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Pex11 is a key player in peroxisome proliferation, but the

molecular mechanisms of its function are still unknown.

Here, we show that Pex11 contains a conserved sequence

at the N-terminus that can adopt the structure of an

amphipathic helix. Using Penicillium chrysogenum Pex11,

we show that this amphipathic helix, termed Pex11-Amph,

associates with liposomes in vitro. This interaction is

especially evident when negatively charged liposomes

are used with a phospholipid content resembling that of

peroxisomal membranes. Binding of Pex11-Amph to

negatively charged membrane vesicles resulted in strong

tubulation. This tubulation of vesicles was also observed

when the entire soluble N-terminal domain of Pex11 was

used. Using mutant peptides, we demonstrate that main-

taining the amphipathic properties of Pex11-Amph in con-

junction with retaining its a-helical structure are crucial

for its function. We show that the membrane remodelling

capacity of the amphipathic helix in Pex11 is conserved

from yeast to man. Finally, we demonstrate that mutations

abolishing the membrane remodelling activity of the

Pex11-Amph domain also hamper the function of

full-length Pex11 in peroxisome fission in vivo.
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Introduction

Peroxisomes are ubiquitous single membrane-bound orga-

nelles that have an important function in many metabolic

pathways. The main functions of peroxisomes include

b-oxidation of fatty acids and detoxification of hydrogen

peroxide (van den Bosch et al, 1992). Moreover, peroxisomes

are crucial for efficient biosynthesis of b-lactam antibiotics in

filamentous fungi (Kiel et al, 2005, 2009; van den Berg et al,

2008; Sprote et al, 2009). In Penicillium chrysogenum,

two enzymes of the penicillin biosynthetic pathway are

localized to peroxisomes where they perform the final steps

in the formation of this secondary metabolite (Muller et al,

1991; Lamas-Maceiras et al, 2006). The importance of peroxi-

somes is highlighted by the fact that peroxisomes are

indispensable in mammals (Gould and Valle, 2000), plants

(Schumann et al, 2003) and Trypanosomes (Guerra-Giraldez

et al, 2002).

The maintenance of the peroxisome population during

vegetative cell reproduction requires continuous multiplica-

tion of these organelles. Peroxisomes may form de novo from

the endoplasmic reticulum (ER) or multiply by division of

pre-existing organelles (Thoms and Erdmann, 2005; Hettema

and Motley, 2009). In this latter mechanism, peroxisomes

undergo extensive changes in the shape of their surrounding

membrane. The current model predicts that the initial orga-

nelle elongation event is followed by the actual fission step,

mediated by GTPases from the dynamin-related protein

family (e.g. Dnm1, Vps1, Drp1) (Thoms and Erdmann, 2005).

Pex11 is a peroxisomal membrane protein and the first

protein identified to be involved in peroxisome proliferation

(Erdmann and Blobel, 1995; Marshall et al, 1995). In most

organisms, the number and size of peroxisomes can be

prescribed by modulation of the Pex11 protein levels

(Fagarasanu et al, 2007). The molecular details of the func-

tion of Pex11 in peroxisome proliferation are, however, still

largely unknown.

In general, maintenance of the unique shape of organelles

is obtained by regulation of their membrane properties.

One of the current models predicts that Pex11 is involved

in peroxisome elongation/tubulation. Several mechanisms

have been proposed for the induction and regulation of

membrane curvature (McMahon and Gallop, 2005;

Zimmerberg and Kozlov, 2006). One of these is insertion of

amphipathic a-helices into one leaflet of the lipid bilayer, thus

generating membrane asymmetry, resulting in bending of the

membrane (Drin and Antonny, 2009).

Here, we show that the N-terminus of Pex11 contains a

conserved amphipathic helix, tentatively termed Pex11-

Amph. We show that this a-helical motif can bind to

membranes and alter the shape of liposomes with a lipid

composition resembling that of the peroxisomal membrane,

thereby causing extensive tubulation. Using directed

mutagenesis, we demonstrate that the amphipathic proper-

ties of Pex11-Amph are crucial for the function of Pex11 in

peroxisome fission in vivo.
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Results

Pex11 contains a conserved N-terminal amphipathic helix

The analysis of the function of Pex11 in peroxisome prolifera-

tion was initiated by a sequence comparison of known Pex11

proteins for the presence of membrane deforming motifs.

Using multiple sequence alignments of Pex11 proteins from

different species, we identified an N-terminally conserved

motif of approximately 25 residues, designated Pex11-Amph

(H3 in Figure 1A). This motif is predicted to form an a-helix

comprising of hydrophobic and polar (mainly positively

charged) residues (Figure 1A). Analysis of the hydrophobic

moment of the P. chrysogenum Pex11 N-terminus revealed

three regions with amphipathic properties, of which Pex11-

Amph is the most conspicuous one (Figure 1B). Helical wheel

and 3D surface representations of Pex11-Amph confirm that

this region indeed is predicted to contain hydrophobic and

hydrophilic surfaces of approximately equal size (Figure 1C).

