

The production of all oligonucleotide primers (Table 1) and sequencing of generated con-

structs was performed by Eurofins Genomics, Ebersberg, Germany. Both echA12 and aroB
genes were amplified by PCR (Phusion High-Fidelity DNA polymerase; New England Biolabs)

from M. tuberculosis H37Rv genomic DNA using the oligonucleotide pairs shown in Table 1.

The resulting fragments were cloned into the mycobacterial shuttle vector pVV16 by using

NdeI and HindIII restriction sites (FastDigest restriction endonucleases and T4 DNA ligase,

Fermentas). All constructs were verified by DNA sequencing. pVV16-aroB, pVV16-echA12
and empty pVV16 (control) were electroporated into M. bovis BCG Pasteur strain.

FDA drugs active against mycobacteria
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Results

Primary screening of the Prestwick Chemical Library against M. smegmatis
and BCG

To identify which of the 1200 FDA approved drugs in the Prestwick Chemical Library inhibit

the growth of mycobacteria, a medium throughput fluorescence screen was used to measure

GFP expression in strains of both M. smegmatis and BCG (GFP microplate assay [GFPMA])

[10]. M. smegmatis_pSMT3_eGFP and BCG_pSMT3_eGFP were cultured in 96-well plates in

the presence of 20 μM compound from the Prestwick Chemical Library. GFP fluorescence was

measured at specified time points and data was normalized against both positive and negative

controls to produce a scatter graph of the survival percentages (Fig 1). In order to assess the

reproducibility and robustness of the GFPMA HTS, we calculated Z‘factor values for each of

the assay plates used to screen the 1200 compounds of the Prestwick Chemical Library against

both M. smegmatis_pSMT3_eGFP and BCG_pSMT3_eGFP. The Z’ values of the primary

screen against M. smegmatis vary between 0.4 and 0.9 across each of the assay plates used in

the screen (S1 Fig). In case of the primary screen for BCG, the Z‘values are consistent between

0.8 and 0.9 across all assay plates (S1 Fig). However, since all assay plates used in the experi-

ment derived Z’ values� 0.4, all data generated was deemed suitable for further processing

[11].

In order to understand the variability in the data and significance of the hits identified from

the scatter plot (Fig 1), we analysed the variance of data both between and across replicate

experiments carried out using M. smegmatis and BCG. The overall coefficient of correlation

(r2) values for replicate assays were calculated to be 0.63 and to 0.89 forM. smegmatis_pSM-

T3_eGFP and BCG_pSMT3_eGFP, respectively (Fig 2). This indicates increased variance in

the data for assays conducted with M. smegmatis compared to screens performed using BCG.

We analysed the frequency distribution of data both within and across each primary screen

using M. smegmatis and BCG (Fig 3). For M. smegmatis, we observed that 31.5% of the com-

pounds screened in the library induced� 75% survival of bacterial cell growth in the primary

screen (Fig 3). For BCG, 21% of the library induced� 75% survival of bacterial cell growth in

the primary screen (Fig 3). We applied a minimum cut-off of�25% bacterial cell survival at

20 μM compound, as a parameter that defined an antimycobacterial hit that would be further

investigated in downstream experiments (Fig 1). In this regard, we observed an almost identi-

cal hit rate of 6.9% and 6.8% for compounds inducing� 25% survival for M. smegmatis and

BCG, respectively (Fig 3).

The initial screen against M. smegmatis generated 83 hits which inhibited the survival of this

fast-growing species of mycobacterium below 25% (Fig 1A). The screen against the slower

growing mycobacterial strain BCG revealed 81 hits (Fig 1A) which inhibited the growth of the

bacteria below 25% (Fig 1B). Categorisation of these hits (<25% survival) into pharmacological

Table 1. Primers used for the construction of pVV16-echA12 and pVV16-aroB.

