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SUMMARY

Endogenous extracellular Galectins constitute a novel mechanism of membrane protein organization

at the cell surface. Although Galectins are also highly expressed intracellularly, their cytosolic func-

tions are poorly understood. Here, we investigated the role of Galectin-9 in dendritic cell (DC) surface

organization and function. By combining functional, super-resolution and atomic force microscopy

experiments to analyze membrane stiffness, we identified intracellular Galectin-9 to be indispensable

for plasma membrane integrity and structure in DCs. Galectin-9 knockdown studies revealed intracel-

lular Galectin-9 to directly control cortical membrane structure bymodulating Rac1 activity, providing

the underlying mechanism of Galectin-9-dependent actin cytoskeleton organization. Consequent to

its role in maintaining plasma membrane structure, phagocytosis studies revealed that Galectin-9

was essential for C-type-lectin receptor-mediated pathogen uptake by DCs. This was confirmed by

the impaired phagocytic capacity of Galectin-9-null murine DCs. Together, this study demonstrates

a novel role for intracellular Galectin-9 in modulating DC function, which may be evolutionarily

conserved.

INTRODUCTION

Dendritic cells (DCs) constitute the major group of antigen-presenting cells that constantly patrol the body

for microbes and are essential for linking innate and adaptive immune responses (Banchereau and Stein-

man, 1998). DCs are equipped with a diverse membrane receptor repertoire to take up pathogens

including Toll-like receptors, scavenger receptors, and C-type lectins, such as the mannose receptor

and the dendritic cell-specific intercellular adhesion molecule grabbing non-integrin receptor (DC-

SIGN) (Banchereau et al., 2000; Savina and Amigorena, 2007; Buschow et al., 2012; Heinsbroek et al.,

2008; Geijtenbeek et al., 2000). Engagement of these receptors with their ligand is accompanied by cyto-

skeletal changes, which allow for the capture and engulfment of phagocytic targets (Sano et al., 2003;

Baranov et al., 2016). Actin polymerization is instrumental in forming a nascent phagosome for pathogen

engulfment, and actin-driven mechanical forces enable pathogen internalization (May et al., 2000). In addi-

tion, phagocytosis is dependent on plasmamembrane organization and loss of membrane structure results

in impaired pathogen recognition, defective migration, and compromised immunological synapse forma-

tion (Alvarez et al., 2008; Heuze et al., 2013; Buschow et al., 2012). Galectins, a family of ß-galactoside-bind-

ing proteins, have been recently identified as a novel mechanism of membrane organization (Lajoie et al.,

2009; Elola et al., 2015; Nabi et al., 2015) due to their ability to interact with and cross-link specific carbo-

hydrate structures. As such, Galectins can simultaneously interact with multiple glycoconjugates, thereby

regulating the dynamics of glycosylated-binding partners, limiting receptor internalization, and establish-

ing membrane microdomains (Elola et al., 2015). Notably, Galectins are also abundantly expressed intra-

cellularly, although their cytosolic functions are not well characterized (Hsu et al., 2015a; Johannes et al.,

2018; Liu et al., 2002; Liu and Rabinovich, 2005). Recently, Galectins have been discovered as novel regu-

lators of several immune processes, such as T cell homeostasis, inflammation, and immune disorders

(Sundblad et al., 2017; Thiemann and Baum, 2016; de Oliveira et al., 2015; Rabinovich and Toscano, 2009).

Galectin-9 was first discovered as an eosinophil chemoattractant, and to date, most studies have focused

on studying Galectin-9 in inflammation or infection processes (Jost et al., 2013; Curciarello et al., 2014; Hsu

et al., 2015b). Extracellular Galectin-9 has been implicated in inhibiting T cell immunity by promoting T cell
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Figure 1. Galectin-9 Is Required for Dendritic Cell Function

(A and B) moDCs were transfected with gal9 siRNA and/or gal3 siRNA or a non-targeting siRNA (NT). Surface only (A) and

total (B) Galectin-9 and Galectin-3 knockdown were confirmed by flow cytometry 48 h after transfection. Red population,

NT siRNA; blue population, gal9 and gal3 siRNAs transfectedmoDCs; black population, isotype control. Numbers in inset

indicate geometrical mean fluorescence intensity.

(C) NT, gal9, and/or gal3 siRNA-transfected cells were challenged with zymosan for 60 min, after which cells were fixed,

stained, and the phagocytic index calculated. Graphs show representative results for one donor. Each dot represents

iScience 22, 240–255, December 20, 2019 241



Figure 1. Continued

phagocytic index obtained for one image field; 20–30 image fields were analyzed per condition, and each image field

contained 10–20 cells.

(D) Representative images from results shown in (C).

(E) Quantification and statistical analysis of experiments depicted in (D). Results show the mean G SEM for four

independent donors. Unpaired Student’s t test was conducted between NT and gal9 siRNA- and between NT and gal3

siRNA-transfected cells.

*p < 0.05, **p < 0.005, ***p < 0.0001. See also Figure S1.
apoptosis and differentiation into regulatory T cells (Anderson et al., 2007; Bi et al., 2008; Zhu et al., 2005).

Furthermore, extracellular Galectin-9 acts as a suppressor of B cell signaling by binding to the B cell recep-

tor (Cao et al., 2018; Giovannone et al., 2018). Although these studies indicate that Galectin-9 plays an

inhibitory role on lymphocytes, its function in myeloid cells remains poorly understood. Moreover,

Galectin-9 is also highly expressed intracellularly, and although implicated in protein-protein interactions

and mRNA splicing (Liu et al., 2002; Sundblad et al., 2017; Heusschen et al., 2013), the function of cytosolic

Galectin-9 in the immune system continues to be ill defined.

Here, we demonstrate that intracellular Galectin-9 is essential for sustaining cortical actin cytoskeleton

rigidity and phagocytosis in DCs. Our work indicates a novel evolutionary conserved mechanism by which

intracellular Galectins stabilize plasma membrane structure by actin cytoskeleton reorganization.
RESULTS

Galectins Are Essential in Governing Human Dendritic Cell Function

The role of Galectins in the initiation of the immune response is poorly understood, and although Galectin-

3 has been implicated in macrophage-mediated uptake in mice (Sano et al., 2003), few studies have been

performed to elucidate Galectin function in DCs (de Kivit et al., 2017; Leskela et al., 2015; Hsu et al., 2015b;

Dai et al., 2005). To address this question, we generated DCs lacking Galectin-3 and/or Galectin-9 by elec-

troporating human monocyte-derived dendritic cells (moDCs) with either a specific galectin small inter-

fering RNA (siRNA) (gal3 and/or gal9) or a non-targeting (NT) siRNA control before challenge them with

fluorescein isothiocyanate (FITC)-labeled zymosan particles, a fungal cell wall extract (de la Rosa et al.,

2005). Subsequent immunolabeling without permeabilization using an antibody directed against FITC al-

lowed for selective labeling of membrane-bound particles. Galectin-9 and Galectin-3 protein knockdowns

were confirmed by flow cytometry showing that both proteins were depleted to a similar extent (70%, Fig-

ures 1A and 1B). The efficiency of Galectin knockdown was comparable between cells transfected with a

single siRNA or with dual siRNA, andGalectin-9 knockdown (Gal-9 KD) did not affect Galectin-3 expression,

or vice versa (Figure S1). Depletion of Galectin-9 impaired particle uptake to a greater extent when

compared with that observed upon Galectin-3 knockdown (Figures 1C, 1D, and 1E). Moreover, there

was no additive effect of knocking down both Galectin-9 and Galectin-3 (Figure 1E). Taken together, these

data demonstrate that Galectins are required for phagocytosis by DCs, and indicates that Galectin-9 is a

major player in this process.
Galectin-9 Is Essential for Phagocytosis by Dendritic Cells

