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Abstract: Chitosan (CH)-based materials are compatible to form biocomposite film for food packaging
applications. In order to enhance water resistance and mechanical properties, cellulose can be
introduced to the chitosan-based film. In this work, we evaluate the morphology and water resistance
of films prepared from chitosan and cellulose in their nanoscale form and study the phenomena
underlying the film formation. Nanofluid properties are shown to be dependent on the particle form
and drive the morphology of the prepared film. Film thickness and water resistance (in vapor or
liquid phase) are clearly enhanced by the adjunction of nanocrystalline cellulose.
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1. Introduction

Chitosan is an amino polysaccharide derived from alkaline hydrolysis of chitin, an abundant
polymer occurring in nature that is found in the exoskeletons of crustaceans and the cell wall of fungi [1].
Chitosan offers many advantages with great potential industrial applications due to its biodegradability,
biocompatibility, antibacterial activity, nontoxicity, and versatile chemical and physical properties [2,3].
Chitosan also possesses an excellent film-forming ability that can be employed as a green alternative to
food packaging films. It is considered to be a good candidate to replace petroleum-based polymers, to
reduce waste inputs to the environment and to decrease health hazards due to the removal of toxic
additives from nonbiodegradable plastics such as polyethylene, polypropylene, and polystyrene into
the consumable products [4,5].

Fabrication of chitosan-based films for packaging applications has been widely studied [6,7].
However, as a forming film consisting of a single component, chitosan is still inadequate in practical use.
Major limitations are low mechanical properties, especially in terms of ability to elongate, poor heat
resistance, and weak moisture barrier ability compared to plastic films [8–10]. Moreover, it cannot be
molded or even be heat-sealed like thermoplastic polymers. The physicochemical properties of chitosan
depend on the molecular weight and degree of deacetylation (DD) that affects their functionalities [11].
An alternative method to improve its properties to an acceptable level is obtained by incorporating
reinforcement materials to form nanocomposites. Chitosan is a highly compatible material, thus it is
generally useful when blended with nanomaterials. Therefore, it can be used to produce biobased
nanocomposites via mixing with Cellulose Nanocrystals (CNC) [12,13].
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CNC are needlelike cellulose crystals of 10–20 nm in width and several hundred nanometers in
length that are produced from various fiber sources (e.g., bleached wood pulp, cotton, manila, tunicin,
or bacteria) by removing the amorphous regions while keeping the crystalline regions through partial
depolymerization [14–16]. CNC is highly crystalline, and it has a large aspect ratio and ability to form
interconnected network structures through hydrogen bonding [17]. The major challenge associated
with the nanofabrication of composite materials prepared with CNC is to obtain an appropriate
percolation network [18], because CNC exhibit strong hydrogen bonding interactions between one
another [19,20]. Large undesirable agglomerates can be created within the polymer, while at the
same time the same interactions play an important role to produce the desirable filler network inside
the matrix.

To maximize interfacial adhesion within the polymer, it is essential to disperse the CNC into the
matrix polymer in order to maintain the filler/filler hydrogen bonding interactions [19]. Many strategies
have been adopted, like the use of surfactants or using the chemical surface modification of the
nanowhiskers [21–24]. This strategy is prohibited by the use of surfactants to coat the high specific area
of the nanocrystals [25]. Polymer chain surface modification of the nanoparticles is an alternate way to
prepare nanocomposites with CNC [19,26–28]. Mesquita et al. [17] prepared biobased nanocomposites
via covalent linkage between chitosan and functionalized CNC.

In this work, biobased nanocomposites were obtained through the simple mixing between CNC
and nanosized chitosan. The films were prepared by mixing in a liquid phase and subsequent
evaporation. Several studies were carried out to observe the relation between the composition of
the suspension in the liquid phase and the morphology of nanocomposite film and decipher the
phenomena underlying film formation.

2. Materials and Methods

2.1. Materials

Chitosan from shrimp shell (low molecular weight grade, DD 75–85%) was purchased
from Sigma-Aldrich, Saint-Quentin Fallavier, France. Glacial acetic acid, glycerol, and sodium
tripolyphosphate (TPP) were obtained from Thermo Fisher, Scientific, Illkirch-Graffenstaden, France,
and CNC were bought from CelluForce, QC, Canada. Demineralized water (conductivity of
0.06 mS cm−1) produced by a purification chain (Veolia, Paris, France) was used for all experiments.