Primer Sequence (5’!3’)a

echA12 _forward GATCGATCCATATGGCTGTGCCCCACCGCTGC

echA12_reverse GATCGATCAAGCTTCGTGTCATCGGTGAACACCGG

aroB_forward GATCGATCCATATGATGACCGATATCGGCGCACCC

aroB_reverse GATCGATCAAGCTTTGGGGCGCAAACTCCGGCGTA

a restriction sites used for cloning are underlined (NdeI and HindIII).

https://doi.org/10.1371/journal.pone.0213713.t001
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Fig 1. Primary screening of the Prestwick Chemical Library compounds against M. smegmatis (A) and BCG (B)

using a GFPMA assay. GFP measurements were recorded after a defined period of incubation of mycobacteria in the

presence of 20 μM compound from the Prestwick Chemical Library. Data was normalised to control wells and is

expressed as mean % survival from n = 2 biological replicate experiments. The red dashed line depicts<25% cell

survival as determined by residual GFP fluorescence.

https://doi.org/10.1371/journal.pone.0213713.g001
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groups reveals that an almost equal number of fluoroquinolones, macrolides, polyketide antibi-

otics, antimycobacterial drugs, and antiseptics display inhibitory activity against bothM. smeg-
matis and BCG whilst the aminoglycosides displayed more inhibitory activity towardsM.

smegmatis compared to BCG (Fig 4). Other notable classes of drugs that inhibit the growth of

bothM. smegmatis and BCG include the amphenicols, glycopeptides and non-ribosomal

peptide antibiotics, antihistamines, acetylcholine esterase inhibitors, antiemetic, antimalarial,

antiprotozoal and surfactants (Fig 4). Notable species-specific inhibitors affecting onlyM. smeg-
matis were also identified belonging to antiestrogen, antiarrhythmic and antipsychotic drugs

(Fig 4). For BCG, it appears that the cephalosporin antibiotics are only able to inhibit the slower

growing mycobacterial species and do not affect the faster growing saprophytic organism M.

smegmatis. Other significant drug classes that only inhibit BCG include anticancer agents, anti-

diabetics, anticonvulsants and angiotensin antagonists (Fig 4).

All hits from the primary screen (displaying <25% survival) were filtered to remove all

known antimycobacterial drugs (isoniazid, rifampicin, ethambutol, streptomycin, pyrazina-

mide [active only for BCG]), and a significant number of other antimicrobial agents [7].The

remaining drugs were then clustered into one of three groups based upon their inhibitory

Fig 2. Correlation analysis of the primary screen against the Prestwick Chemical Library. Scatter graphs

representing correlation analysis of the cumulative data of the percentage survivals between n = 2 biological replicate

experiments (run A and B) during the primary screen of the Prestwick Chemical Library againstM. smegmatis (A) and

BCG (B). The average of run A and B data sets from bothM. smegmatis (A) and BCG were plotted against each other

(C).

https://doi.org/10.1371/journal.pone.0213713.g002

Fig 3. A comparative frequency distribution of the primary screening against the Prestwick Chemical Library. Each bar represents the

comparative frequency distribution primary screening data (averaged) forM. smegmatis (black) and BCG (red). % survival data for was

‘binned’ into groups of 5%.

https://doi.org/10.1371/journal.pone.0213713.g003
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Fig 4. Comparison of the hits emerging from the primary screen active against both M. smegmatis and BCG.

Drugs were grouped into drug classifications and are plotted as frequency of hits against eitherM. smegmatis or BCG.

https://doi.org/10.1371/journal.pone.0213713.g004
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activity against either fast-growing (M. smegmatis) or slow-growing (BCG) strains of mycobac-

teria, or those showing overlapping activity. Each cluster of drugs was further ranked and

given a priority score that was based on the apparent potency of the drug and potential novelty

of its mode of action from literature-based searches.

Secondary screening and hit confirmation against M. smegmatis
Minimal Inhibitory Concentrations (MIC) were determined using the standardized broth

dilution method and then subsequently measured on solid medium in order to ascertain the

concentration required to generate resistant mutants (S2 Fig). Among the drugs tested against

M. smegmatis, the most potent was meclocycline sulfosalicylate with a liquid and solid MIC of

0.10 μM and 0.2 μM, respectively (Table 2). Auranofin also displayed a relatively low solid

MIC of 6.0 μM although this was 12-fold higher than its liquid MIC values (0.51 μM). Other

drugs tested for MIC determination were alexidine and chlorhexidine which both exhibited

relatively low MIC values of 6.15 μM and 1.98 μM, both of which are used as antimicrobials in

dentistry [12]. The estrogen receptor modulating drugs clomiphene citrate, raloxifen, toremi-

fene and tamoxifen citrate [13–14] displayed liquid MIC values ranging from 9.03μM to

