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Enzymes play important roles in catalysing biochemical transaction paths,

acting as logical machines through the morphology of the processes. A key

challenge in elucidating the nature of these systems, and for engineering

manufacturing methods inspired by biochemical reactions, is to attain a com-

prehensive understanding of the stereochemical ground rules of enzymatic

reactions. Here, we present a model of catalysis that can be performed magne-

tically by centimetre-sized passive floating units. The designed system, which

is equipped with permanent magnets only, passively obeys the local causal-

ities imposed by magnetic interactions, albeit it shows a spatial behaviour

and an energy profile analogous to those of biochemical enzymes. In this pro-

cess, the enzyme units trigger physical conformation changes of the target by

levelling out the magnetic potential barrier (activation potential) to a funnel

type and, thus, induce cascading conformation changes of the targeted sub-
strate units reacting in parallel. The inhibitor units, conversely, suppress such

changes by increasing the potential. Because the model is purely mechanical

and established on a physics basis in the absence of turbulence, each perform-

ance can be explained by the morphology of the unit, extending the definition

of catalysis to systems of alternative scales.

1. Introduction
In the biochemical realm, enzymes (E) help substrates (S) yield products (P) by

catalysing the activation potentials of the transition paths [1]. In a typical micro-

scopic view of catalytic reaction E acts on S, configures an enzyme–substrate

complex (ES), induces a conformation change of the substrate (EP) and carries

off with the product, P

E þ S �k1! ES O
k2 EP �k3! E þ P: (1:1)

Albeit an individual molecule involves complex kinematics and is difficult to engin-

eer, each transaction phase can be regarded as a logical operation [2], and the

macroscopic view of the temporal dynamics can be characterized by the corre-

sponding reaction speeds (k1, k2 and k3). While there is a discrepancy between

the microscopic (mechanics) and the macroscopic (chemistry) perspectives, it has

been generally considered that the key to this remarkable achievement lies in the

addressability of individual molecules in representing discrete states, hidden in

the morphology that rules the individual reaction order in a bottom-up manner.

Lately, a process (inspired by chemistry) in which components spon-

taneously organize into complex structures, (self-assembly), has gathered

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.1271&domain=pdf&date_stamp=2015-02-04
mailto:shuheim@csail.mit.edu
http://dx.doi.org/10.1098/rsif.2014.1271
http://dx.doi.org/10.1098/rsif.2014.1271
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141271

2
attention [3]. A typical operation is, as described in chemical

engineering studies, to control a global state of a system con-

sisting of many components by regulating an environmental

agitation, inducing a composition as a product. Such a

synthetic process provides a new perspective for understand-

ing biochemical reactions, and a promising path towards

new manufacturing methods for complex non-molecular

composition engineering (e.g. self-assembling electronic

circuits) [4]. To date, various attempts at creating artificial

self-assembly systems have performed simple aggregation-

based assemblies, characterized by the direct forward reaction.

The major attempts explored in the field can be represented by

a reaction equation in which the components S1 and S2 are

configured into S1S2, i.e. S1 þ S2 ! S1S2: The components

form a lattice structure after interacting mechanically [5],

magnetically [6–10], electrostatically [11,12], via capillary

forces [13–16], hydrophobic/hydrophilic forces [17,18], fluid

dynamics [19] or through configuring circuitry [20–23]. Here-

after, we use the term reaction in a broad sense, including those

obtained mechanically.

In contrast to the capability of assembly, disassembly

or the so-called backward reaction, (S1S2 ! S1 þ S2), has

attracted less attention, although it is critical for reconfigura-

tion processes, catalytic reactions or regrouping components.

These processes regularly combine with external forces to

realize disassembly [24], or change the surrounding

medium to alter the interaction between the components

[25,26]. A unique approach focusing on the asymmetry of a

membrane and its influence on the diffusion speeds of

molecules is found in [27].