We previously identified Galectin-9 as part of the DC-SIGN-mediated, a phagocytic receptor present in

immature DCs, phagosomes, although no functional studies were performed to assess the role of Galec-

tin-9 in DC function (Buschow et al., 2012; Manzo et al., 2012; Liu et al., 2017; Cambi et al., 2003; Geijtenbeek

et al., 2000). Co-immunoprecipitation experiments revealed DC-SIGN association with Galectin-9 in DCs,

demonstrating their molecular interaction (Figure 2A). To examine whether this interaction occurs in the

cytosolic compartment and/or at the extracellular matrix, co-immunoprecipitations were performed on

lactose-treated moDCs and in the presence of lactose to prevent unspecific binding of Galectin-9 to

DC-SIGN during cell lysis. Lactose impairs cell surface glycan-based interactions mediated by Galectins

by competing for their major ligands, which dissociates Galectins from the cell surface (Lajoie et al.,

2007; Cambi et al., 2009). As shown, addition of lactose successfully removed Galectin-9 from the surface

of moDCs (Figure S2A). Nonetheless, Galectin-9 was found to still bind DC-SIGN, albeit to a lesser extent

than in the untreated control (Figure 2B). These data indicate that Galectin-9 binds to DC-SIGN both extra-

and intracellularly. To investigate the role of Galectin-9 in DC-SIGN-mediated phagocytosis, Gal-9 KD and

NT control (referred to as wild-type [WT]) DCs were challenged with zymosan particles. Galectin-9 protein

knockdown (90%) was confirmed by flow cytometry (Figure S2B) and western blotting (Figure S2C). No
242 iScience 22, 240–255, December 20, 2019
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Figure 2. Galectin-9 Is Required for Optimal Phagocytic Capacity in DCs

(A) moDCs were lysed and whole-cell extract prepared for incubation with anti-DC-SIGN antibody (H200) or isotype

control (total rabbit IgG). Immunoprecipitated (IP) complexes were resolved and probed with DC-SIGN- and Galectin-9-

specific antibodies. Graph shows quantification of Galectin-9 content of each sample using ImageJ.

(B) moDCs were treated with 35mM lactose for 48 h before being lysed as per (A). IP complexes were resolved and probed

with DC-SIGN- and Galectin-9 specific antibodies. Graph shows quantification of Galectin-9 content of each sample using

ImageJ.

(C) NT or gal9 siRNA-transfected cells were challenged with zymosan for the indicated time points. After this time, cells

were fixed, stained, and phagocytic indexes calculated for each time point. Graphs show representative results for one

donor. Each dot represents phagocytic index obtained for each microscopic field, each of which contained 10–20 cells.

(D) Quantification and statistical analysis of experiments shown in (C). Twenty frames were analyzed for each donor and

transfection. Results show the mean value G SEM for four independent donors. Unpaired Student’s t test was

conducted between NT and gal9 siRNA-transfected cells for all time points.
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Figure 2. Continued

(E) NT or gal9 siRNA-transfected cells were challenged as per (C) and the number of internalized zymosan particles quantified for each frame. Ten to twenty

frames were analyzed for each condition. Data represent mean percentage of DCs that had internalized the specified number of particles of one

representative donor out of three independent experiments. For statistical analysis two-way ANOVA followed by a Bonferroni post hoc test was applied.

n.s.: p > 0.05; *p < 0.05, **p < 0.005. See also Figures S2–S4.
significant differences in zymosan binding were observed between NT and gal9 siRNA-transfected DCs

(Figure S2D), implying that Galectin-9 is not required for particle binding. To study the involvement of

Galectin-9 in particle uptake, the phagocytic index was calculated for each of the conditions and specified

time points (Figures 2C, 2D, and S2E). Gal-9 KD resulted in impaired zymosan internalization 60 min after

challengingmoDCs (Figure 2D). Quantification of the number of particles internalized per cell revealed that

the impaired uptake upon Gal-9 KD is likely due to a decrease in the number of zymosan particles internal-

ized per cell rather than a decrease in the total amount of cells able to uptake particles (Figure 2E). Gal-9 KD

did not alter DC-SIGN membrane expression or receptor internalization excluding that the uptake defect

was due to deficient receptor surface levels (Figure S3). Next, WT and Gal-9 KD moDCs were incubated

with a DC-SIGN-blocking antibody (clone AZN-D1) or isotype control before challenging them with

zymosan particles. AZN-D1 does not induce DC-SIGN signaling and has a modified Fc region that cannot

be recognized by the Fc receptors expressed on DCs (Geijtenbeek et al., 2000; Tacken et al., 2005). As ex-

pected, blocking DC-SIGN resulted in defective zymosan uptake by NT-transfected moDCs, although

zymosan uptake was unaffected by the addition of isotype controls (Figures S4A and S4B). Analysis per-

formed on multiple donors confirmed our observations, and zymosan uptake was significantly impaired

upon DC-SIGN blocking, indicating that DC-SIGN is the major receptor for zymosan in DCs (Figure S4C).

These results demonstrate that Galectin-9 is an essential component in DC-SIGN receptor-mediated

uptake by DCs.

Zymosan uptake experiments were also performed with murine bone marrow-derived dendritic cells

(BMDCs) from WT and galectin-9-deficient (galectin9 �/�) mice. In line with human DCs, lack of Galectin-

9 in murine DCs resulted in defective phagocytic capacity, suggesting an evolutionarily conserved role

for Galectin-9 in phagocytosis (Figures 3A and 3B). To investigate the effect of Galectin-9 in DC-mediated

immunity against fungal pathogens, galectin-9-null mice were immunized with heat-inactivated Candida

albicans and DC function analyzed (Figure 3C). Although we were not able to quantify phagocytosis in vivo,

murine DCs lacking Galectin-9 displayed a significant decrease in cytokine secretion upon infection,

indicating poor initiation of a proper immune response (Figures 3D–3G).

Intracellular Galectin-9 Controls Plasma Membrane Structure in Dendritic Cells

To examine whether the extra- or the intracellular pool of Galectin-9 was responsible for the defect in

phagocytosis, moDCs were treated with lactose to remove extracellular galectins from the cell surface

before being challenged with zymosan particles. Although lactose treatment effectively reduced the sur-

face levels of Galectin-9 and Galectin-3 (Figures 4A and 4B), no effects on zymosan uptake were observed

compared with untreated cells (Figure 4C). Lactose was also added during zymosan incubation, and no dif-

ferences in the phagocytic index of moDCs treated with lactose were observed, regardless of whether

lactose was present during zymosan incubation (Figure S5). This indicates that the intracellular pool of

Galectin-9 is responsible for particle uptake by moDCs and that particle binding and internalization are

independent of Galectin-9-mediated interactions at the cell surface. These findings led us to hypothesize

that Galectin-9 may interact with specific cytoskeleton components, which could alter the stability and/or

the formation of phagosomes. To address this, Gal-9 KD andWT DCs were analyzed for their uptake ability

upon treatment with cytochalasin D (cytD), which blocks actin polymerization by its binding to actin fila-

ments. Addition of cytD resulted in a significant decrease of particle uptake in WT cells in contrast to

Gal-9 KD moDCs that were not affected by cytD after challenging cells for 60 min (Figure 5A). Earlier

time points were also analyzed, but DCs were still unable to take up any particles due to the inhibition

of the actin cytoskeleton polymerization (Figures S6A and S6B). We excluded that this was due to a differ-

ence in particle binding betweenWT and Gal-9 KD cells (L. Querol Cano, unpublished data) or cell viability,

which was not affected upon treatment with cytD (Figure S6C). Similar results were obtained when DCs

were treated with increasing concentrations of cytD, confirming gal9 siRNA-transfected cells to be less sen-

sitive to actin disruption than their WT counterparts (Figure S6D). To corroborate an impairment in the actin

cytoskeleton upon Galectin-9 depletion, levels of F-actin were measured in WT and Gal-9 KD cells moDCs.