2.2. Preparation of Solutions

TPP solution (0.5% w/v) and CNC suspension (1% w/v) were prepared, respectively, by dissolving
0.5 g of granular TPP and 1 g of CNC powder in a beaker glass containing 100 mL water. Each solution
was then stirred at 300 rpm using a magnetic stirrer at room temperature for 2 h, while 0.5% w/v of
chitosan (CH) solution was prepared by dispersing 0.5 g of chitosan powder and 0.1 g glycerol in a
beaker glass containing 100 mL of a buffer, which is 0.10 M in acetic acid, then stirred up to 500 rpm
using a magnetic stirrer for 24 h. The resulting CH was then filtered using Whatman filter paper no. 1
to remove the impurities.

2.3. Preparation of Nanochitosan Particles

Nanochitosan (NCH) particles were synthesized by the ionotropic gelation method. Four
milliliters of TPP solution was introduced drop-wise in a beaker glass containing 40 mL of CH
solution under constant high-speed stirring at 10,000 rpm rate, room temperature, for 5 min using
rotor-stator homogenizer (POLYTRON PT-3100D-Kinematica, Luzern, Swiss). The cross-linking
reaction of TPP and Chitosan was then completed under ultrasonic irradiation for 20 min using an
ultrasonic processor (Vibra Cell, Type 72434, 100 Watts, horn diameter: 1.0 mm, Fisher Scientific,
Illkirch-Graffenstaden, France).
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2.4. Preparation of Film Composites

The film composites of nanochitosan particles and cellulose nanocrystals (NCH-CNC) were
manufactured by dispersing drop by drop 4 mL of CNC suspension in a beaker glass containing
40 mL of NCH suspension using a rotor-stator homogenizer at 5000 rpm, room temperature, for 5 min.
The matrix NCH-CNC suspension was then irradiated using ultrasonic wave for 5 min, then followed by
deaeration in a vacuum chamber for 15 min. The film composites were obtained by the solvent-casting
method, in which the final NCH-CNC suspension was poured into circular type plastic petri dish
with diameter 86.5 mm and height 12 mm and evaporated at room temperature and constant Relative
Humidity (50% RH) for 2 days before peeling off of the dried film composites.

2.5. Density Measurement

The density of the liquids was measured by a Tensiometer (K-100-Krűs GmBH, Hamburg,
Germany) composed of two parts: a holder (platinum-iridium) and an immersion body (silicon crystal).
The measurement is based on the Archimedes principle with a range of 1 to 2200 kg/m3 and precision
of ±3 kg/m3. The true (skeletal) density of samples was measured by gas pycnometer (AccuPyc 1330
from Micromeritics, GA, USA) using a 10 cm3 sample module and helium as filling gas (99.995%
pure). Raw materials, which are chitosan and CNC, have densities greater than pure water, namely,
1456 kg/m3 for chitosan and 1576 kg/m3 for CNC.

2.6. Viscosity Measurement

The viscosity of liquid solutions was measured by rheometer Physica MCR 301 (Anton Par, GmbH,
Graz, Austria) with torque (0.1–200) ± 0.001 µNm. Measuring type was used concentric cylinder
chamber CC27/T200/Q1 (DIN 53019) at constant temperature 20 ◦C.

2.7. Diameter Particles Measurement

Nanoparticles diameters were measured by high-resolution Transmission Electron Microscopy,
TEM (JEOL-2100F, JEOL Ltd., Tokyo, Japan) and Scanning Electron Microscopy, SEM (JEOL-2100F,
JEOL Ltd., Tokyo, Japan). The sample was deposited on carbon-coated copper grids, and the negative
staining was achieved using uranyLess solution (Delta Microscopies, Toulouse, France). The size and
diameter distribution particle were measured by Image J (version 1.41 h) and origin pro-8 software
(MA, USA, open source version).

2.8. Water-Resistant

Water resistance of the films was evaluated by studying their behavior towards the water in the
liquid and gas phase. Resistance to the liquid phase was imaged by a DSA-10 camera from Kruss
GmbH, Hamburg, Germany. Liquid droplets were added on the surface of the film and then recorded.
Image analysis was performed to calculate the volume decrease of the droplet through time

Permeation rate =
∆V
∆t

(1)

where ∆V was Droplet volume (µL) and ∆t was time (s). On the other hand, water vapour resistance
was evaluated by covering a bottle containing a desiccant with the film. The bottle was then placed
into a controlled chamber (HygroGen generator from Rotronic Instruments Ltd., Crawley, UK) with
75% relative humidity. The evolution of mass was recorded every day for one week. The equation
below was used to calculate the water vapour permeability constant [29]

K =
∆m
∆t

(
∆y
∆p

)
A (2)
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where K is permeability coefficient (m2 s−1 Pa−1), ∆m is mass (kg), ∆t is time (s), ∆y is film thickness
(m), ∆p is pressure difference (Pa), and A is Area (m2).