The engineering challenge here is to orchestrate an

ordered assembly/disassembly down to individual com-

ponents to globally attain a high yield of products, where

the component has limited capabilities, as the available

physical forces such as the electric, chemical or magnetic

interactions provide limited interaction channels for the

involved parts. Thus, for example, magnetism and capillary

forces support only binary binding (either attraction or repul-

sion). A few notable attempts exist in which the emphases are

placed on the logical responses of the components with

respect to their possibilities of combining with the neighbour

components, performing template replications [28–31], effi-

cient crystallization [32] or exclusive-or (XOR) calculations

[33]. These approaches actively exploit physical ‘states’ of

the components (e.g. S versus P), whereby the two states

are realized by changes in the mechanical and/or magnetic

configuration of the involved components. A state change

(implicitly or explicitly) alters the terrain of the system’s

potential energy and, thus, has the effect of accelerating the

transition from one state to another. However, little reasoning

has been conducted to quantify the cause of a transition, and

proposed explanations have instead been based on

phenomenological descriptions with heuristically designed

components. One of the reasons for this could be that the

presence of environmental agitation in the system compli-

cates these analyses (in other words, these systems are

essentially open to the environment). Then, the amount of

kinetic energy delivered from the environment to a com-

ponent contributing to a transition over time is difficult to

assess, and, thus, the component’s mechanical role is difficult

to evaluate in a continuous parametric space. Beyond these

approaches, we expect one component to function like an

enzyme, that is, to act as a third agent and enable a state
switch of a targeted component (S ! P) using magne-

tic potential energy only, where almost no environmental

agitation is applied (thus, the system is essentially closed).

Here, by demonstrating that a simple enzymatic process,

described by equation (1.1), can be obtained mechanically by

passive magnetic units on the centimetre-scale, we focus on

deriving the mechanical design principle of this chemical reac-

tion and show that the concept of catalysis from chemistry can

be generalized to alternative fields such as engineering. The

proposed model, which consists of water-floating units

equipped with permanent magnets, exhibits behaviours analo-

gous to biological enzymes, and a comparable method of

energy employment that levels out the potential barrier.
2. Design principle of magnetic catalysis
This section provides a theoretical reasoning on how the

magnet motion must be coordinated in space in order to

attain catalytic behaviour. We assume a physical set-up

where magnets with a cylindrical shape slide on a horizontal

plane, guided by physical walls.

2.1. Magnetism
To realize catalytic behaviour with magnets, the trajectories of

the magnets must be designed at each reaction phase, which

requires knowledge of the relationships between different

intermagnet distances. The magnetic potential energy between

two magnets M1 and Mj (treated as dipoles) with magnetic

moments mi and mj ([ R3, i = j [ N) separated by a position

vector rij ([ R3) connecting their centres, is given by

Uij ¼
m0

4pr3
ij

mi �mj � 3
ðmi � rijÞðmj � rijÞ

r2
ij

" #
, (2:1)

where m0 ¼ 4p � 10 2 7 H m21 is the permeability of free

space, and rij ¼ jjrijjj� the magnet diameters.

When the magnets have an axially magnetized cylindrical

shape, placed vertically on a frictionless two-dimensional plane

in either parallel or anti-parallel configurations (the magnet direc-

tions are denoted by N or S in the following figures), they interact

laterally. Assuming that the magnets feature the same magnetic

moment magnitude jjmijj ¼ jjmjjj ¼ m, the potential and

resulting forces are simplified to

Uij ¼ �sij
m0

4p

m2

r3
ij

(2:2)

and

Fij ¼ �
dUij

dr
¼ �sij

3m0

4p

m2

r4
ij

, (2:3)

wheresij¼ 1 if the magnets are anti-parallel, i.e. the two magnets

are attracted along the line that connects them, and sij¼ 21 if

they are parallel, i.e. repelling. We can determine the potential

energy of the system, considering all involved magnets, from

Utotal :¼
X
i,j

Uij: (2:4)