A decrease of approximately 20% in the total levels of F-actin was seen in moDCs depleted for Galectin-9,

confirming a specific effect for this lectin in the actin cytoskeleton arrangement (Figures 5B and 5C).
244 iScience 22, 240–255, December 20, 2019
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Figure 3. Galectin-9 Function in DC Is Conserved between Mouse and Human and Alters Dendritic Cell-Mediated

Immune Responses In Vivo

(A) Bone marrow-derived dendritic cells (BMDCs) obtained from either wild-type (control) or galectin-9-null

(galectin-9 �/�) mice were seeded on coverslips, challenged with zymosan for 60 min, and the phagocytic index

calculated. Results show the mean phagocytic index value G SEM for three independent mice. Unpaired Student’s t test

was conducted between wild-type and galectin-9 �/� mice. *p < 0.05.

(B) Representative images from results shown in (A). Scale bar, 10 mm.

(C–G) (C) Scheme depicting work protocol to assess anti-fungal immunity in galectin-9-null animals. Four wild-type (WT) and

galectin-9 �/� mice were injected with heat-inactivated Candida albicans. Three hours after injection, lymph nodes and spleen

were removed, single-cell suspensions made, and cells seeded onto 96-well plates. Spleen cell suspensions were re-stimulated
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Figure 3. Continued

with C. albicans, and 24 h after seeding cytokine secretion was measured in supernatants by ELISA. Tumor necrosis

factor (TNF)-a production in spleen (D) or lymph node (E) samples. Interleukin (IL)-12 production in spleen (F) or lymph

node (G) samples. Graph shows the mean value G SEM for four animals. Unpaired Student’s t test was conducted

between WT and Gal9 KO cells. *p < 0.05.
Experiments performed with galectin-9 �/� murine BMDCs confirmed this defect in cellular actin content

(Figures 5D and 5E). Furthermore, confocal imaging showed that the percentage of F-actin-positive phag-

osomes was reduced upon Gal-9 KD in moDCs challenged with zymosan particles by approximately 40%

(Figures 5F and 5G) in line with our previous observation (Figure 5B). These data suggest that depletion of

Galectin-9 leads to reduced actin filament formation both under basal conditions and around phago-

somes. To further verify Galectin-9 involvement in directly controlling the actin cytoskeleton, super-resolu-

tion laser scanning microscopy was performed on ventral plasma membrane sheets of moDCs. These

studies demonstrated that Galectin-9 closely associates with the cortical actin cytoskeleton under basal

conditions (Figure 6).

To unravel the mechanism underlying Galectin-9 function in plasma membrane integrity and structure, we

exploited atomic force microscopy (AFM) to analyze the cellular stiffness of moDCs transfected with

either NT or gal9 siRNA. Nanomechanical probing of the cells was achieved by obtaining a series of

force-distance curves on selected points of the cell surface. A sharp non-functionalized cantilever with

a radius of approximately 35 nm was brought into contact with a flat area of a single DC attached to a

glass coverslip applying a mechanical force (Figure 7A). The use of a combined bright-field AFM setup

allowed for accurately positioning the cantilever over specific areas of interest on the cell surface (Fig-

ure 7B). Analysis of the approach force-distance curves obtained for each point of interest allowed calcu-

lation of the cytoskeletal stiffness using the linearized Sneddon equation (Figure 7C). For this purpose,

minimum and maximum fit boundaries (shown in blue) were defined respectively as 10% and 70% of

the maximum force after baseline correction (Figure 7C). The portion of the curves that was used for

fitting with the linearized model is shown in purple, and the separation distance that corresponds to

this fit region is in the range of 200–600 nm (Figure 7C). Given that the thickness of the lipid bilayer is

approximately 4 nm (Yokokawa et al., 2008), it is plausible to presume that the underlying cytoskeletal

structures such as cortical actin and peripheral cytoplasm were also probed in our experiments. The

mechanical characterization performed on DCs shows that moDCs lacking Galectin-9 have a decreased

cytoskeletal rigidity compared with their WT counterparts (Figure 7D), in line with the defect in their cyto-

skeleton previously observed.

As it is well known that actin polymerization is mediated by small GTPases of the Rho family including Rac1

(Caron and Hall, 1998; May et al., 2000; Swanson, 2008; Norman et al., 1996), we investigated the effect of

Galectin-9 depletion on Rac1 activation by specifically measuring its GTP-bound fraction using a G-LISA

colorimetric assay. Incubation of control moDCs with zymosan particles resulted in a fast induction of

Rac1-GTP activity already after 5-min stimulation (Figures 8A and 8B), which was sustained in time (Figures

8A and 8C). Depletion of Galectin-9 abrogated Rac1 induction, and no increase in its GTP-bound form

could be observed upon zymosan stimulation in moDCs transfected with gal9 siRNA at any of the time

points analyzed (Figures 8A–8C). The recruitment of total Rac1 to nascent phagocytic cups was also

impaired upon Gal-9 KD (Figures 8D–8F), suggesting that Galectin-9 promotes both Rac1 recruitment

and activity on phagosomes.

Taken together, intracellular Galectin-9 controls plasma membrane structure via modulating Rac1 activity

and actin polymerization, which underlies Galectin-9 requirement for phagocytosis in DCs.
DISCUSSION

Galectins have gained increasing interest for their role as extracellular organizers of plasma membrane

components via glycan-mediated interactions. Nonetheless, their mechanism of action remains poorly

understood, and in particular, their intracellular functions are ill-defined (Buschow et al., 2012). Here,

we identified a previously unrecognized function for intracellular Galectin-9 in actin cytoskeleton reorga-

nization and report a novel, functional interaction between Galectin-9 and the C-type lectin receptor

DC-SIGN at the cytosol of DCs. Several members of the Galectin family are expressed in the cytosol,

and some, such as Galectin-1 or Galectin-3 are predominantly intracellular proteins (Liu et al., 2002;
246 iScience 22, 240–255, December 20, 2019
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Figure 4. Intracellular Galectin-9 Is Responsible for Modulating Dendritic Cell Function

(A and B) moDCs were treated with 35 mM lactose for 48 h, and removal of extracellular (A) but not intracellular (B)

Galectin-9 and Galectin-3 expression was confirmed by flow cytometry. Red population, untreated cells; blue population,

lactose-treated cells; black population, isotype control. Numbers in inset indicate gMFI. Panels depict representative

results for one donor, and graphs show the mean phagocytic index G SEM for three independent donors. Unpaired

Student’s t test was conducted between untreated control and lactose-treated cells.