To analyse whether Pex11-Amph can fold into an a-helix, a

peptide corresponding to residues 56–83 of P. chrysogenum

Pex11 (termed the Pex11-Amph peptide) was synthesized and

analysed by circular dichroism (CD) spectroscopy. As has

been observed before for other amphipathic helices (Low

et al, 2008), the Pex11-Amph peptide did not form any

secondary structures in an aqueous solution. However, the

addition of increasing amounts of the secondary structure

inducer 2,2,2-trifluoroethanol (TFE) caused folding of

the Pex11-Amph peptide into an a-helix. Maximal a-helix

Figure 1 Pex11 contains a conserved N-terminal amphipathic helix. (A) Sequence alignment of N-terminal regions of Pex11 proteins from
various species. Putative a-helices were predicted using the DSC programme and are marked with red arrows (H1–H3). Residues in predicted
a-helices are coloured based on the physico-chemical properties of amino acids as follows: hydrophilic, charged: D, E (red), K, R, H (blue);
hydrophilic, neutral: S, T, Q, N (green); hydrophobic: A, V, L, I, M, W, F, Y, G, P (black). The conserved helix H3 consists of hydrophobic
and polar, positively charged residues arranged in a recurrent manner. Abbreviations and accessions numbers used in sequence alignments:
Pc—Penicillium chrysogenum, AAQ08763; Af—Aspergillus fumigatus, EAL88627; An—Aspergillus nidulans, EAA65086; Nc—Neurospora
crassa, XP_960428; Yl—Yarrowia lipolytica, CAG81724; Sc—Saccharomyces cerevisae, CAA99168; Cg—Candida glabrata, CAG58440; Ag—
Ashbya gossypii, AAS54890; Kl—Kluyveromyces lactis, CAG99119; Ca—Candida albicans, EAK92906; Db—Debaryomyces hansenii, CAG84534;
Hp—Hansenula polymorpha, DQ645582; HsA—Homo sapiens Pex11a, AAH09697; HsB—Homo sapiens Pex11b, AAH11963. Asterisk and
numbers mark amino acids positions in the alignment. (B) Plot of hydrophobic moments (mH) for the N-terminus of PcPex11. The positions of
predicted a-helices are marked with H1–H3. The highest value of the mH was obtained for the long putative helix H3, suggesting strong
amphipathic properties for this motif. (C) Helical wheel representation and 3D model of the portion of the putative helix H3 with the strongest
amphipathic properties, tentatively termed Pex11-Amph (PcPex11 amino acids 67–83). In the helical wheel representation, the amino acids are
coloured according to the physico-chemical properties of the side chains (hydrophobic—yellow; polar, positively charged—blue; polar,
negatively charged—pink; polar, uncharged—green). In the 3D model of an ideal a-helix built on the basis of the Pex11-Amph sequence, the
computed surfaces are marked as follows: hydrophobic (red), positively charged (blue), other amino acids (white).
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formation was obtained at 40% of TFE and further increase of

the TFE concentration did not significantly change the CD

spectrum (Figure 2A). These data show that the Pex11-Amph

peptide indeed has the potential to fold into an a–a helix.

The amphipathic helix of P. chrysogenum Pex11

interacts in vitro with membranes and alters their shape

The presence of positive charges on the polar surface of the

Pex11-Amph suggests a capacity of the peptide to bind to

negatively charged membranes. Incubation of Pex11-Amph

with neutral small unilamellar vesicles (SUVs) resulted in co-

sedimentation of a minor portion of the peptide with the

liposomes. In contrast, enhanced amounts of the Pex11-Amph

peptide co-sedimented with negatively charged SUVs, com-

posed such that they strongly resemble the phospholipid

composition of peroxisomal membranes (Wriessnegger

et al, 2007) (Figure 2D).

The influence of Pex11-Amph binding on the shape/size of

SUVs of different phospholipid content was analysed using

turbidimetry measurements. Addition of the Pex11-Amph

Figure 2 Interaction of the Pex11-Amph with model membranes. (A) The secondary structure of the Pex11-Amph peptide was analysed using
CD spectroscopy. The spectrum shows that this peptide is unstructured in phosphate buffer (~). Addition of increasing amounts of 2,2,2-
trifluoroethanol (TFE) induces changes in the spectrum, resulting in minima at 208 and 220 nm, typical for a-helical structure; 10% TFE (&),
20% TFE (B), 30% TFE (D), 40% TFE (x), 50% TFE (J), 60% TFE (þ ). (B) Turbidimetric changes induced by the addition of the Pex11-
Amph peptide to SUV suspensions. Addition of increasing amounts of the Pex11-Amph peptide to neutral vesicles did not significantly alter the
turbidity of the solution (D—PC liposomes; j—PC/PE liposomes). However, titration of PC/PE/PS/PI/CL SUVs (&) with the Pex11-Amph
peptide resulted in decreased transmittance of the solution. (C) Sequences of mutant peptides Pex11-Amph-F and Pex11-Amph-P. Amino-acid
substitutions are marked in red. The Pex11-Amph-F peptide is predicted to still form an a-helix with a strongly reduced hydrophobic area as
depicted by the 3D model of an ideal a-helix. (D) Binding assays of the Pex11-Amph peptide with SUVs of varying phospholipid content
(see Supplementary Table III). After incubation with the peptide, the SUVs were collected by centrifugation. The pellet was suspended in buffer
(1/10 volume of the initial mixture). Equal volumes of the supernatant (S) and resuspended pellet (P) fractions were loaded per lane. The figure
shows a silver stained SDS–polyacrylamide gel. The Pex11-Amph peptide co-sediments with both neutral and negatively charged vesicles, but
significantly more peptide binds to the SUVs when negatively charged liposomes resembling the peroxisomal membrane are used (30% peptide
bound). Mutant variants of the Pex11-Amph are affected in membrane binding. The Pex11-Amph-F peptide co-sediments with liposomes at a
reduced level relative to the wild-type peptide. The Pex11-Amph-P mutant peptide does not associate with neutral liposomes and only very
small amounts of the mutant peptide co-sedimented with negatively charged vesicles. (E) CD spectrum of the Pex11-Amph-F peptide, showing
that this mutant peptide is unstructured in phosphate buffer (E), similarly to Pex11-Amph. In the presence of increasing amounts of TFE, the
CD spectrum of the Pex11-Amph-F peptide displays minima at 208 and 220 nm, indicating that some a-helical structure was formed at these
conditions; 10% TFE (&), 20% TFE (}), 30% TFE (D), 40% TFE (x), 50% TFE (J), 60% TFE (þ ). (F) The CD spectra of the Pex11-Amph-P
peptide show that this mutant peptide does not form an a-helix in either phosphate buffer (E) or in TFE; 10% TFE (&), 20% TFE (B), 30%
TFE (D), 40% TFE (x), 50% TFE (J), 60% TFE (þ ).
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peptide to neutral vesicles did not influence the turbidity of

the solution. In contrast, incubation of vesicles containing a

phospholipid composition mimicking that of peroxisomal

membranes with increasing amounts of the Pex11-Amph

peptide did influence the turbidity of the solution, leading

to a significant decrease in transmittance (Figure 2B). These

data suggest that the Pex11-Amph peptide interacts with

SUVs resembling the phospholipid composition of the perox-

isomal membrane and upon binding may influence liposome

shape and size.

Interaction of the Pex11-Amph peptide with negatively

charged membranes results in tubulation of SUVs

The nature of the changes in turbidity induced by Pex11-

Amph binding to membranes was subsequently analysed by

transmission electron microscopy using SUVs of different

phospholipid content incubated in the presence of the

Pex11-Amph peptide. The data revealed that addition of the

peptide to neutral vesicles had no influence on their shape

and size (Figure 3D and E), which is in agreement with the

turbidity measurements. However, in experiments using

SUVs with a phospholipid content resembling that of

peroxisomal membranes, hypertubulation was evident

(Figure 3F). The tubules reached lengths over 10 mm long

and 40–50 nm in diameter. These data show that the Pex11-

Amph peptide may efficiently remodel membranes in vitro.