If the magnets are free to move, they will move such that the total

energy is reduced (dUtotal=dr , 0), and, consequently, their rela-

tive distance is reduced (for an attractive configuration). This

behaviour is the basis for designing the motion of the magnets

in this work.
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Figure 1. Incremental design of the enzymatic process. The lateral paths that M1, M2 and M3 follow are shown with green, blue and red lines, respectively.
(a) Sliding motion of magnets which can potentially perform work; i.e. change the physical conformation of the units. (b) Activation potential. The energy profile
of the outwardly wedged paths hinders the sliding motion of the magnets. The necessary conditions on the path distances are shown in orange parentheses.
(c) Proposed magnetic catalysis. A third magnet M3 levels out the activation potential, acting as an enzyme, escorting M2 to overcome the potential barrier.
The distances displayed are labelled in parentheses. The passable region for M3 derived from equation (2.5) is shown in pink. Dotted lines designate the boundaries
of the path region and cannot be paths themselves. (d ) Extension of (c) representing the complete enzymatic action, consisting of five distinctive phases. The
position numbers 1 – 8, coloured in red, represent reaction stages and correspond to the same numbers in figure 2. (Online version in colour.)
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Equations (2.1)–(2.4) hold strictly for rij� the magnet

diameters, and they gradually lose accuracy as rij becomes

comparable to the diameters. However, because our model

mostly needs to take the relative distances of magnets sets

into account, they satisfy our requirements; in equation (2.3),

the magnitudes of magnetic force strength are related to the

relative distances, cancelling out the inaccuracy of their values.

The proposed magnetic catalysis is phenomenologically

described in figure 1a–d, which provides the incremental

design of the paths for the three magnets involved in the

enzymatic behaviour. The horizontal dimension is the reaction

coordinate, and the vertical dimension is the distance between

neighbouring magnets. Note that all the magnets maintain

the same horizontal coordinate positions. The paths are

illustrated as straight lines for intuitive apprehension, even
though the reaction speed along the horizontal axis is non-

linear. This maintains the generality of the path descriptions,

because a curved function can be approximated by a combi-

nation of linear lines. We illustrate the profile of the system’s

potential energy Utotal on top of each transition path. The

state of the system is characterized by the motions of the

involved magnets.
2.2. Sliding motion and conformation change
In figure 1a, if the paths of magnets M1 and M2 (anti-parallel)

converge by a distance x (R1 . R3; x :¼ R1 2 R3 . 0), the

magnets slide owing to the increasing magnetic attraction

force, which, in turn, reduces the relative distance (R2 is not
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listed). The energy release can be used to perform work,

which enables a kinematic reconfiguration.

2.3. Activation potential
The rate of physical convergence of the paths is a regulative

parameter in the design. This is shown in figure 1b, where

the choice of R1 , R2 (y :¼ R2 – R1 . 0) and hence R2 .

R3 create an outward wedged path acting as a ‘threshold’,

which can suppress the sliding motion. Consequently, the

magnets must overcome a potential energy barrier—which

can be interpreted as the magnetically created activation

potential—before the reaction can proceed.

2.4. Catalysis
Figure 1c illustrates the designed magnetic catalysis. The paths

for M1 and M2 are the same as in the two-magnet case dis-

cussed in figure 1b, whereas the introduction of M3 helps the

trapped magnet M2 to overcome the potential barrier and

advance further on the path. When M3 is attracted towards

M2, it can reach a position where the distance to M2 (R5)

becomes shorter than the distance between M1 and M2 (R1).

Once R1 . R5 is satisfied, and the M3– M2 attraction exceeds

that of M1– M2, M2 begins its translation escorted by M3.