(C) Control or lactose-treated cells were challenged with zymosan for 60 min. Cells were then fixed, stained, and the

phagocytic index calculated. Graphs show the meanG SEM for three independent donors. Unpaired Student’s t test was

conducted between untreated control and lactose-treated cells. n.s.: p > 0.05, *p < 0.05. See also Figure S5.
Wilson et al., 1989; Clerch et al., 1988; Hubert et al., 1995). Very little is known regarding the localization

and function of cytoplasmic Galectin-9, although it has been implicated in protein folding and signal

transduction (John and Mishra, 2016; Vasta et al., 2012). Our study now demonstrates that the large

intracellular pool of Galectin-9 is responsible for the phagocytic capacity in DCs by modulating plasma
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Figure 5. Galectin-9 Modulates Cellular Actin Cytoskeleton

(A) NT or gal9 siRNA-transfected moDCs were pretreated with 1.25 mg/mL cytochalasin D (cytD) for 10 min before being

challenged with zymosan for 60 min. Cells were then fixed, stained, and the phagocytic index calculated. Twenty frames

were analyzed for each condition and donor. Data represent mean average phagocytic index G SEM for one

representative donor out of three independent experiments. Unpaired Student’s t test was conducted between NT and

gal9 siRNA-transfected cells.
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Figure 5. Continued

(B) Actin levels were analyzed by flow cytometry in NT and gal9 siRNA-transfected moDCs. Results are expressed as

percent gMFI of gal9 siRNA-transfected cells relative to their NT control. Data represent mean average % gMFI for three

independent experiments G SEM. One-way t test was conducted.

(C) Representative histogram for actin expression after Galectin-9 knockdown. Gray area, NT siRNA-transfected moDCs;

red area, gal9 siRNA-transfected moDCs; black dotted line, isotype control. Numbers in inset indicate gMFI.

(D) Actin levels of BMDC obtained from wild-type (control) or galectin-9 �/� mice were analyzed by flow cytometry. Data

represent mean average gMFI for three independent mice G SEM.

(E) Representative histogram for actin expression. Gray line, control BMDCs; red line, galectin-9 �/� BMDCs. Numbers in

inset indicate gMFI.

(F) Representative confocal images of F-actin rings in moDCs transfected as in (A) and challenged with zymosan particles

for 15 min.

(G) Quantification of the percentage of F-actin-positive phagosomes of experiments shown in (F).

Data represent mean average G SEM. n.s.: p > 0.05, *p < 0.05, **p < 0.005, ***p < 0.001. See also Figure S6.
membrane structure, revealing a novel function for Galectins in cytoskeleton remodeling. This was

observed in both human and murine cells, which indicates Galectin-9 as an evolutionarily conserved lectin

required for maintaining the cortical cytoskeleton structure and function in DCs. Our data support a

model in which Galectin-9 is essential for DC-SIGN-mediated phagocytosis, by (1) maintaining plasma

membrane and cortical actin stiffness and (2) controlling receptor function (Figure 9). We identified

that the underlying mechanism involves Galectin-9-dependent activation and recruitment of Rac1-GTP

upon particle incubation, which triggers actin polymerization and the subsequent formation of phago-

cytic cups.

In line with this, our AFM studies demonstrate that Galectin-9-depleted cells have a less rigid plasma

membrane and cortical cytoskeleton, rendering them unable to adequately modify their structure upon
Actin Galectin-9 Merged

Figure 6. Galectin-9 Closely Associates with the Actin Cytoskeleton

Ventral plasma membrane sheets from day 5 moDCs were stained for actin and Galectin-9 and imaged with super-

resolution microscopy. A representative plasma membrane sheet out of four independent experiments is shown. Gamma

correction (0.2) was applied to enhance the contrast of the actin image. Lower images: magnification of the area indicated

in the upper images. Scale bar, 10 mm. Arrows indicate sites of Galectin-9 and actin colocalization.
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Figure 7. Galectin-9 Alters Cytoskeletal Membrane Rigidity

(A) Schematic AFM single-cell elasticity measurement setup showing an overview of the AFM cantilever in contact with the

DC and the cantilever movement used to measure the change in cantilever deflection.

(B) Optical image of gal9 siRNA-transfected moDCs obtained during the mechanical probing of the cell. White dot shows

the position of the tip, and the red cross depicts the region of interest at the membrane that was indented with the

cantilever.

(C) Representative force-distance curves obtained on gal9 siRNA-transfected (black) and NT siRNA (red) moDCs and

curve-fitting approach to determine the Young’s modulus of elasticity. Blue lines correspond to upper- and lower-fit

boundaries (70% and 10% of the maximum force, respectively); purple lines show fitted portion of the curves used to

calculate Young’s modulus.

(D) Young’s modulus of elasticity was calculated by fitting the force-distance curves indicated in (C). Data

represent mean average Young’s modulus of elasticity G SEM of three independent donors, and each data point

shows the average value for three different locations for each moDC. Ten to thirty cells were analyzed for each

donor in each independent experiment. Unpaired Student’s t test was conducted between NT and gal9 siRNA-

transfected cells. ***p < 0.001.
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Figure 8. Galectin-9 Promotes Phagosomal Rac1 Activity

(A) NT and gal9 siRNA-transfected moDCs were challenged with zymosan particles for the indicated time points. After

this time, cells were lysed, total protein was quantified, and Rac1-GTP activation was determined. Results are expressed

as fold increase Rac1-GTP levels and relative to the unstimulated corresponding sample. Data represent mean average

Rac1-GTP fold inductionG SEM of three independent donors. Unpaired Student’s t test was conducted between NT and

gal9 siRNA-transfected cells.

(B and C) Each symbol represents one independent donor, and lines connect paired NT and gal9 siRNA-transfected

moDCs after stimulation with zymosan for either 5 min (B) or 30 min (C).
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Figure 8. Continued

(D) NT or gal9 siRNA-transfected moDCs were challenged with zymosan_FITC for 5 min before being stained for

F-actin (magenta) and Rac1 (blue) and imaged with super-resolution microscopy. A representative confocal image

out of 9 images is shown. Scale bar, 10 mm. Arrows indicate overlap between Rac1 and F-actin signal on

phagocytic cups.

(E) Magnification of representative phagocytic cups in NT and gal9 siRNA-transfected moDCs treated as in (D).

(F) Number of Rac1- and/or F-actin-positive phagocytic cups found on moDCs treated as in (D). Nine images containing

between 20 and 30 cells were analyzed for each condition. Data represent mean average number of phagocytic cups G

SEM. Unpaired Student’s t test was conducted between NT and gal9 siRNA-transfected cells.

*p < 0.05; **p < 0.01; n.s p > 0.05.
particle engulfment. Moreover, inhibition of actin polymerization did not affect the phagocytic ability of

Gal-9 KD cells in contrast to WT cells. Although actin executes a pivotal function in phagocytosis, little is

known regarding the mechanisms that govern F-actin recruitment to a nascent phagosome due to the

lack of high-resolution data (Baranov et al., 2016). Our data support a new concept in which intracellular

Galectin-9 is required for actin polymerization, directly controlling plasma membrane rigidity, by

enhancing the activity of the actin-binding protein Rac1. In line with this, Galectin-1 has been recently

shown to re-activate F-actin protein levels (Quinta et al., 2016). Similarly, intracellular Galectin-3 has

been proved to enhance phagocytosis in macrophages by its interaction with F-actin in the phagocytic

cups (Sano et al., 2003; Serizawa et al., 2015). Intracellular ligands have been proposed to bind Galectins

through protein-protein interactions independent of carbohydrate-mediated recognition, although

whether both proteins interact directly or through an intermediary molecule is not known (de Oliveira

et al., 2015; Johannes et al., 2018; Shimura et al., 2004). Whether Galectin-9 function in our study is car-

bohydrate independent remains to be elucidated, but knockdown of Galectin-9 in the presence of other

Galectins was sufficient to induce defects in actin polymerization and cellular rigidity in DCs. DC-SIGN is

known to interact with actin and Lsp-1, an F-actin-interacting protein through its cytoplasmic tail (Smith

et al., 2007), which likely allows for extracellular particle binding, plasma membrane deformation, and

actin polymerization to occur simultaneously. Moreover, DC-SIGN signaling results in enhanced RhoA-

GTPase activity (den Dunnen et al., 2009; Hodges et al., 2007). Our data now support that depletion of

intracellular Galectin-9 is sufficient to disrupt the cytosolic complex of DC-SIGN with actin-binding pro-

teins, ultimately impairing cytoskeleton reorganization and causing a reduction in the cellular phagocytic

capacity. We identified Galectin-9 as an integral component of the actin cytoskeleton as well as of the

intracellular DC-SIGN-associated complex, and it is conceivable that Galectin-9 exerts its effects on

the cytoskeleton remodeling by directly linking F-actin filaments, actin remodeling proteins, and DC-

SIGN in a multi-protein complex (Figure 9). Alternatively, Galectin-9 may connect DC-SIGN with other

plasma membrane receptors known to associate with actin, such as CD44, which has been previously

shown to interact with Galectin-9, as a component of DC-SIGN-directed phagosomes in DCs (Wu

et al., 2014; Buschow et al., 2012).