The amphipathic properties of Pex11-Amph are crucial

for its membrane remodelling activity

The significance of the amphipathic properties of Pex11-

Amph for membrane remodelling was studied using mutant

peptides. In one of these, the Pex11-Amph-F mutant peptide,

mutations I69E, I72E and F75E were introduced. Although

the overall charge of this peptide changed, these residues

were chosen as they still allow the peptide to form a helix.

Moreover, these mutations do not affect the positive charge at

one side of the amphipathic helix, but only reduce the

hydrophobic surface. Furthermore, we used a second mutant

peptide (Pex11-Amph-P with mutations M70P and E77P) that

contains two proline residues predicted to hamper the for-

mation of the helical structure (Figure 2C). The secondary

structure of both mutant peptides was analysed by CD

spectroscopy. The data indicate that in phosphate buffer,

both mutant peptides are unstructured, similar as observed

for the Pex11-Amph peptide (Figure 2E and F). As expected,

the addition of increasing amounts of TFE to the Pex11-

Amph-F peptide promoted a-helix formation, albeit to a

lower extent than the WT peptide, and reached a maximum

in 60% TFE (Figure 2E). In contrast, the presence of two

proline residues in the Pex11-Amph-P peptide completely

abolished the ability of the peptide to form an a-helix, even

in 60% TFE (Figure 2F).

Subsequently, the mutant peptides were analysed for their

membrane binding and remodelling activity. When incubated

Figure 3 The Pex11-Amph peptide tubulates SUVs of lipid composition similar to peroxisomal membranes. Electron micrographs of SUVs
following incubation with the Pex11-Amph peptide. The PC, PC/PE and PC/PE/PS/PI/CL liposomes do not form any elongated structures in the
absence of Pex11-Amph (A–C). Also, addition of the Pex11-Amph peptide to SUVs consisting of PC (D) or PC/PE (E) did not alter the shape of
these vesicles. Addition of the Pex11-Amph peptide resulted in extensive tubulation of vesicles that had a phospholipid content resembling that
of the peroxisomal membrane (F). Mutant peptides Pex11-Amph-F (G–I) and Pex11-Amph-P (J–L) were unable to tubulate both neutral and
negatively charged vesicles. The bars represent 500 nm.

Pex11-induced membrane curvature
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in the presence of neutral vesicles, only a minor portion of the

Pex11-Amph-F peptide co-sedimented with these vesicles.

Similar data were obtained for SUVs mimicking the phos-

pholipid composition of peroxisomal membranes. The

Pex11-Amph-P peptide was unable to interact with all types

of membranes tested (Figure 2D). Addition of increasing

amounts of either the Pex11-Amph-F (Supplementary

Figure S1A) or the Pex11-Amph-P peptide (Supplementary

Figure S1B) did not alter the turbidity of the liposome

suspension.

Both mutant peptides were subsequently analysed by

electron microscopy for their tubule-forming activity.

Incubation of SUVs with the mutant peptides Pex11-Amph-

F (Figure 3G–I) and Pex11-Amph-P (Figure 3J–L) had

no effect on the shape of the vesicles, implicating that

these mutations abolished the tubulating activity of the

Pex11-Amph.

To further confirm the membrane remodelling activity of

Pex11-Amph, a gain-of-function mutant peptide was designed

(e-Pex11-Amph). In this mutant, peptide 2 residues that form

the hydrophobic side of the helix were changed to trypto-

phanes (I69W, A83W) (Figure 4A). The obtained peptide

was predicted to form an amphipathic a-helix with the

membrane-facing interface occupied by bulkier hydrophobic

residues, which could lead to increased tubulating activity

(Masuda et al, 2006). The secondary structure of the e-Pex11-

Amph peptide was analysed using CD spectroscopy. Similarly

to the Pex11-Amph, the e-Pex11-Amph mutant peptide was

unfolded in phosphate buffer and formed an a-helix after

addition of TFE (Supplementary Figure S2A), suggesting that

introduction of the mutation has not altered the secondary

structure of the peptide. Next, the membrane remodelling

activity of the e-Pex11-Amph peptide was analysed with

electron microscopy. Addition of the e-Pex11-Amph peptide

to liposomes with a phospholipid composition resembling the

peroxisomal membrane leads to extensive tubulation of

vesicles (Figure 4B). Apart from tubules similar to the ones

observed for the Pex11-Amph peptide (40–50 nm in dia-

meter), tubules with much smaller diameter (10–15 nm)

were frequently observed after incubation of the e-Pex11-

Amph peptide with SUV’s (Figure 4B and C). The mutant

peptide e-Pex11-Amph was also able to induce the formation

of multiple tubules from a single liposome (Figure 4C).

Moreover, the e-Pex11-Amph-induced tubules of smaller

diameter were often found in network-like clusters

(Supplementary Figure S3).

These data imply that the presence of the a-helix as well

as conservation of its amphipathic nature are crucial for

Figure 4 The membrane remodelling activity of different Pex11-Amph peptides. (A) Superimposition of a 3D model of ideal a-helices of Pex11-
Amph (red) and the e-Pex11-Amph mutant (green) with marked mutations. The mutant peptide e-Pex11-Amph contains bulkier tryptophane
residues on the hydrophobic interface of the amphipathic helix. (B) Electron micrographs of SUVs of a phospholipid content resembling
peroxisomal membranes following incubation with the e-Pex11-Amph peptide. Besides typical tubules observed for Pex11-Amph, low diameter
tubules could often be observed (black arrow). (C) The e-Pex11-Amph peptide also induces formation of multiple low diameter tubules
developing from single liposomes (black arrows). (D) Helical wheel representation of the region comprising the Pex11-Amph from S. cerevisiae
(residues 58–75 of S.c.Pex11) showing the hydrophobic (yellow) and polar, positively charged (blue) interfaces of the helix. (E) Electron
micrographs of PC/PE/PS/PI/CL SUVs following incubation with Sc-Pex11-Amph peptide showing extensive tubulation of liposomes.
(F) Helical wheel representation of the Pex11-Amph from H. polymorpha (residues 62–79 of Hp-Pex11) revealing the amphipathic properties
of the a-helix with a charged polar surface similar to the Pex11-Amph motifs from P. chrysogenum and S. cerevisiae. (G) Incubation of Hp-Pex11-
Amph with liposomes with phospholipid content resembling that of the peroxisomal membrane causes efficient tubulation of vesicles.
(H) Representation of Pex11-Amph from H. sapiens (residues 58–75 of Hs-Pex11a) in the helical wheel mode shows the amphipathic properties
of this motif. In contrast to fungal Pex11-Amph, the corresponding motif in human Pex11a contains a polar interface that is less enriched in
basic amino acids. (I) Electron micrograph of PC/PE/PS/PI/CL liposomes after addition of the Hs-Pex11-Amph peptide showing that the
amphipathic helix of human Pex11a is active in vesicle tubulation. The observed tubules were usually shorter than for other Pex11-Amph
peptides. Scale bars represent 100 nm.
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Pex11-Amph function and suggest that insertion of the

hydrophobic surface of Pex11-Amph into the membrane

may be responsible for the observed tubulating activity.