26.64 μM (Table 2). GBR12909 (Vanoxerine), a dopamine transport inhibitor [15], displayed a

liquid MIC of 18.6 μM (Table 2). Two of the drugs tested against M. smegmatis, auranofin and

ebselen, displayed MIC values of 0.51 μM and 10.3 μM respectively while other drugs which

were initially identified as hits from the primary screen (fendiline hydrochloride, sulocitidil,

apomorphine, nisoldipine, sertraline and fluspirilene) displayed relatively high MIC values

that ranged from 77 μM to 827.5 μM (Table 2). Some drugs initially examined were excluded

from further solid media MIC testing (alexidine dihydrochloride, ebselen and fluspirilene).

Fluspirelene displayed a relatively high liquid MIC and alexidine dihydrochloride was dis-

counted for further study due to its structural and functional similarity to chlorhexidine.

Table 2. MIC determination of selected drugs shortlisted as hits from the whole cell screen of the Prestwick

Chemical Library against M. smegmatis.

Shortlisted Drugs (M. smegmatis) Liquid MIC (μM) Solid MIC (μM)

Meclocyline sulfosalicylate� 0.10 0.20

Auranofin 0.51 6.0

Chlorhexidine 1.95 16.0

Alexidine 6.15 N/T

Clomiphene citrate� 9.03 37.5

Ebselen 10.3 N/T

Raloxifene 25.7 312.5

Toremifene 23.76 62.5

Tamoxifen citrate� 26.48 31.25

GBR 12909� 18.6 62.5

Fendiline hydrochloride 77.57 15.63

Sulocitidil 87.22 625

Apomorphine 241.7 625

Nisoldipine 396.2 100

Sertraline 526.7 90

Fluspirilene 827.5 N/T

MICs were determined using both liquid and solid growth mediums. (N/T)—not tested.

�Selected for generation of drug resistant mutants. Experiments were carried out at least three independent times and

representative data are shown.

https://doi.org/10.1371/journal.pone.0213713.t002
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Further investigation of ebselen ceased due to mode of action deconvolution that has been pre-

viously determined elsewhere [16]. Ebselen is an organoselenium compound approved by the

FDA with a well-known pharmacological profile and is currently being investigated for clinical

use in the treatment of bipolar disorders and strokes. Previous studies have shown that ebselen

displays antimycobacterial properties and is also effective against multidrug resistant Staphylo-
coccus aureus (MRSA) [2]. In M. tuberculosis, ebselen acts by covalently binding to an active

site cysteine residue in antigen 85. Antigen 85 is a complex of secreted proteins (Ag85A,

Ag85B and Ag85C) which play an important role in the synthesis of trehalose dimycolates

(TDM) and mycolylarabinogalactan (mAG) [16].

Secondary screening and hit confirmation against BCG

MIC studies of the compounds listed in Table 3 revealed thonzonium bromide as having the

lowest MIC value of 0.16μM. Thonzonium bromide is a quaternary ammonium monocationic

compound which is used as a surfactant and a detergent and has been known to disrupt ATP

dependant proton transport in vacuolar membranes along with alexidine dihydrochloride,

which are responsible for pH regulation in yeast and Candida albicans causing growth defects

[17]. Florfenicol, a fluorinated analogue of thiamphenicol with broad spectrum activity against

Gram negative bacteria and strains resistant to chloramphenicol and thiamphenicol [18], dis-

played broth and solid MIC values of 0.67μM and 6 μM against BCG, respectively (Table 3).

Florfenicol is known to influence the microbiota of the intestine reducing the amount of

uncultured bacterial species similar to Corynebacterium and Mycobacterium [19]. Josamycin, a

16-membered macrolide with inhibitory activity against both Gram negative and Gram posi-

tive bacteria [20], displayed potent activity against BCG with an MIC of 0.1μM (Table 3). Inter-

estingly, we identified three antihistamines as having inhibitory activity against BCG.

Astemizole had the lowest MIC value of 17.8μM within this group followed by tripelennamine,

with an MIC of 41.9μM and olopatadine with the highest MIC value of 202.3 μM in (Table 3).