Aside of its direct effects on DC-SIGN, we expect Galectin-9 depletion to have additional effects on the

function of other lectin receptors involved in phagocytosis (mannose receptor, complement receptor 3,

TLR2) (Sung et al., 1983; Xia et al., 1999). To date, extracellular Galectin-9 has been previously shown to

interact with CD44, glucose transporter-2, immunoglobulin E, and Tim-3, a T cell type 1 membrane protein,

known to be involved in T cell apoptosis and phagocytosis of apoptotic cells (Wu et al., 2014; Zhu et al.,

2005). All these interactions, though, are carbohydrate dependent and mediated via glycan-lectin associ-

ations. To the best of our knowledge, no intracellular binding partners have been previously reported for

Galectin-9.

The intracellular functions of Galectin-9 and particularly its role in phagocytosis have not been previously

addressed, and our work is in line with Galectin-3 and Galectin-1 function in particle uptake, highlighting

the broad importance of intracellular Galectins in enhancing cellular uptake (Farnworth et al., 2008; Sano

et al., 2003; Barrionuevo et al., 2007; Caberoy et al., 2012; Linden et al., 2013; Quattroni et al., 2012). Further-

more, our studies with primary DCs demonstrate that disruption of glycan interactions solely alters particle

uptake but not their binding to the cell membrane, which is in agreement with previous findings (Sano et al.,

2003).

In summary, our work demonstrates a novel role for intracellular Galectin-9 in the regulation of the phago-

cytic activity through reorganization of the actin cytoskeleton that underlies plasma membrane rigidity in
252 iScience 22, 240–255, December 20, 2019
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Figure 9. Model of the Role of Galectin-9 in Membrane Rigidity and Particle Uptake

(A) Intracellular Galectin-9 controls polymerization of cortical actin through interacting with C-type lectin phagocytic

receptors and modulating Rac1 activity, which is essential for plasma membrane integrity and successful target uptake.

(B) In the absence of Galectin-9, Rac1 activity is impaired, which results in abrogation of phagocytosis through decreased

cortical actin levels and the subsequent loss of membrane rigidity.
DCs. Given the plethora of cellular biological processes Galectin-9 is involved in, this novel intracellular Ga-

lectin-9 mechanism of action contributes to the general understanding of plasma membrane structure and

their implications in cell function.
Limitations of the Study

In this study we identified Galectin-9 as novel regulator of the actin cytoskeleton and plasma membrane

structure in DCs. We have also defined and characterized the interaction and functional relationship be-

tween Galectin-9 and the phagocytic receptor DC-SIGN. Further work could be performed to confirm

that both proteins interact intracellularly. Given the cytosolic localization and function of Galectin-9, a

further in-depth characterization of the role Galectin-9 in governing the intracellular signaling pathway

downstream of DC-SIGN would also be pertinent.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.11.019.
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Supplemental figure legends 

Figure S1. gal9 and gal3 siRNA do not cause non-specific effects, Related to Figure 1. A and B 

moDCs were transfected with gal9 siRNA and/or gal3 siRNA or a non-targeting siRNA (NT). Total (A) 

or surface bound (B) Galectin-9 and Galectin-3 knockdown were confirmed by flow cytometry 48 h after 

transfection. NT siRNA (grey area), gal9 siRNA or gal3 siRNA transfected moDCs (red area), gal9 and 

gal3 siRNA transfected moDCs (blue area). Black dotted line represents isotype control. Numbers in 

inset indicate geometrical Mean fluorescence intensity (gMFI). C. moDCs were transfected as above 

and surface levels of Galectin-9 and Galectin-3 assessed by flow cytometry. Grey area represent levels 

of Galectin-9 and Galectin-3 in NT siRNA transfected cells and black dotted line=isotype control. 

Numbers in inset indicate gMFI. In left panel: orange area shows levels of Galectin-9 in gal3 siRNA 

transfected cells. Red area depicts Galectin-3 levels in gal9 siRNA transfected cells. In right panel: 

organge area represents Galectin-3 levels in gal9 siRNA transfected cells and red area shows Galectin-

9 levels in gal3 siRNA transfected cells.  

  

Figure S2. Galectin-9 is depleted in dendritic cells upon gal9 siRNA transfection and lactose 

treatment, Related to Figure 2. A moDCs were treated with 35 mM lactose for 48 h and removal of 

extracellular Galectin-9 expression was confirmed by flow cytometry. Black population = untreated cells; 

purple population = lactose treated cells; black dotted line population = isotype control. Numbers in inset 

indicate gMFI. Panels depicts representative results for one donor. B. moDCs were transfected with 

gal9 siRNA or a NT siRNA. Galectin-9 knockdown was confirmed by flow cytometry 48 hours after 

transfection. NT (grey area) or gal9 siRNA-transfected moDCs (red area). Black dotted line represents 

isotype control values. Numbers in inset indicate gMFI. C. Total lysates from NT and gal9 siRNA 

transfected cells were subjected to Western Blot and Galectin-9 expression was analysed. Tubulin was 

used as loading control. Band intensities were quantified using ImageJ and normalised for tubulin. D. 

NT or gal9 siRNA-transfected cells were challenged with zymosan for 60 min. After this time, cells were 

fixed, stained and binding index calculated for each frame analysed. Data represents mean average 

binding index ± SEM of three independent donors. Twenty frames were analysed for each donor and 

transfection. E. Representative images from NT or gal9 siRNA-transfected moDCs 60 min after being 

challenged with zymosan. Scale bar: 25 μm. 

  

Figure S3. Galectin-9 knockdown does not affect cell surface or intracellular DC-SIGN levels, 

Related to Figure 2. moDCs were transfected with either NT or gal9 siRNA and the cell surface levels 

of Galectin-9 and DC-SIGN analysed 24 h (A and B), 48 (C and D) and 72 h (E and F) after transfection 

by flow cytometry. G and H. Intracellular levels of Galectin-9 (G) and DC-SIGN (H) were analysed 48 h 

after transfection with either NT or gal9 siRNA by flow cytometry. Each symbol represents one 

independent donor and lines connect paired NT and gal9 siRNA-transfected moDCs. Data represents 

mean average expression levels ± SEM. For statistical analysis, paired students t-test was conducted 

between NT and gal9 siRNA-transfected cells. n.s. p >0.05, ** p < 0.005, *** p < 0.001.  