The function of Pex11-Amph is conserved among

species

To study whether the membrane remodelling activity of

Pex11-Amph is evolutionary conserved, peptides comprising

the identified N-terminal amphipathic helices of Pex11 from

Saccharomyces cerevisiae, Hansenula polymorpha and

Homo sapiens (see Figure 1A; Supplementary Figure S4)

were synthesized. Similarly to P. chrysogenum Pex11-Amph,

amphipathic a-helices from both yeast species contain polar

interfaces enriched in basic residues (Figure 4D and F). In

contrast, the hydrophilic side of the N-terminal amphipathic

helix of human Pex11a is mainly composed of polar,

uncharged residues (Figure 4H). The secondary structure of

the peptides containing Pex11-Amph motifs from different

species was analysed by CD spectroscopy. All three peptides

were unfolded in phosphate buffer and efficiently formed

a-helical structures after addition of TFE, reaching maxima

at around 30–40% TFE (Supplementary Figure S2B–D). Next,

the membrane remodelling activity of the Pex11-Amph

peptides was tested with electron microscopy using lipo-

somes with a phospholipid content resembling peroxisomal

membranes. All three peptides efficiently tubulated vesicles.

However, in comparison with the long tubules formed by the

Pex11-Amph peptides from P. chrysogenum, S. cerevisiae and

H. polymorpha (Figures 3F, 4E and G), tubules induced

by Pex11-Amph from H. sapiens were generally shorter

(Figure 4I).

These data suggest that the membrane remodelling activity

of the N-terminal amphipathic helix of Pex11 proteins is

conserved from yeast to human.

The soluble N-terminal domain of Pex11 is active in

membrane remodelling

We next tested whether the N-terminal amphipathic helix of

P. chrysogenum Pex11 also tubulates vesicles in the context of

the entire soluble N-terminal domain of the protein (Pex11N).

All Pex11 proteins are predicted to contain an N-terminal

domain facing the cytosol and a C-terminal region containing

two transmembrane spans (Anton et al, 2000) (cf.

Supplementary Figure S5A). To this purpose, we produced

the first 97 amino acids of P. chrysogenum Pex11 with a

C-terminal His-tag in Escherichia coli M15. Western blotting

using a-His-tag antibodies revealed that the protein was

properly synthesized (indicated as a band of approximately

12 kDa) and absent in the lysate of the empty host strain

(Figure 5A and B).

Addition of the cell lysate of the E. coli strain producing

Pex11N to liposomes with a phospholipid content resembling

peroxisomal membranes resulted in vesicle tubulation

(Figure 5C). This was not observed when a lysate of the

empty E. coli strain (M15) was used (Figure 5D).

To further confirm that the tubulation activity was due to

Pex11N, we prepared protein fractions highly enriched in

Pex11N by affinity and ion exchange chromatography

Figure 5 Membrane remodelling activity of the N-terminal domain of P. chrysogenum Pex11. Coomassie brilliant blue stained SDS–PAA gel
(A) and western blot decorated with a-His-tag antibodies (B) of bacterial lysates prepared from E. coli M15 cells producing Pex11N
(M15þPex11N) or the empty host (M15). The western blot shows the presence of a protein band of approximately 12 kDa, which represents
Pex11N. Equal amounts of protein were loaded per lane. Electron micrograph of SUVs with a phospholipid content resembling peroxisomal
membranes incubated with the bacterial lysate containing Pex11N (M15 þ Pex11N; C) showing extensive tubulation of liposomes. Tubulation
was not observed when the control lysate prepared from the empty M15 host was used (D). Coomassie brilliant blue stained gel (E) and the
corresponding western blot decorated with a-His antibodies (F) showing the protein fraction enriched in Pex11N (Pex11N) and the
corresponding control fraction obtained from the empty M15 host (M15cp). Pex11N is detected as a band of approximately 12 kDa both on
the Coomassie stained gel and on the western blot. Equal amounts of proteins were loaded per lane. Electron micrographs of peroxisome-like
SUVs transformed into tubules after addition of Pex11N protein (G). In the control sample (H; M15cp), liposome tubulation was never
observed. The scale bars represent 100 nm.
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(Figure 5E and F). As a control, the corresponding fractions

obtained from the empty E. coli M15 lysate were used.

Western blotting using a-His-tag antibodies confirmed the

presence of the 12-kDa band in the purified fraction, which

was absent in the control (Figure 5E and F). As shown in

Figure 5G and H, the Pex11N fraction, but not the control,

caused extensive tubulation of liposomes. These data imply

that Pex11-Amph also functions in vesicle tubulation in the

context of the entire soluble domain of Pex11.

The amphipathic helix of Pex11 is responsible for

organelle tubulation during peroxisome fission in vivo

The role of the Pex11-Amph region in Pex11-induced mem-

brane deformation was analysed in vivo using the methylo-

trophic yeast H. polymorpha as a model organism. In this

analysis, we took advantage of the fact that in H. polymorpha

dnm1 cells, long peroxisomal extensions are formed that may

protrude into the bud, but are not separated from the mother

organelle due to the absence of Dnm1 (Nagotu et al, 2008).