Note that, owing to the quick spatial decay of the magne-

tic force, the net force on M2 is always dominated by the

closest distance to any another magnet, and we neglect

the magnetic crosstalk of the non-neighbouring magnets M1

and M3. By designing the distances in the paths as R5 . R6

and R6 . R7, we can ensure that M2 reaches an endpoint

where the distance from M2 to M1 is again closer than to

M3 (R3 , R7). In the end, incorporating all the distance

relations above, we obtain the condition for designing paths

for catalysis

R3 , R7 , R6 , R5 , R1 , R2, (2:5)

which draws the magnitude relations anticlockwise in the

figure, starting from R3. Given R1, R2 and R3, we show the

passable region for M3 in pink, which certifies that as long
as M3 transits in this region, the reaction will proceed. The

opposite happens in figure 1b, where the reaction stops. In

this case, the system proceeds with the reaction implying

that the terrain of Utotal is levelled out (see the mathematical

proof in appendix B). Note that the condition derived in

equation (2.5) holds even if the interaction force depends on

a different power of the distance, when Fi,j / r�X
i,j (X [ N).

2.5. Enzymatic reaction
Figure 1d shows the complete enzymatic reaction, which is

composed of five distinctive phases. Each magnetic reaction

phase can be viewed in correspondence to the three reac-

tion phases, k1, k2 and k3, in equation (1.1). Phase k1 is

when M3 is far away, approaching M2. Phase k2 is further

divided into two subphases, where phase k221 represents

the event when the activation potential is levelled out, and

phase k222 represents the event when the energy is used for

work, i.e. conformation change and distancing M3. From a

mechanical standpoint, phase k221 can be divided into two

subphases, which correspond to the two sectors of the orig-

inal activation potential, i.e. the uphill and downhill

sectors, respectively. Phase k222 is similar to phase k221, in

that all three magnets are moving, except the driving force

is now between M1 and M2. M1 and M2 attract each other,

decreasing the relative distance and performing the confor-

mation change (R3 . R4). Eventually, the distance between

M2 and M3 is sufficiently large to reduce the net magnetic

force on M3 considerably (R7 , R8). Phase k3 is the stage

when M3 is magnetically repelled. In our case, we designed

the physical path of M2 such that M2 flips and changes

polarity (see details in §3).
3. Physical substantiation
3.1. Units
Figure 2a shows an image of the designed units that

implement the three paths described in figure 1d. The red
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path represents the movement of M3 embedded in a circular

unit E called enzyme. Two paths, the green path for M1 and

blue for M2 are mechanically arranged and embedded in

the small SS and the large SL subunit as guiding walls for

the magnets. Together, SS and SL compose the substrate S:
As the motion of the conformation change can be arbitrary,

it is implemented such that SL and SS , which rotate through

a relative angle 908, switch contact facets and in so doing

mechanically simulate a protein’s folding motion, forming a

different configuration (P; product). In addition, expecting

to realize autocatalytic behaviour, we placed another E
encapsulated in SL (this second E is called the docked E in

contrast to the mobile E). The docked E is positioned far

from M2, and, hence, has a small effect on the interactions

of the other magnets; the existence of the docked E is not

necessary for SS and SL to maintain the configuration of S.

3.2. Enzymatic reaction
The behaviour of an enzymatic reaction is illustrated in

figure 2b–d, where the phases k1–k3 comprise distinguish-

able stages represented by the positions of the mobile E
(tagged with positions red-1 to red-8). In brief, a mobile

E approaching from the left triggers a conformation

change of S, releasing the docked E, whereas it itself even-

tually moves away from S after a short contact. More

concretely, the mobile E sits on the long-arc edge of SL,

further rolls along it to a certain position where the distance

between M2 and M3 (R5) becomes shorter than between M1

and M2 (R1; phase k1, positions red-1 to red-3). Note that

the magnets, just as well as E, can reduce the friction with

the side walls by rolling. Then, E drags M2, by continuing

to roll along the edge of SL (phase k221 uphill and downhill,

positions red-3 to red-5), until the distance between M1 and

M2 becomes shorter than that between M2 and M3 (R3 ,

R7). Then, the attraction between M2 and M1 initiates a con-

formation change by sliding along their respective paths,

decreasing the relative distance (phase k222, positions red-6

to red-7). Eventually, M2 falls into a hole and connects to

the bottom of M1 by flipping upside-down, in the process

binding the floors of SL and SS . These longitudinally coupled

M1 and M2 repel the mobile E as well as the docked E from S
(phase k3, position red-8). When the docked E is expelled, it

can subsequently act as a new mobile E: Hence, the

number of mobile E is doubled after a conformation

change, inducing a cascade reaction when multiple SS exist.