  



Figure S4. DC-SIGN is essential for particle uptake in DCs, Related to Figure 2. A and B moDCs 

were transfected with gal9 or a NT siRNA. Forty-eight hours later cells were incubated with AZN-D1 or 

isotype control (mIgG1) for 10 min prior to being challenged with zymosan for 60 min. Cells were then 

fixed, stained and the phagocytic index calculated. Graph and panels show representative results for 

one donor out of three independent experiments. Scale bar: 25 μm. C Quantification and statistical 

analysis of experiments shown in (A). Data represents mean average phagocytic index ± SEM of three 

independent donors. Results show the mean value ± SEM of three independent donors. Unpaired 

students t-test was conducted between NT and gal9 siRNA-transfected cells. n.s p > 0.05, * p < 0.05, ** 

p < 0.005, *** p < 0.001.   

 

Figure S5. Decreasing extracellular galectins by lactose does not alter the phagocytic ability of 

dendritic cells, Related to Figure 4. A. moDCs were treated with 35 mM lactose for 48 h and removal 

of extracellular Galectin-9 and Galectin-3 expression was confirmed by flow cytometry. Blue population 

= untreated cells; magenta population = lactose treated cells; black population = isotype control. 

Numbers in inset indicate gMFI. Panels depict representative results for one experiment out of three 

independent experiments. B. Control or lactose-treated cells were challenged with zymosan alone or in 

combination with 35 mM lactose for 60 min. Cells were then fixed, stained and the phagocytic index 

calculated. Graph shows representative results for one donor. Each dot represents phagocytic index 

obtained for each microscopical field, each of which contained 10-20 cells. C. Graph shows the mean 

value ± SEM for three independent donors. Unpaired students t-test was conducted between untreated 

control and lactose-treated cells. n.s p > 0.05.  

 

Figure S6. Treatment with cytochalasin D does not affect cell viability, Related to Figure 5. A and 

B. NT or gal9 siRNA-transfected moDCs were pre-treated with 1.25 μg/ml cytD for 5 (A) or 10 min (B) 

prior to being challenged with zymosan for 30 min. Cells were then fixed, stained and the phagocytic 

index calculated. Forty frames were analysed for each condition and donor. Data represents mean 

phagocytic index ± SEM for one representative donor out of two independent experiments. C. moDCs 

transfected as per (A) were treated with 5 μg/ml cytochalasin D (cytD) for 10 min. After this time cells 

were subjected to propidium iodide (PI) and Annexin V-FITC double staining for flow cytometry and 

percentage of apoptotic and necrotic cells calculated. One representative donor out-of-three 

independent experiments is shown. D. moDCs were transfected as in (A) and pre-treated with 2.5 μg/ml 

cytD for 10 min prior to being challenged with zymosan for 60 min. Cells were fixed, stained and the 

phagocytic index calculated. Twenty frames were analysed for each condition and donor. Data 

represents mean average phagocytic index ± SEM for one representative donor out-of-four independent 

experiments.  

 

 

 

 

 



Transparent Methods 

Generation of monocyte-derived dendritic cells 

 Dendritic cells were derived from peripheral blood monocytes isolated from a buffy coat 

(Sanquin, Nijmegen, The Netherlands) (de Vries et al., 2002). Monocytes isolated from healthy blood 

donors (informed consent obtained) were cultured for up to five days in RPMI 1640 medium (Life 

Technologies, Bleiswijk, Netherlands) containing 10 % foetal bovine serum (FBS, Greiner Bio-one, 

Alphen aan den Rijn, Netherlands), 1 mM ultra-glutamine (BioWhittaker), antibiotics (100 U/ml penicillin, 

100 µg/ml streptomycin and 0.25 µg/ml amphotericin B, Life Technologies), IL-4 (500 U/ml) and GM-

CSF (800 U/ml) in a humidified, 5 % CO2. On day 3, moDCs were supplemented with new IL-4 (300 

U/ml) and GM-CSF (450 U/ml). 

Generation of bone marrow-derived dendritic cells 

 Galectin-9-deficient mice were kindly provided by GalPharma (Takamatsu, Japan) and were 

described elsewhere (Seki et al., 2008). To generate bone marrow–derived DCs (BMDCs), bone marrow 

cells from mouse femurs were cultured in RPMI 1640 medium supplemented with 10 % FCS, 1 mM 

ultra-glutamine, antibiotics, and ß-mercaptoethanol in the presence of 20 ng/ml GM-CSF (PeproTech) 

for 8 days to generate GM-CSF BMDCs.  

Infection model and cytokine measurements 

Wild-type C57BL/6J (Charles River) and galectin-9 null mice were maintained under specific 

pathogen-free conditions at the Central Animal Laboratory (Nijmegen, the Netherlands). Drinking water 

and food were provided ad libitum. The experiments were performed according to guidelines for animal 

care of the Nijmegen Animal Experiments Committee and in accordance with the ethical standards 

described in the declaration of Helsinki. Endotoxin-free Candida albicans was prepared as described 

previously (van Spriel et al., 1999). Yeast cells were heat-inactivated by incubating them at 65 °C for 90 

minutes. Animals were injected with 12x106 heat-inactivated Candida albicans in a volume of 200 µl 

PBS intravenously and 3x106 in 50 µl PBS subcutaneously. Three hours after injection, spleen and 

popliteal lymph nodes were isolated and meshed to obtain single cell suspension. Spleen and lymph 

node cells were meshed through a 100 µm cell strainer by using a syringe plunger. Cell suspension was 

spun at 400xg for 5 min and resuspended in 3 ml of 1x ammonium chloride solution for the lysis of 

erythrocytes. After 3 min of incubation at room temperature cells were washed with 20 ml of PBS 

2 times. To analyse cytokine secretion, 380x103 lymph node cells or 1x106 spleen cells were seeded 

into 96-well plates for 24 h after which supernatants were collected and stored at -20 °C. Spleen samples 

were re-challenged with 1x106 C. albicans prior to being seeded for 24 h and supernatants collected. 

The levels of IL-12 and TNFα in the supernatants of spleen and lymph node homogenates were 

determined using a commercial ELISA kits (ThermoFisher Scientific). Standard curves were run at the 

same time and were used to calculate the concentration of cytokines in the samples. 

Antibodies and reagents 

 The following primary antibodies were used for Western Blotting: rabbit anti-DC-SIGN (H200, 

Santa Cruz, Heidelberg, Germany) at 1:2000 (v/v), goat anti-Galectin-9 (AF2045, R&D systems, 

Minneapolis, Minnesota) at 1:1000 (v/v) and rat anti-tubulin (Novus Biological, Abingdon, United 

Kingdom) at 1:2000 (v/v). The following secondary antibodies were used: donkey anti-rabbit IRDye 680 



926-32223, Li-Cor, Lincoln, Nebraska), donkey anti-goat IRDye 680 (920-32224, Li-Cor), goat anti-rat 

IRDye 680 (A21096, Invitrogen, Landsmeer, Netherlands). All secondary antibodies were used at 

1:5000 (v/v). 