Astemizole (used for general allergies, asthma and rhinitis), tripelennamine (hay fever and

Table 3. MIC determination of selected drugs shortlisted as hits from the whole cell screen of the Prestwick

Chemical Library against BCG.

Shortlisted Drugs

(BCG)

Liquid MIC (μM) Solid MIC (μM)

Thonzonium � 0.16 5

Florfenciol � 0.67 6

Pentamidine � 3.23 50

Astemizole 17.78 50

Pinaverium 28.29 50

Josamycin 0.10 >100

GBR 12909 � 20.5 28.2

Tripelennamine � 41.9 100

Rosiglitazone 43.15 � 1500

Glipizide 191.10 � 500

Olopatadine 202.30 � 500

Granisteron 210.60 � 500

Phenteramine 375.00 N/T

MICs were determined using both liquid and solid growth mediums. (N/T)—not tested.

�Selected for generation of drug resistant mutants. Experiments were carried out at least three independent times and

representative data are shown.

https://doi.org/10.1371/journal.pone.0213713.t003
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rhinitis) and olopatadine (allergic conjunctivitis) are mildly anti-cholinergic and act as H1

receptor antagonists [21–24]. Of the antidiabetic drugs displaying activity towards BCG, glipi-

zide and rosiglitazone have an MIC value of 191.1 μM and 43.15 μM, respectively (Table 3).

Glipizide is a second-generation sulfonylurea drug that is prescribed for hypoglycaemia in

type II diabetes and is known to act by stimulating insulin production and correcting cellular

lesions which occur during diabetes mellitus [25–26]. Rosiglitazone, on the other hand, func-

tions by activating peroxisome proliferator activated receptors in adipocytes and sensitising

them to insulin [27]. Pinaverium, that inhibits L-type calcium channels arresting influx of the

Ca2+ [28], had an MIC of 28.3μM. Two other drugs which displayed relatively high MIC values

were granisetron and phentermine (Table 3). Granisetron, an antiemetic drug which is an ago-

nist to the 5-hydroxytryptamine-3 receptor, stimulates the vagus nerve responsible for reflex

motility response [29], had an MIC value of 210.6μM. Phentermine, which has been prescribed

as an appetite suppressant to control obesity and acts as an agonist to the human TAAR1

(Trace Amine Associate Receptor 1) [30], displayed an MIC of 375.00 μM and was not tested

further due to the high concentrations required for inhibitory activity. These drugs were then

further tested to establish MICs on solid media in order to determine accurate concentrations

to generate spontaneous resistant mutants for mode of action studies. We observed that, upon

solid agar MIC testing against BCG, the general trend was that the drugs displayed 5 to

100-fold higher MIC values when compared to MIC values obtained by broth dilution method.

For some of the drugs this was attributed to low solubility in solid media as many precipitated

during the cooling of the agar medium. Glipizide, olopatadine and granisetron yielded solid

MIC values greater than 0.5 mM; these drugs precipitated out at higher concentrations and

appeared to show no noticeable inhibitory activity against BCG (S3 Fig). Rosiglitazone dis-

played the highest MIC value at approximately 1.5 mM. Thonzonium and florfenicol had a

5-fold increase in their solid MIC values but were still around 5μM and effectively inhibited

the growth of BCG on solid agar (Table 3). Pentamidine, astemizole and pinaverium had solid

MIC values of around 0.05 mM while there was a 2-fold increase in the MIC value for tripelen-

namine (compared to its liquid MIC) of 0.1 mM (Table 3).

All compounds listed in Tables 2 and 3 were tested in an Alamar Blue assay against M.

tuberculosis (S4 Fig) and the drugs that displayed any notable anti-TB activity are listed in

Table 4. Both ebselen and auranofin displayed MICs of 18.51 μM and 0.27 μM, which are in

close agreement with previously published values [16,31]. In addition, the estrogen receptor

Table 4. MIC determination of selected drugs against M. tuberculosis H37Rv.