The geometry R1–R8 is reflected by the paths in figure 1d,

drawn in a proportional scale for this substantiation.

3.3. Inhibition
Inhibition or at least the partial suppression of a chemical reac-

tion is also a basic biochemical function primitive, realized by

highly specific molecules forming complexes with other mol-

ecules. Such molecules, called inhibitors, often dock to the

binding sites of enzymes via non-covalent bonding, or prohibit

conformational changes of such molecules via steric hindrance.

Inspired by this fact, the inhibition of the conformation change

of a substrate is realized by making the shape of the mobile unit

rectangular, but keeping the same magnetic arrangement as for

E (this new unit is called an inhibitor, I , whose role is described

in figure 2e–g). In contrast to the case of E, the system with I
inhibits a conformation change by hindering the rotational

motion of I : Owing to the angular shape, the mobile I
cannot roll along the edge of SL or it requires separation of

two attracting magnets M2– M3 (thus, the barrier would

indeed be regarded as an activation potential by I ), and

restricts the conformation change by trapping M2 midway in

its path (position yellow-4 in figure 2f ). The docked I is never-

theless released because it is now in a repulsive region, and the

number of mobile I is preserved to continue reactions (see the

change in the attractive region in the electronic supplementary

material, figure S4). Thus, S is magnetically inactivated; it

cannot change its conformation nor attract another mobile E
or I : Note that reactions can proceed in parallel, because E
and I act on S, and vice versa, whereas Es and Is repel each

other, as do the Ss:

3.4. Experimental set-up
All the units, ranging from 7.07 to 55.66 mm in diameter (see

the electronic supplementary material, figure S3 for detailed

dimensions), were designed using a computer-aided design

program (SOLIDWORKS) and then printed with a three-dimen-

sional printer (Dimension BST 768) on acrylonitrile butadiene

styrene1. The employed magnets, M1, M2 and M3, have a

cylindrical shape (� 3.0 � H 3.0 mm), weigh 0.161 g and

are made of nickel-coated neodymium iron boron with a

magnetic flux density of 0.340 T at the middle of the surface

(supermagnete, S-03-03-N). Experiments with multiple units

combined in §4.2 were conducted in a water container of

�400 mm with 10 mm depth of water. Iron discs (�30.0 �
H 3.0 mm) were placed below each S to position and main-

tain the initial two-dimensional coordinates of the Ss: The

experiments with a single conformation change were

recorded by a high-speed camera, and the magnet positions

were tracked using a software (TRACKER).
4. Results
4.1. Conformation change and inhibition
Figure 3 shows snapshots of a conformation change invoked

by a mobile E (figure 3a), and inhibition by a mobile I
(figure 3b). Figure 3a: a mobile E is attracted to S (–0.390 to

–0.133 s; we set t ¼ 0 s when the mobile E is in a contact

with SL), it brings M2 on SL to the sharp bend in the path

(0.095–0.186 s), induces a conformation change (0.333–

0.619 s), and finally bears off from SL (0.910–1.110 s). The aver-

age duration of a conformation change (over 20 trials) was

0.459+0.105 s (s.d.), similar to that of the contact of E to SL
0.456+0.103 s (s.d.). In most cases, at phase k221, M2 moved

faster than E, giving a brief indication of the inertia of E.

Figure 3b: just as for the mobile E in figure 3a, a mobile I ,

which has the same magnet arrangement, is attracted to S
(–0.619 and –0.071 s). When I makes contact with SL, it

attracts M2, but because I itself cannot roll along the edge of

SL, it holds M2 at the midpoint of its path, suppressing a con-

formation change (1.483 s). When this entrapment occurred,

the docked I entered a repulsive region created by M1, M2

and the mobile I , and, thus, was released from SL (2.152 s).