 The following antibodies were used for fluorescence microscopy: mouse IgG2B anti-human DC-

SIGN at 2 μg/ml (DCN46, BD Biosciences, Breda, Netherlands), mouse IgG1 anti-human AZN-D1 at 2 

μg/ml (Geijtenbeek et al., 2000), goat anti-human Galectin-9 at 20 μg/ml (AF23045, R&D systems); 

mouse monoclonal Rac1 (240106; Cell Biolabs) at 1:100, TfR (sc-65877, Santa Cruz) at 1:200, anti-

FITC Alexa fluor 647 (Jackson ImmunoResearch, Huissen, Netherlands; 200-602-037) at 1:200. The 

following secondary antibodies were used: donkey anti-mouse IgG Alexa 647 (A31571), goat anti-

mouse IgG1 Alexa 488 (A21121), donkey-anti goat IgG Alexa 488 or 647 (A11055 and A21447), rabbit 

anti-mouse IgG Alexa 488 (A21204) and goat anti-mouse IgG2B Alexa 647 (A21242). All secondary 

antibodies were purchased from Life Technologies and used at 1:400 dilution (v/v). For F-actin staining 

Alexa fluor-647 phalloidin (A22287, Thermofisher) or Alexa fluor-568 phalloidin (A12380, Thermofisher) 

were used at 1:100 dilution (v/v). To inhibit specific cytoskeleton components cytochalasin D was used 

(C8273, Sigma-Aldrich, Zwijndrecht, Netherlands) at a final concentration of 1.25 or 2.5 μg/ml.  

Small interfering RNA knockdown 

 On day 3 of DC differentiation, cells were harvested and subjected to electroporation. For 

Galectin-9 and Galectin-3 silencing, three custom stealth small interfering RNA (siRNA) were used. For 

Galectin-9 LGALS9HSS142807, LGALS9HSS142808 and LGALS9HSS142809 were used and for 

Galectin-3 LGALS3HSS180668, LGALS3HSS180670, LGALS3HSS180669 (Invitrogen). Equal 

amounts of the siRNA ON-TARGETplus non-targeting (NT) siRNA#1 (Thermo Scientific) were used as 

control. Cells were washed twice in PBS and once in OptiMEM without phenol red (Invitrogen). For 

silencing each Galectin, a total of 15 μg siRNA (5 μg from each siRNA) was transferred to a 4-mm 

cuvette (Bio-Rad) and 5-10x106 DCs were added in 200 μl OptiMEM and incubated for 3 min before 

being pulsed with an exponential decay pulse at 300 V, 150 mF, in a Genepulser Xcell (Bio-Rad, 

Veenendaal, Netherlands), as previously described (Schuurhuis et al., 2009). Immediately after 

electroporation, cells were transferred to preheated (37 °C) phenol red–free RPMI 1640 culture medium 

supplemented with 1 % ultraglutamine, 10 % (v/v) FCS, IL-4 (300 U/ml), and GM-CSF (450 U/ml) and 

seeded at a final density of 5x105 cells/ml. 

Co-Immunoprecipitation and Western Blotting 

 Endogenous DC-SIGN was immunoprecipitated from lysates of moDCs (day 6) untreated or 

treated with 35 mM lactose for 48 h. Cells (10x106) were detached using cold PBS, collected and lysed 

in 1 ml lysis buffer containing 150 mM NaCl, 10 mM Tris-HCl (pH 7.5), 2 mM MgCl2, 1 % Brij97, 2 mM 

CaCl2, 5 mM NaF, 1 mM NaVO4 and 1 mM PMSF for 30 min on ice. Cell lysates were pre-cleared with 

3 % BSA and isotype control-coated Dynabeads (Invitrogen). Lysates were then incubated with 2 μg of 

anti-DC-SIGN (H200, SantaCruz) or isotype control under rotation. After incubating for 1 h at 4 °C, 

dynabeads were added and samples were further incubated for 1.5 h. Afterwards, beads were washed 

five times in washing buffer (150 mM NaCl, 10 mM Tris-HCl (pH 7.5), 2 mM MgCl2, 0.1 % Brij97, 2 mM 

CaCl2, 5 mM NaF, 1 mM NaVO4 and 1 mM PMSF) and bound proteins eluted in SDS sample buffer 

(62.5 mM Tris pH 6.8, 2 % SDS, 10 % glycerol). For immunoprecipitations performed on lactose-treated 



cells, 35 mM lactose was added to the lysis and wash buffer. Proteins were separated by PAGE and 

blotted onto PVDF membranes. Membranes were blocked in TBS containing 3 % BSA and 1 % skim 

milk powder at room temperature for 1 h prior to be stained with specific antibodies against DC-SIGN 

and Galectin-9. Antibody signals were detected with HRP coupled secondary antibodies and developed 

using Odyssey CLx (Li-Cor) following manufacturer’s instructions. Images were retrieved using the 

Image Studio Lite 5.0 software.  

Uptake assay and immunofluorescence 

 2x105 moDCs transfected with either non-targeting (NT) or gal9 siRNA were seeded in phenol 

red free RPMI containing 10 % FBS, 1 mM ultra-glutamine, antibiotics, IL-4 (500 U/ml) and GM-CSF 

(800 U/ml) in a humidified, 5 % CO2-containing atmosphere for 48 hours. After this time, cells were 

washed with serum free RPMI and challenged with 1x106 zymosan-FITC (ThermoFisher scientific) for 

15, 30 or 60 min, after which moDCs were washed extensively with PBA and fixed with 4 % 

paraformaldehyde (PFA). When appropriate, cells were incubated with 20 μg/ml of anti-DC-SIGN (AZN-

D1) or isotype control for 10 min prior to the addition of the zymosan-FITC particles. For experiments 

performed using cytoskeleton-blocking agents, cells were incubated with either 1.25 or 2.5 μg/ml of 

cytochalasin D for 10 min prior to the addition of zymosan-FITC particles. For lactose blocking 

experiments, moDCs were treated with growth medium containing 35 mM of lactose for 48 h. After this 

time, cells were detached and challenged in suspension with zymosan_FITC particles for 45 min prior 

to being seeded on Poly-L-Lyisine-coated coverslips. Cells were left to attach to the coverslip for further 

15 min in the presence of zymosan prior to being fixed with 4 % PFA and stained as above. 

 For immunofluorescence staining, samples were incubated without permeabilisation with an 

anti-FITC AF647 antibody (200-602-037, Jackson) at 1:200 (v/v) for 30 min at room temperature 

followed by DAPI staining (Sigma-Aldrich) at 1:3000 (v/v) for 10 min and at room temperature. Cells 

were then washed twice with PBS, one time with milliQ H2O, embedded onto glass slides using Mowiol 

(Calbiochem) and stored at – 20 °C until imaging. Samples were imaged with a Leica DMI6000 epi-

fluorescence microscope fitted with a 63x 1.4 NA oil immersion objective, a metal halide EL6000 lamp 

for excitation, a DFC365FX CCD camera and GFP and DsRed filter sets (all from Leica, Wetzlar, 

Germany). Focus was kept stable with the adaptive focus control from Leica. Images were analysed 

with ImageJ software. Twenty to thirty frames were analysed for each condition and the phagocytic 

index ((total number of particles –total number of membrane-bound particles)/number of cells) and the 

binding index (number or bound particles/number of cells) calculated for each frame.  

Flow cytometry 

 Single cell suspensions were stained with specific antibodies or isotype control as negative 

control for 30 min at 4 °C. The following antibodies were used: mouse-anti DC-SIGN (clone AZN-D1, 

(Geijtenbeek et al., 2000)) at 5 μg/ml; goat anti-Galectin-9 (AF2045, R&D systems) at 20 μg/ml. Before 

staining, moDCs and U-937 cells were incubated with 2 % human serum for 10 min on ice to block non-

specific interaction of the antibodies with FcRs. All secondary antibodies were conjugated to Alexa Fluor 

488 or Alexa Fluor 647 dyes (Invitrogen) and used at dilutions 1:400 (v/v). All antibody incubations were 

performed in PBA containing 2 % human serum. Unless otherwise stated, all flow cytometry stainings 

were performed against membrane-bound DC-SIGN and Galectin-9. For intracellular DC-SIGN and 



Galectin-9 stainings cells were fixed in 4 % PFA (w/v) for 10 min, permeabilised by incubation for 15 

min with PBA containing 0.1 % saponin (PBA-S) prior to being stained as before. For actin staining cells 

were fixed in 4 % PFA (w/v) for 10 min, permeabilised by incubation for 15 min with PBA containing 0.1 

% saponin (PBA-S) and F-actin subsequently labelled with Alexa Fluor 647-labelled phalloidin in PBA-

S for 20 min at room temperature. Cells were analysed with a FACSCalibur instrument (BD Biosciences) 

and results analysed using FlowJo version X software (Tree Star, Ashland, Oregon).  