Figure 6 The Pex11-Amph region is responsible for Pex11-mediated peroxisome tubulation during organelle fission. (A) Schematic drawing of
the yeast fission model used in this study. In dividing H. polymorpha cells lacking the dynamin-related protein Dnm1, actual fission of
peroxisomes is blocked. In those cells, an intermediate state in peroxisome proliferation, namely a peroxisomal elongation extending from the
mother cell into the bud, is observed. Subsequent deletion of PEX11 in H. polymorpha dnm1 cells disturbs the formation of peroxisomal
extensions, but this can be functionally complemented by (P. chrysogenum) PEX11. (B) H. polymorpha dnm1 pex11 cells grown on methanol-
containing media usually contain a single, large peroxisome (labelled with DsRedKSKL). Extensions to the bud are not formed. (C) Expression
of WT P. chrysogenum PEX11KGFP in H. polymorpha dnm1 pex11 cells restores the formation of peroxisomal extensions. Pex11KGFP is
localized on the peroxisomal membrane and accumulates at the basis of the peroxisomal extension marked by DsRedKSKL. Also, PcPex11-
FKGFP (D) and PcPex11-PKGFP (E) localize to the peroxisome membrane in H. polymorpha dnm1 pex11 cells. However, in these cells, the
formation of peroxisomal extensions is not restored. (F–J) The Pex11-Amph is crucial for proliferation of peroxisomes. P. chrysogenum
PEX11KGFP and mutants P. chrysogenum PEX11-FKGFP or PEX11-PKGFP were introduced into H. polymorpha pex11 cells producing DsRedKSKL
to mark peroxisomes. For quantitative analysis of peroxisome numbers, two independent cultures were grown on methanol-containing media
and the number of fluorescent spots per cell was counted in 150 cells each. H. polymorpha pex11 cells contain usually a single enlarged
peroxisome per cell, but a number of peroxisome-deficient cells can be also observed (average number per cell 0.76; F, G). Expression of P.
chrysogenum PEX11KGFP in H. polymorpha pex11 cells causes a significant increase in peroxisome numbers, as multiple organelles can be
observed (Student’s t-test: P¼ 0.0023; average 1.58) (F, H). Upon expression of either of the mutant genes P. chrysogenum PEX11-FKGFP (I) or
PEX11-PKGFP (J) in H. polymorpha pex11 cells, the number of organelles was similar to that in the PEX11 deletion strain (averages 0.71 and
0.70, respectively) and significantly different from H. polymorpha pex11 cells producing WT P. chrysogenum PEX11KGFP (Student’s t-test:
P¼ 0.0015 and 0.0037, respectively). Bars in (F) represent SEM. The bars in B–E and G–J represent 1 mm.
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The formation of these extensions is Pex11 dependent as they

are not formed in H. polymorpha dnm1 pex11 double mutant

cells that usually contain a single, enlarged peroxisome per

cell (Figure 6A and B). The observation that production of

P. chrysogenum Pex11 stimulates proliferation of peroxisomes

in H. polymorpha (Kiel et al, 2005) fully validates the use of

H. polymorpha as a model system to study the significance of

Pex11-Amph in Pex11-induced peroxisome membrane remo-

delling. To this end, we expressed P. chrysogenum PEX11KGFP

under control of the inducible H. polymorpha amine oxidase

promoter in H. polymorpha dnm1 pex11 cells, which also

produced DsRedKSKL to mark peroxisomes. Fluorescence

microscopy analysis demonstrated that production of the

fusion protein resulted in the formation of peroxisome

extensions akin to those observed in H. polymorpha dnm1

cells (Figure 6C). Furthermore, P. chrysogenum Pex11KGFP

accumulated at the site of extension formation, which is in

agreement with the localization data of H. polymorpha Pex11

(Nagotu et al, 2008) (Figure 6C). Subsequently, we intro-

duced point mutations in the amphipathic helix of

PcPex11KGFP at the same positions as in the mutant peptides

(see above), resulting in the mutant proteins PcPex11-FKGFP

(with mutations I69E, I72E and F75E) and PcPex11-PKGFP

(with mutations M70P and E77P). The mutant genes were

introduced in H. polymorpha dnm1 pex11 cells and the

resulting transformants analysed by fluorescence microscopy.

The data (Figure 6D and E) indicate that both mutant proteins

normally localized to the peroxisomal membrane. However,

the formation of peroxisome extensions was completely

impaired.

The role of the Pex11-Amph motif was also tested in

H. polymorpha pex11 cells, which still contained Dnm1. In

these cells, the number of peroxisomes is strongly reduced as

compared with wild type (Figure 6F and G) (Krikken et al,

2009). First, we introduced P. chrysogenum PEX11KGFP under

control of the inducible H. polymorpha amine oxidase pro-

moter in H. polymorpha pex11 cells, producing DsRedKSKL.

Fluorescence microscopy revealed that expression of P. chry-

sogenum PEX11KGFP in this strain resulted in an increase in

peroxisome numbers compared with pex11 control cells

(Figure 6F and H). Next, we introduced the mutant proteins

PcPex11-FKGFP and PcPex11-PKGFP in H. polymorpha pex11.

Production of both mutant proteins did not result in increas-

ing peroxisome numbers (Figure 6F, I and J).

These data imply that the Pex11-Amph region is important

for peroxisome proliferation in vivo.

Discussion

In this paper, we demonstrate that Pex11 proteins contain a

conserved amphipathic helix at the N-terminus (tentatively

termed Pex11-Amph) that interacts with membranes and is

capable of mediating membrane curvature/elongation, in

particular when using vesicles of a phospholipid composition

resembling that of peroxisomal membranes. A characteristic

feature of these membranes is their negative charge. Effective

binding of the Pex11-Amph region to these negatively charged

membranes is likely related to the fact that the Pex11-Amph

contains positive charges on the polar surface of the helix.

The finding that the interaction of the Pex11-Amph with these

vesicles resulted in changes in vesicle shape is consistent

with the observed increased turbidity of the samples after

peptide supplementation. The Pex11-Amph peptide was un-

able to remodel liposomes consisting solely of PC and PC/PE

probably because of the reduced affinity of the positive polar

face of the peptide for neutral membranes. Formation of long

tubules was shown previously for other membrane binding

and bending amphipathic helices, such as those from

clathrin, Bin-1, the viral protein Tip and artificial peptides

using liposomes with a lipid composition resembling Golgi

membranes (Lee et al, 2001; Ford et al, 2002; Low et al, 2008;

Min et al, 2008).

Pex11 proteins are major factors involved in peroxisome

proliferation in all species studied thus far. Current models

indicate that Pex11 proteins function at the initial stages of

peroxisome fission, causing changes in the organelle shape

(Nagotu et al, 2010). We show that the Pex11-Amph regions

from the yeast species S. cerevisiae and H. polymorpha, from

the filamentous fungus P. chrysogenum as well as from

H. sapiens, can efficiently induce membrane curvature.

This implies that the membrane remodelling activity of

Pex11-Amph is evolutionary conserved.