3. Results and Discussions

3.1. Nanochitosan Particles

Chitosan polymer solution was transformed into NCH suspension by adding TPP solution
droplets through an ionotropic gelation mechanism. The TEM images are presented in Figure 1a,b.
The images show that TPP is able to wrap the chitosan polymer chain. The cationic part of the chitosan
polymer could then interact with the anionic part of TPP to form circular shape NCH particles with an
average particle size distribution is 21 ± 1 nm (Figure 1c).
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Figure 1. Transmission Electron Microscopy (TEM) images of Nanochitosan (NCH) particles: (a) 500 nm
resolution, (b) 20 nm resolution, and (c) average particle size distribution.

3.2. Liquid Properties

The nanofluids consist of two main constituents, namely, a continuous phase that is an acetic
acid solution and a dispersed phase consist of NCH and CNC. The interactions between continuous
and dispersed phases determine the behavior of the final solution in static and dynamic conditions.
The static condition was dominated by gravitational force, whereas dynamic condition was dominated
by continuous phase motion. When continuous phase moved, its velocity induced a momentum
transfer to the discrete phase, which caused them to move either with the same or a different velocity.
The inertia of the discrete phase determines what kind of response is going to be generated. NCH and
CNC were mixed together to form a composite in the liquid phase. The density and the viscosity of
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liquid suspensions were then determined. These parameters determine the microscopic activity of
the liquid solution that is crucial to optimize the process and the key properties of the NCH-CNC
composite film.

3.2.1. Liquid Density

0.1 M acetic acid solutions and CNC suspension have a density comparable to that of pure water,
namely, 1000 kg/m3. All liquid samples, whether CH, NCH, or both, also have a very close density to
that of pure water. Density variations were very small and did not exceed ±1 kg/m3, that is, below the
measurement precision of density determination.

3.2.2. Liquid Viscosity

Acetic acid and CNC suspension had a viscosity of 1 mPa s, which is the same as pure water.
Consequently, any change in the apparent viscosity arises from the suspension of particles. Figure 2
shows the variation of the apparent viscosity as a function of the shear stress for different solutions
and suspension used in this study. The CH shows that at low shear rates (the limit of zero shear rate),
the apparent viscosity is almost constant. The subsequent Newtonian viscosity (η) is close to 28 mPa
s. However, its slope gradually decreases with the strain rate above 100 s−1, which represents the
transition from Newtonian to the non-Newtonian regime. According to literature, this behavior could
be explained by the propensity of polymer molecules to stretch under the effect of the shear rate [30].
The entanglement–disentanglement extent of chitosan depends on the shear rate, which is characterized
by the changing slope of the apparent viscosity [31]. Similar trends have been reported in the literature
for varying concentrations of acetic acid, including the one used in the present study [32,33].
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Figure 2. Liquids behavior under different shear rates.

NCH suspension is commonly obtained by an added droplets of the TPP solution followed by a
mixing step [34,35]. TPP influences mainly the two-fluid characteristics, namely, cohesive force and
selfdeformation of the particle inside. The cohesive force of NCH is smaller than the CH leading to a
decrease of the apparent viscosity. The NCH shows a Newtonian fluid behavior within the range of
shear rates used in this study. This signifies that NCH particles are able to maintain their shape under
the applied shear rate range. These results were confirmed by TEM micrographs (Figure 1), which
showed that NCH has a spherical shape.

Generally, the mixing of polymers allows for the improvement of the properties of composite
materials [36]. This is also the expected goal of mixing NCH and CNC particles in the present study.
Indeed, CNC modifies the flow behavior of the solution. CNC has the ability to the selfarrangeme
in solution because of its zeta potential [37,38]. This affects the behavior of the nanofluid mixture in
static and dynamic conditions. In dynamic conditions, CNC compensates for the flow of continuous
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phase by translational motion, which tries to minimize the drag force. The CNC particles reoriented
themselves to be in line with the flow direction. During this process, the stress over CNC surface
changes and simultaneously influences the velocity field of the fluid medium around CNC.