This way, the released I can continue the inhibition process.

Figure 3c displays the transitions of the system’s magnetic

potential energy Utotal, derived by analysing the spatial pos-

itions of the involved magnets (for experimental plots with E
and I ), and by the design in figure 1c supposing that M1– M3

transit coherently (for a theoretical plot without E). We
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version in colour.)
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normalized Utotal by dividing by the respective Utotal at t ¼
–1 s (–1 s was determined arbitrarily, noticing the small

magnetic influence of E and I ). In this way, the difference

in the number of magnets is cancelled out. We show the ver-

tical axis in inverted form for an intuitive understanding

corresponding to figure 1.

Owing to the catalytic effect, the potential energy of E
monotonically decreases, allowing the system to naturally pro-

ceed with reactions without an external energy input, and to

reach a global stable state. By comparing the cases with E
and the theoretically derived case without E, the reduction

in the activation energy is clearly seen (we regard this decrease

as the catalysis attained by E). Inhibition is also clearly shown

in the global stable states (e.g. t ¼ 1 s), because I suppresses the

decrease in the potential energy that E generates. The magni-

tude of the energy drop by I is a mere 6% of that obtained

with E: As discussed, the previously defined reaction phases

can be recognized as distinctive transitions.
4.2. Autocatalysis with multiple units combination
To test the designed system under more general conditions in

a longer run, where multiple unit sets exist in space, we con-

ducted experiments with five E–S sets and I –S sets, and

show the representative trial results in figure 4. To prevent

multiple S from gathering around the border of the container

owing to their weak repulsion, we submerged iron plates

17 mm below the water surface level to weakly situate each

S, while allowing them to orient themselves in random direc-

tions. Figure 4a shows a trial where Ss dock Es, whereas

figure 4b shows Ss docking Is: In both cases, we initiated

the reactions by manually placing five Es between the Ss,

thus setting both initial conditions the same.

In figure 4a, after a brief interval of a quasi-stable state, the

first conformation change (highlighted with a red circle) was

triggered at 58.5 s, instantly followed by another conformation

change at 60.1 s. The two new mobile Es released by the confor-

mation changes traversed the field in the 12 o’clock direction
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Figure 4. Snapshots of representative trials with a multiple unit combination for Es (a) and I s (b) pre-docked to the Ss: Each window displays the elapsed time
after the placement of five E units, with trajectories of actively transitioning Es and I s: (a) Two of five released mobile Es triggered conformation changes of Ss,
which resulted in the remaining three triggers by the recently released E: (b) Two mobile E that were released by conformation changes inhibited S: See the
electronic supplementary material (movies S3 and S4) for these two cases. (Online version in colour.)
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following the local magnetic field gradient, and invoked two

of the remaining conformation changes (70.3 and 76.6 s).

The last S was hit by an E at 79.2 s, and changed its confor-

mation. The system proceeded naturally and completed the

process despite 17 of 20 magnets being involved in the series

of reactions, and thus created locally complex magnetic fields.

If we plot the system’s energy transition as in figure 3c, the ter-

rain includes sharp and significant energy drops each time a

conformation change occurs. It also displays a flat terrain

the majority of the time while the mobile units are travell-

ing. The timing of the conformation changes might be affected

by the density of units, though this investigation is a future

research avenue.

In figure 4b (docked Is), the first conformation change

was triggered at 4.9 s, faster than in figure 4a (docked Es).

In general, the time of the first reaction is influenced by the

randomly oriented S, which, nonetheless, have little influence

on the later reaction speed once a reaction starts. After

another conformation change was triggered by an E (5.9 s),

the two released I in the centre of the field inhibited different

Ss (at 9.2 and 19.6 s, highlighted with yellow circles). The

final conformation change was invoked at 40.5 s. The most

significant difference from the case in figure 4a, the docked

E trial, is that an inhibited S did not create as strong a repul-

sive magnetic field as in the case of P, and hence it had less

influence on the motion of the mobile units close by.