Shortlisted Drugs

(M. tuberculosis)
Liquid MIC (μM) IC50 (μM) HepG2 cells

Ebselen 18.51 45

Clomiphene 7.59 35

GBR 12909 26.64 55

Raloxifen 22.10 20

Tamoxifen � 100 30

Auranofin 0.27 3

Pentamidine 10.51 3.5

Tripelennamine 49.3 >250

Florfenicol 25.4 >250

MICs were determined in liquid growth media using the Alamar Blue assay (S4 Fig). Cytotoxicity IC50 values against

HepG2 cell were determined using the CellTitre-Glo (Promega) assay. Experiments were carried out at least three

independent times and representative data are shown.

https://doi.org/10.1371/journal.pone.0213713.t004
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modulating drugs clomiphene and raloxifene inhibited the growth of M. tuberculosisH37Rv

with MICs of 7.59 μM and 22.10 μM, respectively (we were unable to accurately determine the

MIC for Tamoxifen) (Table 4). Finally, GBR12909 (used in the clinic to treat cocaine addic-

tion), inhibited the growth of M. tuberculosis with an MIC of 26.64 μM. It is interesting to note

clear differences in MIC values obtained from either M. smegmatis and/or BCG (Table 2 and

Table 3) when compared to those obtained in M. tuberculosis (Table 4), which can be partially

attributed to differences in cell physiology and efflux pump expression [7].

Generation of spontaneous resistant mutants to determine mode of action

We attempted to generate spontaneous resistant mutants in both M. smegmatis and BCG

against a selection of drugs identified in Tables 2 and 3, respectively. However, we were only

able to obtain drug-resistant isolates for meclocyline sulfosalicylate, tamoxifen citrate and

GBR12909 in M. smegmatis (Table 5) and florfenicol, pentamidine and tripelennamine in

BCG (Table 6). Analysis of theM. smegmatismeclocyline sulfosalicylate mutant revealed a syn-

onymous single nucleotide polymorphism (SNPs) mutation in the gene MSMEG_3619 (Mtb
ortholog Rv1856c), a probable oxidoreductase deemed non-essential by the Himar-I based

transposon mutagenesis [21], but also showing importance as having a growth advantage

which results in an improvement in fitness when disrupted [32]. A single SNP (P122S) was

also observed in MSMEG_5249 (Mtb ortholog Rv1093) glyA1 which is a serine hydroxy-

methyltransferase with possible roles of glycine to serine inter-conversion and the generation

of 5, 10-methyenetetrahydrofolate which plays an important role in providing precursors for

cellular redox balancing, methylation reactions and a role in thymidylate biosynthesis

(Table 5). GlyA1 is also thought to be an essential gene [32,33] and it has also been identified

as one of the proteins which undergoes PUPylation (Ubquitinylation by prokaryotic ubiquitin

protein) in mycobacteria [34]. The M. smegmatis tamoxifen citrate resistant mutant exhibited

a frame shift mutation in the gene MSMEG_6431 (Mtb ortholog Rv3849) espR which encodes

for a protein involved in transcriptional regulation of the three genes Rv3136c-Rv3614c

required for the ESX-1 system (Table 5). EspR binds to the promotor region and regulates

Table 5. Mode of action determination of drugs inhibiting M. smegmatis through whole genome sequencing and variant analysis of spontaneous resistant mutants.

Drug Name

(M. smegmatis
hits)

Mutated Genes Rv

Number

Positions Amino acid

substitutions

Probable function

Meclocycline MSMEG_3619 Rv1856c A/G Short chain dehydrogenase/ oxidoreductase

Meclocycline MSMEG_5249

(glyA1)

Rv1093 Ccg/Tcg P122S Serine hydroxymethyltransferase

Tamoxifen MSMEG_6431

(espR)

Rv3849 ttc/

(Frame

shift)

F24 Conserved hypothetical protein

GBR12909 MSMEG_3033

(aroB)

Rv2538c Ggg/Agg G282R Involved at the second step in the biosynthesis of chorismate within the biosynthesis

of aromatic amino acids (the shikimate pathway) [catalytic activity: 7-phospho-

3-deoxy-arabino-heptulosonate = 3-dehydroquinate + orthophosphate].GBR12909 MSMEG_3033

(aroB)

Rv2538c gGc/gAc G284D

GBR12909 MSMEG_3033

(aroB)

Rv2538c Tgc.GTtgc

(Frame

shift)

C356V

GBR12909 MSMEG_3033

(aroB)

Rv2538c cTa/cCa L363P

The table represents the single nucleotide polymorphisms obtained through whole genome sequencing of the spontaneous resistant mutants raised compared against

drug sensitive M. smegmatis.