In vivo membranes undergo continuous remodelling

events, often accompanied by temporary stabilization of

specific shapes. Many cellular processes rely on changes in

the shape of the membrane. Moreover, the unique shape of

organelles like the ER is maintained by a complex interplay

between membrane interacting proteins and organelle mem-

branes (Shibata et al, 2009). One of the mechanisms to

induce membrane curvature is insertion of an amphipathic

helix into one leaflet of the lipid bilayer, causing membrane

asymmetry and resulting in membrane bending (Campelo

et al, 2008). Among the proteins that utilize this mechanism

are N-BAR domain-containing proteins. These proteins use

an N-terminal amphipathic a-helix to induce membrane

curvature during endocytosis (Dawson et al, 2006; Gallop

et al, 2006). Membrane curvature is further stabilized by

interaction with the banana-shaped BAR domains (Low et al,

2008; Yin et al, 2009). Recently, Bif-1, an N-BAR domain

protein, was proposed to be responsible for shape regulation

of the autophagosomal membrane during autophagy

(Takahashi et al, 2009). Insertion of an amphipathic helix is

also used by the ENTH domain-containing protein epsin to

bend membranes during the initial steps of clathrin-coated

vesicle formation during endocytosis (Ford et al, 2002;

Kweon et al, 2006). Moreover, the small GTPases Arf and

Sar1 utilize the same mechanism to induce membrane cur-

vature during COPI and COPII vesicular transport (Lee et al,

2005; Krauss et al, 2008; Lundmark et al, 2008).

The mechanism by which Pex11-Amph remodels the mem-

branes was analysed using mutant peptides. A Pex11-Amph-

F peptide with a reduced hydrophobic surface was unable to

efficiently bind and tubulate liposomes, which is in line with

previous data reported for mutant epsin proteins (Ford et al,

2002). Moreover, the a-helical structure appears to be a

prerequisite for the binding and bending activity of the

Pex11-Amph peptide, as insertion of prolines at key positions

in the peptide prevented membrane deformation. Introduct-

ion of two bulkier tryptophane residues into the hydrophobic

interface of Pex11-Amph resulted in increased tubulating

activity and the formation of tubules with a smaller diameter.

Together, these data suggest that the conserved amphipathic

a-helical domain at the N-terminus of P. chrysogenum Pex11

remodels membranes using a mechanism resembling that of
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amphipathic helices in other proteins. In such proteins, often

additional domains are present that stabilize membrane

curvature or interact with scaffolding proteins. Taking this

into account, it is tempting to speculate that other regions

of Pex11 might not only be required to determine the sub-

cellular location of the protein, but also have a function in

membrane remodelling or, alternatively, other proteins may

be involved.

In line with our in vitro data, we observed that the same

mutations in the Pex11-Amph peptides that affect the tubula-

tion activity of this region affected peroxisome proliferation

in vivo when introduced in full-length Pex11 (Figure 5F

and J). Although we cannot fully exclude that our in vivo

data are due to an effect of these mutations on protein–

protein interactions or protein folding, this is very unlikely

given the conserved tubulation properties of this region from

yeast to humans.

Pex11 has a crucial function during proliferation of peroxi-

somes. The tubulation event is considered to represent the

initial event in peroxisome multiplication (Thoms and

Erdmann, 2005), a step that is followed by fission (Nagotu

et al, 2008). Our data suggest that the organelle elongation

step is crucially dependent on Pex11 and that its membrane

remodelling activity is related to the N-terminal amphipathic

helix. Deletion of the N-terminal 84 residues of human

Pex11b, which comprises the conserved Pex11-Amph motif,

abolished its peroxisome proliferating activity (Kobayashi

et al, 2007), which is in line with our findings, showing

that the N-terminal domain of P. chrysogenum Pex11 is active

in membrane remodelling. Moreover, the N-terminus of

Pex11b was shown to be involved in oligomerization of

Pex11 proteins (Kobayashi et al, 2007). It has been suggested

that oligomeric forms of Pex11 may not be active in peroxi-

some proliferation (Marshall et al, 1996). Thus, it is tempting

to speculate that in oligomeric Pex11 protein complexes, the

Pex11-Amph region cannot interact with the membrane

(Supplementary Figure S5A). In this scenario, a Pex11

activation step is required that includes dissociation of

Pex11 oligomers. This would be followed by insertion of the

amphipathic helices of the released monomers into the

peroxisome membrane, resulting in initial membrane defor-

mation (Supplementary Figure S5B). In addition to this, it

was recently shown that curved membranes contain defects

in phospholipid packaging and that the exposed hydrophobic

parts of the membrane are efficiently recruiting amphipathic

helices (Hatzakis et al, 2009). Additionally, membrane cur-

vature was also suggested to be the driving force for segrega-

tion of lipids and proteins and lead to formation of specific

membrane domains (Huang et al, 2006; Vogel and Sheetz,

2006; Reynwar et al, 2007; Mukhopadhyay et al, 2008). Thus,

possible initiation of the membrane curvature by Pex11-

Amph will be followed by a massive concentration of Pex11

proteins in this region, a process that is dependent on the

insertion of the amphipathic helix (Supplementary Figure

S5C). Such a scenario might explain our previous observation

that Pex11 assembles at the site of the peroxisomal extension

in H. polymorpha dnm1 cells (Nagotu et al, 2008; cf.

Figure 5C) and suggests that the formation of Pex11-enriched

domains is required to trigger tubulation of the organelle.

Materials and methods

Strains and growth conditions
The H. polymorpha strains used in this study are listed in Table I.
H. polymorpha cells were grown on YPD or mineral media as
described before (Nagotu et al, 2008). E. coli DH5a was used for
cloning purposes. E. coli M15 cells (Qiagen) were used for
production of heterologous protein. Cells were grown at 371C on
LB medium supplemented with the appropriate antibiotics.

Molecular biology techniques
Plasmids and oligonucleotides used in this study are listed in
Supplementary Tables I and II. Recombinant DNA manipulations
and transformation of H. polymorpha were performed as described
before (Sambrook and Maniatis, 1989) (Faber et al, 1992, 1994). All
PCR fragments were sequenced (Service XS). In silico analysis of
DNA sequences and construction of vector maps was carried out
using Clone Manager 5 software (Scientific and Educational
Software, Durham).