We conducted 30 trials for each of the two cases. The aver-

age durations for completing five reactions were 67.7 s (min¼

13.3, median ¼ 55.7, max ¼ 146.3) with docked E, and 58.6 s

(min¼ 11.5, median ¼ 55.3, max ¼ 142.7) with docked I :
During the docked I trials, there were 36 inhibitions within

150 reactions, which corresponds to 24.0% of the total

number of reactions. By considering the number of invoked

conformation changes, the average duration per conformation

change was 13.5 s (min ¼ 2.7, median¼ 11.2, max ¼ 29.3) and

15.9 s (min¼ 13.3, median¼ 55.7, max ¼ 146.3) with docked E
trials and docked I trials, respectively. The small difference in
the durations is mainly because we began with 5Es in both

cases and, hence, the influence of Is was screened.

During the experiments, a small number of trials were

considered to be accidental errors, for example, because of

magnets that jumped from S when changing conformation

(this occurred five times before we reached 30 trials with

Es), and that failed to conduct magnet flips (this occurred

five times under the same conditions with Es). We also

once terminated a trial with Es when no reaction occurred

for more than 1 minute. Considering that conformation

changes with a single S were reliable, the increase in the fail-

ure rate seems to indicate the magnetic influence of distant

magnets. Within 41 potential inhibitions, I did not hold its

position but slipped along the edge of SL and invoked a

conformation change on five occasions (failure rate 12.2%).
5. Discussion
Unlike highly stochastic molecular reactions where thermal agi-

tation is the driving force for transportation and massive rapid

samplings of configurations for conformation change, our

system rather exhibits a deterministic behaviour, whose

dynamics could thoroughly be predicted by considering the

positions of all involved magnets. Our emphasis is on present-

ing the possibility of catalytic behaviour carried out in the

almost complete absence of environmental turbulence, thus,

the units’ morphology with respect to each reaction phase

could be discussed. This aspect of the system, that it develops

rather statically, at the same time, indicates that the mechanism

shows a potential for smaller scales at which the influence of

mass is more negligible. Incorporation of stochasticity through

externally added kinetic turbulence or water agitation could

nevertheless be feasible. By sufficiently shortening R2 in

figure 1c, but still conserving the condition that R1 , R2, such

environmental perturbation may still be able to invoke a sliding

motion of M2, thus realizing conformation change of S:



r

8
Regulating the agitation level and investigating the influence of

catalytic enhancement would be of interest in future research.
sif.royalsocietypublishing.org
J.R.Soc.Inter
6. Conclusion
With a special focus on the role of morphology, this study

approaches the realization of a fully functional centimetre-

sized, mechanical model of catalysis. We report on the construc-

tion and operation of the model, which contains both enzymes
and inhibitors. To illustrate the analogous underlying processes

of enzymatic behaviour, we first formulate the intermagnetic

interactions attainable with permanent magnets. Then, we intro-

duce physical units that instantiate the interaction and validate

the desired behaviour where an enzyme triggers a kinematic

reconfiguration of the target units, funnelling down the magnetic
potential barrier (activation potential), whereas an inhibitor inhi-

bits a reconfiguration by creating a barrier. As this phenomenon

was attained at the pure physics level by combining morphology

and magnetism, this study provides a platform at the intersection

of classical mechanics (unit design), physics (magnetism) and

chemistry (enzyme reaction). The obtained model extends the

conventional definition of catalysis to systems of alternative

scales, realizing ‘mechanical’ reactions with hands-on artefacts,

which can expand the concept of manufacturing.

Funding statement. This work was partially supported by a Swiss
National Science Foundation Fellowship number PA00P2_142208.
Endnote
1The CAD data of all the designed units can be downloaded as elec-
tronic material in STL file format at http://www.shuhei.net/.
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