https://doi.org/10.1371/journal.pone.0213713.t005
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ESX-1, therefore controlling virulence of mycobacteria [35]. Spontaneous resistant mutants

raised against GBR12909 inM. smegmatis produced consistent multiple mutations in

MSMEG_3033 (aroB) (Table 5). AroB is predicted to be an essential gene as studied in M.

tuberculosis [32,33] and it encodes for 3-dehydroquinote synthase, which is one of several

enzymes participating in the shikimate biosynthetic pathway [36]. AroB is a homomeric

enzyme, is the second enzyme in the shikimate biosynthetic pathway and is present in various

bacterial species such as Corynebacterium glutamicum, Escherichia coli, Bacillus subtilis and

other fungi, plants and apicomplexan parasites [37–39]. AroB makes for an important target

due to its essentiality in M. tuberculosis and absence of this biochemical pathway in mammals

[32,33,37]. To further support the evidence that AroB is the target of GBR12909, AroB was

over-expressed in BCG using the expression plasmid pVV16, which constitutively expresses

aroB under the control of the hsp60 promoter, and the MIC of GBR12909 was reassessed. In

the absence of AroB over-expression (pVV16 empty vector control), the MIC of GBR12909

unchanged with that of wild-type BCG (Fig 5 and Table 3). However, upon over-expression of

AroB, the MIC of GBR12909 increased from 20.5 μM to> 50 μM (Fig 5). These results further

substantiate AroB as the target of GBR12909 as over-expression of AroB provides additional

inhibitor protein target, thus allowing the bacteria to survive at elevated drug concentrations.

Spontaneous resistant mutants were raised against florfenicol in BCG, and whole genome

sequencing revealed a point mutation in BCG_1533 (echA12) gene which encodes for a puta-

tive enoyl CoA hydratase (Table 6). EchA12 has been shown to be membrane localized within

the mycobacterial cell membrane [40], however the gene was not found to be essential through

Himar-I based transposon mutagenesis [32,33]. It has been suggested that EchA12 is involved

in lipid membrane metabolism and is found to co-localise with thioredoxine A [40] and CtpD,

which is an ATPase involved with the metalation of proteins secreted during redox stress [41].

Again, to provide further evidence that EchA12 is targeted by florfenicol, we over-expressed

Table 6. Mode of action determination of drugs inhibiting BCG through whole genome sequencing and variant analysis of spontaneous resistant mutants.

Drug Name

(BCG hits)

Mutated Genes Rv

Number

Positions Amino acid

substitutions

Probable function

Florfenicol BCG_1533

(EchA12)

Rv1472 Gga/Aga G239R Possible enoyl-CoA hydratase echA12 [Mycobacterium
bovis BCG str. Pasteur 1173P2]

Florfenicol BCG_3158

(PPE50)

Rv3135 gGc/gAc G251D PPE family protein

Florfenicol BCG_3508

(rpsI)

Rv3442c Ccc/Gcc P17A Probable 30S ribosomal protein S9 RPSI

Florfenicol BCG_3755c

(glpK)

Rv3696c gTc/gCc V271A Probable glycerol kinase GlpK (ATP glycerol

3-phosphotransferase)

Pentamidine BCG_0763 Rv0713 aTt/aCt I274T Probable conserved transmembrane protein

[Mycobacterium bovis BCG str. Pasteur 1173P2]Pentamidine BCG_0763 Rv0713 gCg/gTg A281V

Pentamidine BCG_1609

(mmpL6)

Rv1557 Gcc/Acc A31T Probable conserved transmembrane protein

Pentamidine BCG_3755c

(glpK)

Rv3696c gTc/gCc V271A Probable glycerol kinase GlpK (ATP glycerol

3-phosphotransferase)

Trippelennamine promoter region of gene

BCG_3090

Rv3065 Upstream gene BCG

3089c (Rv 1904)

Multi-drug transport integral membrane protein (efflux

pump)

glpK Rv3696c gTc/gCc V271A Probable glycerol kinase GlpK (ATP glycerol

3-phosphotransferase)

The table represents the single nucleotide polymorphisms obtained through whole genome sequencing of the spontaneous resistant mutants raised compared against

drug sensitive BCG.