Table I Hansenula polymorpha strains used in this study

Strain Description Reference

dnm1 pex11 DsRedKSKL Deletion of DNM1 and PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL Nagotu et al (2008)
dnm1 pex11
DsRedKSKL+PcPex11KGFP

Deletion of DNM1 and PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL
and integration of plasmid LMOPPcPex11 containing the P. chrysogenum
PEX11KGFP fusion gene

This study

dnm1 pex11
DsRedKSKL+PcPex11-FKGFP

Deletion of DNM1 and PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL
and integration of plasmid LMOPPcPex11-F containing the mutant P. chrysogenum
PEX11-FKGFP fusion gene

This study

dnm1 pex11
DsRedKSKL+PcPex11-PKGFP

Deletion of DNM1 and PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL
and integration of plasmid LMOPPcPex11-P containing the mutant P. chrysogenum
PEX11-PKGFP fusion gene

This study

pex11 Deletion of PEX11 Krikken et al (2009)
pex11 DsRedKSKL Deletion of PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL This study
pex11 DsRedKSKL+PcPex11KGFP Deletion of PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL and

integration of plasmid LMOPPcPex11 containing the P. chrysogenum
PEX11KGFP fusion gene

This study

pex11 DsRedKSKL+PcPex11-FKGFP Deletion of PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL and
integration of plasmid LMOPPcPex11-F containing the mutant
P. chrysogenum PEX11-FKGFP fusion gene

This study

pex11 DsRedKSKL+PcPex11-PKGFP Deletion of PEX11 with integration of plasmid pHIPZ4-DsRed-T1-SKL and
integration of plasmid LMOPPcPex11-P containing the mutant
P. chrysogenum PEX11-PKGFP fusion gene

This study
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In silico analysis
Multiple sequence alignments of protein sequences were prepared
using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/) and
visualized with GeneDoc (http://www.psc.edu/biomed/genedoc).
Secondary structure prediction was carried out using the DSC program
available on the PAT server (http://abcis.cbs.cnrs.fr/htbin-post/pat/
new/wpat.pl). The hydrophobic moment of the sequence of PcPex11
was calculated using the EMBOSS server (http://mobyle.pasteur.fr/
cgi-bin/portal.py?form¼hmoment). The helical wheel representation
of the Pex11-Amph region was prepared using Java Applet (http://
cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html). Representa-
tions of the Pex11-Amph, Pex11-Amph-F and e-Pex11-Amph sequences
as 3D models of a-helices were prepared using UCSF Chimera software
(Pettersen et al, 2004).

Construction of plasmid LMOPPcPex11
Plasmid LMOPPcPex11 encoding full-length P. chrysogenum Pex11
(PcPex11) fused C-terminally to eGFP was prepared by Multisite
Gateway technology (Invitrogen) as follows: first, by PCR a 778-bp
DNA fragment comprising the P. chrysogenum PEX11 coding
sequence lacking a stop codon was amplified with primers
BB-JK001 and BB-JK002 using P. chrysogenum PEX11 cDNA (Kiel
et al, 2000) as a template. The fragment was recombined with
vector pDONR221, resulting in plasmid pBBK-002. Subsequently,
the plasmids pDONR-P4-P1r-PAMO, pBBK-002, pDONR-P2r-P3-eGFP-
TAMO and pDEST-R4-R3-NAT were recombined resulting in plasmid
LMOPPcPex11. This plasmid and mutant plasmids LMOPPcPex11F
and LMOPPcPex11P were linearized with AdeI and transformed into
H. polymorpha dnm1 pex11 DsRedKSKLcells. Transformants were
selected based on their ability to grow on medium containing
nourseothricin. Correct integration was analysed by colony PCR.
For construction of the H. polymorpha pex11 DsRedKSKL strain and
H. polymorpha pex11 DsRedKSKL strains expressing PcPex11KGFP
or either of the mutants PcPex11-FKGFP and PcPex11-PKGFP,
plasmids pHIPZ4-DsRed-T1-SKL (linearized with NotI) and either
LMOPPcPex11, LMOPPcPex11F or LMOPPcPex11P (all linearized
with AdeI) were co-transformed into H. polymorpha pex11 cells.
Transformants were selected based on their ability to grow on
medium containing nourseothricin and zeocin. Production of
DsRedKSKL and PcPex11KGFP was confirmed by fluorescence
microscopy.

Site-directed mutagenesis of Pex11
For introduction of targeted mutations in PcPex11, the QuickChange
Lightning Site-Directed Mutagenesis kit (Stratagene) was used. To
construct plasmids producing mutant forms of PcPex11, PcPex11-F
(with mutations I69E, I72E and F75E) and PcPex11-P (with
mutations M70P and E77P), the LMOPPcPex11 vector was used as
a template together with the mutagenic oligonucleotides LMOp062,
LMOp063, LMOp064 and LMOp065, generating plasmids LMOPPc-
Pex11F and LMOPPcPex11P, respectively. Correctness of introduced
mutations was confirmed by sequencing.

Peptide design and synthesis
The peptide Pex11-Amph (YNAVKKQFGTTRKIMRIGKFLEHLK-
AAA), corresponding to residues 56–83 of PcPex11, the mutant
peptides Pex11-Amph-F (YNAVKKQFGTTRKEMREGKELEHLKAA),
Pex11-Amph-P (YNAVKKQFGTTRKIPRIGKFLPHLKAA), e-Pex11-
Amph (YNAVKKQFGTTRKWMRIGKFLEHLKAAW), S. cerevisiae
Pex11-Amph (residues 49–78: ARQLQAQFTTVRKFLRFLKPLNHLQA
AAKFY), H. polymorpha Pex11-Amph (residues 54–86: YLVRRLQDL
FTLSRKPLRALKPLKHLKALSVTV) and H. sapiens Pex11-Amph
(residues 44–75 of Pex11a: LKKLESSVSTGRKWFRLGNVVHAIQAT
EQSI) were synthesized by Pepscan. The purchased peptides were
HPLC purified and quality was assessed with LC/MS. To prepare
stock solutions, peptides were dissolved in Liposome buffer (20 mM
HEPES, 150 mM NaCl, pH 7.4). The concentrations of peptides were
determined using absorbance of UV light.

Production and purification of Pex11N
The DNA sequence encoding the first 97 amino acids of
P. chrysogenum Pex11 was amplified using the LMOPPcPex11
plasmid as a template and primers LMOp066 and LMOp067
containing NcoI and BglII sites, respectively. The obtained PCR
product and expression vector pQE60 (Qiagen) were digested with
NcoI and BglII and ligated, resulting in plasmid pQE60-Pex11N,
encoding the N-terminal region of P. chrysogenum Pex11 fused to a

His-tag at the C-terminus (Pex11N). Correctness of the plasmid was
confirmed by sequencing.