Confocal microscopy 

 gal9 or non-targeting siRNA –transfected moDCs were collected at day 5 and blocked with PBA 

+ 1 % human serum prior to being incubated with primary antibody for 30 min on ice. Cells were then 

washed and incubated for further 30 min with the corresponding secondary antibody followed by a 60 

min incubation at 12 ° C. Cells were then washed extensively, fixed in 2 % PFA and allowed to attach 

on poly-L-lysine-coated 12 mm glass coverslips (Electron Microscopy Sciences, Hatfield, Pennsylvania) 

for 30 min at room temperature. After, cells were again fixed with 2 % PFA for 20 min, washed with PBS 

and coverslips embedded in glass slides using Mowiol prior to be stored at 4 °C until imaging. For actin 

staining, cells were fixed with 4 % PFA for 20 min at 4 °C, washed twice and permeabilised by incubation 

with PBA containing 0.1 % saponin (PBA-S). F-actin was subsequently labelled with Alexa Fluor 647-

labelled phalloidin in PBA-S for 30 min at room temperature. Confocal images were obtained in a 

sequential manner using a commercial Olympus FV1000 Confocal Laser Scanning Microscope with 

Argon (457, 488, 515 nm), and 405, 559 and 635 diode excitation lasers and a 60× oil immersion 

objective (UPlanSApo 60×/1.35 Oil). Images were obtained using the FW10-ASW software (Olympus, 

Nijmegen, Netherlands) and processed with Fiji software.  

Ventral plasma membrane staining and super resolution imaging 

 5x105 moDCs were seeded onto 25 mm glass coverslips (Electron Microscopy Sciences, 

Hatfield, Pennsylvania) in phenol red free RPMI containing 10 % FBS, 1 mM ultra-glutamine, IL-4 (500 

U/ml) and GM-CSF (800 U/ml) in a humidified, 5 % CO2-containing atmosphere for 48 hours. After this 

time, ventral plasma membranes were prepared by sonication using a Sartorius Labsonic P sonicator 

with cycle set at 1 and amplitude at 20 % output. First, the sonicator tip was placed in a glass beaker 

containing 100 ml prewarmed hypotonic PHEM buffer (6 mM PIPES, 5 mM HEPES, 0.4 mM Mg2SO4, 2 

mM EGTA). Next, coverslips were held 1-2 cm below the sonicator tip at a 45 degrees angle in the 

hypotonic PHEM solution and cells were sonicated for approximately 1 second. Directly after sonication 

coverslips were transferred to a pre-warmed PBS solution containing 4 % paraformaldehyde and 0.05 

% glutaraldehyde and incubated for 30 min at room temperature. For Galectin-9 and actin staining, 

coverslips were subsequently incubated with anti-Galectin-9 antibody (AF23045, R&D systems) for 2 h 

at room temperature, washed and incubated for 1 h with the secondary antibody donkey-anti-goat Alexa 

568 (A11057) at 1:200 (v/v) and Alexa Fluor 488-labelled phalloidin at 1:100 (v/v) followed by DAPI 

staining (Sigma-Aldrich) at 1:3000 (v/v) for 10 min and at room temperature. Cells were then washed 

twice with PBS, one time with milliQ H2O, embedded onto glass slides using Mowiol (Calbiochem) and 

stored at 4 °C until imaging. Confocal images were obtained in a sequential manner using a commercial 

Zeiss LSM880 confocal scanning microscope equipped with an Airyscan Unit, 405 and 561 nm diode 

lasers, argon (458, 488, 514 nm) lasers and a 633 nm laser and a 63× Plan Apochromat (1.4 NA) oil 



immersion objective. Images were obtained using the ZEN software (Zeiss Microscopy, Breda, 

Netherlands) and processed with the ZEN Airyscan processing toolbox and Fiji software.  

Atomic force microscopy 

 6x105 moDCs transfected with either Non-Targeting or gal9 siRNA were seeded in phenol-red 

free RPMI supplemented as before in a 40 mm glass bottom dish (GWST-5040, WillCo, Amsterdam, 

Netherlands) for 48 hours. After this time, mechanical probing of cells was performed with a Catalyst 

BioScope (Bruker, Kalkar, Germany) atomic force microscope coupled to a confocal microscope (TCS 

SP5II, Leica) using the “point and shoot” feature of the Nanoscope software (Bruker). Silicon nitride 

cantilevers with nominal spring constants of 0.06 N/m (S-NL type D, Bruker) were used without any tip 

modification. The system was calibrated first in air and then in cell-free medium at 37 °C prior to each 

experiment by measuring the deflection sensitivity on a glass surface, which enabled determination of 

the cantilever spring constant using the thermal noise method (te Riet et al., 2011). Before the sample 

was placed, the xy movement of the sample stage was calibrated using the NanoScope software. An 

optical image of the cells was captured after the tip position was registered, which allowed for selection 

of the point (or region) of interest on the optical image. Two force − distance curves were sequentially 

acquired from each point selected on the membranes of stretched cells and three independent points 

were probed for each cell. The forward (approach) and reverse (retraction) velocities were kept constant 

at 1 μm/s, ramping the cantilever by 4 μm with a 3 nN threshold in a closed z loop. After baseline 

correction, approach curves were analysed for determination of Young’s modulus of elasticity using 

Sneddon’s conical indenter model (Sneddon, 1965) for which Poisson’s ratio was set as 0.5 (Lin et al., 

2007) and the half angle of the indenter as 18°. Contact point-independent linearised Sneddon equation 

was used for fitting the approach curves (van Helvert and Friedl, 2016).  The region on the approach 

curve through which the model was fit was determined via setting the lower and upper boundaries that 

corresponded to approximately 10 % and 70 % of the difference between the maximum and minimum 

forces exerted, respectively. Two curves per point and 2-3 points per cell were averaged to obtain 

Young’s modulus of elasticity per cell. Approximately 10 to 30 cells were analysed for each condition 

and experiment.  

Rac1-GTPase activation assay 

 To assess GTP-bound Rac1 levels, colorimetric G-LISA activity assay kit (BK128-S, 

Cytoskeleton, Denver, Colorado) was used according to manufacturer’s instructions. Day 5 moDCs were 

stimulated with zymosan particles (Z4250, Sigma-Aldrich) for 5, 15 or 30 min prior to being lysed in ice-

cold lysis buffer, snap-frozen in liquid nitrogen and stored at -80 °C. Protein concentrations were 

determined using the micro BCA protein assay kit (23235, ThermoFisher scientific) and 50 μg of total 

protein were subsequently used for the G-LISA assay. Rac1-GTP levels were determined using the 

Rac1-GTP binding 96-well plates. Absorption of the wells at 490 nm was determined with an iMark 

microplate reader (BioRad).   

Statistical analysis 

 All data was processed using Excel 2013 (Microsoft) and GraphPad Prism 5 software. All Image 

processing was performed on ImageJ software and statistical analysis was done using Prism5. The 



specific statistical test used is described for each figure in the figure legend. p values < 0.05 were 

considered statistically significant. 
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