https://doi.org/10.1371/journal.pone.0213713.t006
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EchA12 in BCG. In the absence of EchA12 over-expression, the MIC of florfenicol remained

unchanged with that of wild-type BCG (Fig 5 and Table 3). However, upon over-expression of

EchA12, the MIC of florfenicol increased from 0.7 μM to> 12 μM (Fig 5) highlighting target

engagement of florfenicol with EchA12 as one of its putative targets in mycobacteria. Three

Fig 5. Effect on the MIC of GBR12909 and florfenicol on the over-expression of AroB and EchA12 in BCG. The

over-expression constructs pVV16-aroB, pVV16-echA12 and empty pVV16 (control) were electroporated into BCG

and the MICs GBR12909 and florfenicol evaluated. The data shows a mean of three replicates and error bars represent

the standard deviation.

https://doi.org/10.1371/journal.pone.0213713.g005
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additional point mutations were also observed in the florfenicol resistant mutant. A single gua-

nine to adenine point mutation in the gene BCG_3185 (PPE50) which encodes for a protein

belonging to the PPE family, generates a G251D mutation. Florfenicol is a fluorinated form of

thiamphenicol which belongs to the amphenicol family of antibiotics, whose mode of action is

through binding to the 23S rRNA of the 50S ribosomal unit [42]. BCG_3508 (rpsI) encodes for

a probable 30S ribosomal protein and contains a P17A mutation in the florfenicol mutant

(Table 6), which suggests that florfenicol could hit multiple targets in mycobacteria. Finally,

we also observed a V271A point mutation in BCG_3755c, which encodes for a glycerol kinase

(GlpK), which catalyses the rate limiting step in glycerol metabolism of converting glycerol to

glycerol-3-phosphate [43,44]. Mutations in glpK, have previously been observed when generat-

ing resistant mutants to drugs in an attempt to deconvolute their mode of action [45,46]. In

our investigation of pentamidine activity, we identified an identical mutation in glpK, two sep-

arate non-synonymous SNPs in BCG_0763, which encodes for putative membrane protein

with a domain of unknown function, and a single SNP in BCG_1609, which encodes for

mmpl6 (Table 6). Mycobacterial membrane protein large (MmpL) are membrane proteins

involved in shuttling lipid components across the plasma membrane and have been known to

play an important role in drug resistance mechanisms, membrane physiology and virulence of

the bacterium [47]. The tripelennamine mutant had a single point mutation in the promoter

region of BCG_3090, a multi-drug transport integral membrane protein (mmr) (Table 6),

which is a known efflux pump involved in drug resistance with high susceptibility to quater-

nary compounds [48]. This suggests that exposure to tripelennamine might induce a mutation

that causes increased overexpression of Mmr which could alter the ability of the bacterium to

efflux drugs.

Discussion

Screening compounds against M. smegmatis has a distinct advantage over the slower growing

BCG strain in terms of its shorter generation time, thus expediting the generation of screening

data and turnaround of results. However, using M. smegmatis as a screening organism is less

efficient in determining antitubercular compounds than BCG. It was observed during a screen

of the LOPAC library against M. tuberculosis,M. smegmatis and BCG that 50% of the drugs

inhibiting M. tuberculosis were not identified inM. smegmatis while it was only 21% of the

drugs that were not identified in BCG. In addition, it was observed that 30% of proteins in M.

tuberculosis do not have conserved orthologs inM. smegmatis [7]. Despite this fact, bedaqui-

line, the most recent drug given FDA approval for the treatment of MDR-TB, was initially dis-

covered through a whole cell screen assay against M. smegmatis [49], which makes the case for

not excluding M. smegmatis as a model organisms for antitubercular drug screening.

Although genetically similar, there are a number of physiological variations between M.

tuberculosis and BCG which have been attributed to the differential expression of around 6%

of genes across their respective genomes. During the exponential growth of both organisms,

major variations were observed for genes involved in cell wall processes, intermediary metabo-

lism and respiration and hypothetical proteins [50]. In addition, in M. tuberculosis the PE/PPE

genes were found to be highly expressed whereas in BCG, there are a higher number of tran-

scriptional regulators that are overexpressed during exponential growth. These variations in

gene expression profiles of mycobacteria partly explain why different classes of drugs differen-

tially inhibit each strain utilised during screening experiments (Fig 4).