E. coli M15 cells containing expression plasmid pQE60-Pex11N
and empty M15 host cells were grown in LB medium at 371C,
200 r.p.m. to an optical density of 1 and then induced with 1 mM
IPTG followed by 4 h incubation at 301C, 200 r.p.m. Cells were
harvested by centrifugation at 6000 r.p.m., 10 min, 41C. Cell pellets
were suspended in lysis buffer A (50 mM Tris, 8M urea, pH 8.0) or
lysis buffer B (100 mM NaH2PO4, 10 mM Tris, 8M urea, pH 8.0) and
disrupted by two cycles of stirring with a magnetic stirrer and
French press. The soluble fraction was obtained by centrifugation
for 1 h at 121C at 20000 g. Cell extracts in lysis buffer A were used
for vesicle tubulation assays. Extracts in buffer B were used for
further Pex11N purification.

Lysates in buffer B were incubated with Ni-NTA resin (QIAGEN)
for 1 h. The resin was washed with buffer B and proteins were
eluted with elution buffer (100 mM NaH2PO4, 10 mM Tris, 8M urea,
pH 4.5). The fractions obtained were analysed by SDS–PAGE and
western blotting using a-His-tag antibodies (Santa Cruz Biotechnol-
ogy). Fractions enriched in Pex11N were pooled, concentrated and
loaded on Mono-Q resin (Pharmacia Biotech) equilibrated in
loading buffer (50 mM Tris, 8M urea, pH 8.0). Bound proteins were
eluted with a linear gradient of elution buffer (50 mM Tris, 8M urea,
2M NaCl, pH 8.0). Fractions enriched in Pex11N were concentrated
using Amicon Ultra-4 and Microcon YM-3 centrifugation devices
(Milipore).

Preparation of SUVs
SUVs were prepared using chloroform solutions of phosphatidyl-
choline (PC, symmetric, 18:1), phosphatidylethanolamine (PE,
symmetric, 18:1), phosphatidylserine (PS, symmetric, 18:1), cardi-
olipin (CL, symmetric, 18:1) and phospatidylinositol (PI, natural
mixture from bovine liver) purchased from Avanti Polar Lipids Inc.
To prepare liposomes of desired composition (Supplementary Table
III), the required volumes of phospholipid solutions were mixed to a
final lipid concentration of 0.8 mg/ml and then the organic solvent
was evaporated using a rotary evaporator. The obtained thin lipid
film was hydrated in Liposome buffer (20 mM HEPES, 150 mM
NaCl, pH 7.4) for 3 h at room temperature. To obtain unilamellar
vesicles of the desired diameter, the liposome suspension was
extruded 11 times through polycarbonate filters (Avestin) with a
100-nm pore size.

Peptide-binding assay
SUVs were mixed with peptides in Liposome buffer (250 ml) to a
final concentration of 0.65 mg/ml and 50 mM, respectively. After
incubation for 20 min at room temperature, SUVs were pelleted by
ultracentrifugation (20 min, 211C, 100 000 g) and the pellet was
resuspended in 25 ml of liposome buffer. The peptides in the
supernatant and pellet (equal volumes) were subsequently sub-
jected to Tricine SDS–PAGE using 15% acrylamide gels and
visualized with silver staining using a Silver Stain Plus kit (Bio-rad).

Turbidimetric measurements of the peptide–SUV interaction
SUV solutions (0.4 mg/ml) were titrated with peptides (0 to 100 mM)
in Liposome buffer. After each addition of peptide and vigorous
mixing the absorbance at 400 nm was recorded for 5 min at room
temperature using a Perkin Elmer Lambda 35 spectrophotometer.
The obtained absorbance values were converted to transmittance,
using the Lambert–Beer equation: A¼ 2–log10%T and changes in
transmittance were plotted against the peptide concentration.

Electron microscopy
Peptides, bacterial lysates or purified protein fractions were
incubated with SUVs in liposome buffer (20 mM HEPES, 150 mM
NaCl, pH 7.4) for 15 min at room temperature before negative
staining. The mixtures were subsequently placed on carbon-coated
grids and stained with 0.5% uranyl acetate and examined by
electron microscopy. Electron microscopy was performed using a
CM12 TEM microscope (Philips).

For the analysis of peptides, SUVs were used at a final
concentration of 0.4 mg/ml, with a peptide concentration of
100 mM. In experiments using bacterial lysates, the concentration
of SUVs was 0.2 mg/ml, the protein concentration 0.02 mg/ml and a
final urea concentration of 32 mM. Protein fractions containing
Pex11N or the corresponding fractions obtained from cell extracts of
the empty M15 host were added to SUVs (0.2 mg/ml) to a final
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protein concentration of 0.2 mg/ml and a final urea concentration
of 0.8 M.

Fluorescence microscopy
Wide-field fluorescence microscopy was performed using a Zeiss
Axio Observer Z1 fluorescence microscope (Zeiss). Images were
taken using EC-Plan-Neofluar 100� /1.3 objective and coolsnap
HQ2 Camera (Roper scientific Inc). GFP signal was visualized with
a 470/40-nm bandpass excitation filter, a 495-nm dichromatic
mirror and a 525/50-nm bandpass emission filter. The fluorescence
of DsRed was visualized with a 545/25-nm bandpass excitation
filter, a 570-nm dichromatic mirror and a 605/70-nm bandpass
emission filter. Image analysis was carried out using ImageJ (http://
rsb.info.nih.gov/nih-image/) and Adobe Photoshop. For quantifica-
tion of peroxisome numbers 150 cells from two independent
cultures for each strain were analysed. Statistical data analysis was
performed using Statistica 8.0 software.

CD spectroscopy
CD measurements were performed on a Jasco J-810 spectro-
polarimeter. Peptides were dissolved in 10 mM potassium phos-
phate, 150 mM NaCl, pH 7.3. Spectra were recorded between 200
and 260 nm in a 2-mm cuvette with a peptide concentration of
10 mM and TFE concentrations ranging from 0 to 60%. Machine

settings were as follows: 1 nm bandwidth, 1 s response, 0.5 nm data
pitch, 100 nm/min scan speed and cell length of 0.1 cm. All CD data
presented are the averages from three separate measurements.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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