Target deconvolution of hits that emerge from whole cell screening efforts has long been

the bottleneck of phenotypic-based drug discovery; often huge investment of time and

resource is required to identify the precise molecular target of active compounds [51].

FDA drugs active against mycobacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0213713 March 12, 2019 16 / 21

https://doi.org/10.1371/journal.pone.0213713


Interestingly, in the case of early stage drug discovery in M. tuberculosis, there seems to be an

apparent trend whereby inhibitors of cell growth/viability obtained through phenotypic

screening efforts tend to inhibit membrane targets such as DprE1, MmpL3, QcrB and Pks13

[52]. This relatively high probability of hits inhibiting membrane targets could, in part, be due

to the hydrophobicity of the inhibitors screened in libraries against mycobacteria [52,53]. For

instance, several drugs from the Prestwick Chemical Library that inhibit the growth of myco-

bacteria have an average clogP value of 5.7 [52]. Hydrophobic drugs have a tendency to enter

into the lipid layers of the mycobacterial cell envelope and then move laterally through the

membrane due to their inability to cross the plasma membrane into the cytoplasm. While tra-

versing the bilayer, these hydrophobic compounds interact with membrane proteins thereby

increasing the probability of these drugs inhibiting such targets. In doing so, such hydrophobic

inhibitors drive spontaneous resistant mutants in membrane targets during mode of action

studies [52]. Alexidine dihydrochloride and thonzonium bromide were amongst the hits

observed in this study that have uncoupling properties and might generated a membrane pro-

tein mutation [17]. In this study, screening the Prestwick Chemical Library also identified

inhibitors such as calcium channel blockers, antihistamines, antifungal azoles and, unsurpris-

ingly, a variety of anti-infectives (Fig 4). Calcium channel inhibitors are generally small hydro-

phobic molecules which have the ability to enter the phospholipid bilayer and can diffuse

through the membrane inhibiting metabolic functions due to interactions with proteins and

boundary lipids [54]. Antifungal azoles, which have been shown to elicit inhibitory activity

against mycobacteria, act by targeting the CYP121 and CYP130 cytochrome P450 systems

[55]. Arguably, the most interesting hits emerging from this study are florfenicol, GBR12909

(vanoxerine) and pentamidine as (to date) there is little information regarding their anti-

mycobacterial activity. Indeed, our SNP analysis spontaneous resistant mutants raised to these

compounds (Tables 4 and 5) and over-expression of AroB and EchA12 (Fig 5) marks the

beginning of an extensive target deconvolution effort currently underway in our laboratory.

Overall, our screening of the Prestwick Chemical Library and preliminary analysis of unique

emerging hits, provides new impetus to explore drug repurposing as a feasible and efficient

way of mining for new anti-mycobacterial drugs.
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S1 Fig. Z’ factor analysis of each assay plate used in the primary screen of the Prestwick

Chemical Library against M. smegmatis (smeg) and BCG.

(PDF)

S2 Fig. Solid MIC testing of preliminary hits from the Prestwick Chemical Library M.

smegmatis. The solid MIC testing was performed against a. Sulocitidil, b. Auranofin, c. Raloxi-

fen, d. Clomiphene citrate, e. Chlorhexidine, f. Fendiline hydrochloride, g. Tamoxifen citrate,

h. Meclocyline sulfosalicylate, i. GBR12909, j. Nisoldipine, k. Sertraline, l. Toremifene, m. Apo-

morphine in the presence of a negative and positive control.

(PDF)

S3 Fig. Solid MIC testing of preliminary hits from the Prestwick Chemical Library against

BCG. The solid MIC testing was done against a. Rosiglitazone, b. Pinaverium, c. Astemizole,

d. Olopatadine, e. Glipizide, f. Tripelennamine, g. Pentamidine, h. Thonzonium, i. Florfenicol,

j. Josamycin in the presence of a negative and positive control.

(PDF)

S4 Fig. Effect on growth of selected hits from the Prestwick Chemical Library against M.

tuberculosis H37Rv. The data shows a mean of three replicates. The OD values are derived
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from subtracting the OD from the test well which had been inoculated with M. tuberculosis
from a blank well which had not been inoculated with bacteria. The error bars represent the

standard error of the mean.

(PDF)
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