Under shear rate flow, it seems that the flow behavior is dominated by CNC rather than NCH.
This could be explained by the difference of particle motion under shear rate according to their shape.
The Scanning Transmission Electron Microscopy (STEM) micrograph below shows CNC shape and
morphology. CNC is the crystalline part of cellulose that has a rod-shaped geometry, which can be
considered as spheroidal shape (Figure 3).
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In order to take account of the distribution of orientation, a nondimensional parameter, namely,
Peclet number for shear flow case, needs to be considered

Pe =

.
γ

Dr
(3)

where
.
γ is shear rate and Dr is time scales for Brownian motion. The Peclet number (Pe) represents a

comparison between hydrodynamic and Brownian motion [39]. CNC’s shape could be approximated
as elongated with an aspect ratio much higher than unity. The rotational Brownian diffusion coefficient
(Dr) can be obtained by the equation

Dr =
3kT

(
ln2rp − 1/2

)
8πηsa3 (4)

where k is Boltzmann constant (m2 kg s−2 K−1), T is Absolute temperature (K), rp is axis ratio, ηs is
viscosity (Pa s), and a is axis of the symmetry (m). NCH nanoparticles have a quite spherical shape.
Their rotational Brownian diffusion coefficient can be obtained by the equation

Dr =
3kT

8πηsa3 (5)

As can be seen from Figure 4, the Peclet number of CNC is much higher (about 15-fold) than NCH
particles, which means that CNC is the most dominant component under dynamic conditions.

3.3. Hydrodynamic Behavior

Hydrodynamic diameter observed by Dynamic light scattering (DLS) supports the TEM
micrographs result, which shows that TPP squeezes the diameter of chitosan chain polymer and form
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circular shape particles. NCH in suspension has a much higher hydrodynamic diameter than the
crystalline diameter observed in TEM, which implies a degree of aggregation of the nanoparticles while
remaining stable for several hours in suspension. NCH suspensions have comparable hydrodynamic
diameter when adding varying CNC concentrations are presented in Table 1.
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Table 1. Digital Light Scattering (DLS) measurement.

Sample Hydrodynamic Diameter (nm) PDI Zeta Potential (mV)

NCH 357.1 0.522 +62.0
NCH + CNC 377.6 0.453 +59.3

NCH and CNC are both charged particles characterized by the surface (zeta) potential. The electric
potential over the surface of the particles is the cause of their electrophoretic mobility [40–42].
Zeta-potential located at the shear plane of the particles describes how important those effects are.
Higher potential represents denser surface energy. NCH and CNC have positive and negative charges,
respectively. When they are mixed together, their interaction leads to a slightly different potential.
Note that the zeta potential is also related to the morphology of particles. 30 NCH and CNC have
different shapes (see Figures 1 and 3) that affect their behavior differently when dynamic motion is
applied to the suspension.

3.4. Film Morphology

The evaporation process occurs at the interface between the liquid solution and air, and is mainly
driven through diffusivity. This process takes place at the interface caused by the difference of partial
pressures between gas and liquid phases [43]. Various mechanisms are involved when the liquid
in the bulk region moves to the interface, but the main hydrodynamic flow mechanism depends
on the osmosis pressure gradient [44]. Figure 5 presents the NCH-CNC film and SEM micrographs
(side view as thickness). The evaporation of the nanofluid reduces the intermolecular distances
and form a continuous film. Smaller distance allows the attractive forces to overcome the repulsive
forces. The unbalanced force leads to the coalescence between molecules in order to minimize the
surface energy. The whole activity during evaporation time determines the final film thickness [44–46].
Chitosan has good film formation ability, but CNC particle is crystalline and the coalescence between
particles does not occur [46].

Figure 6 presents the CH, CH-CNC, and NCH-CNC films, and shows that the morphology of
films is similar. Nevertheless, the surface of the chitosan film contains scratch at micrometer scale
that may be due to some discontinuities formed during the film formation process. On the contrary,
NCH-CNC composites are able to form a smooth and continuous film. It should be noted that close
up of the surface did not permit one to show any nanoobjects, and the surface appeared completely
smooth and homogeneous.
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We speculate that these results are the reason behind reported works that found that CNC is able to
increase the tensile strength and other mechanical properties of composite films [47,48]. Indeed, CNC
molecules are able to rearrange themselves and make a network that tries to minimize their electrostatic
interactions, which leads to a good distribution of the discrete phase [49]. Therefore, CNC contributes
to maintaining a certain distance between each particle and tries to establish the equilibrium potential.
When a liquid suspension of CH-CNC nanocomposite is evaporated, this equilibrium potential tends
to overcome the instability during the film formation process. The lack of that potential equilibrium is
the main reason that film formation ceases in the absence of CNC. Figure 7 displays the film thickness
of four different samples at the same volume solution.
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3.5. Statistical Analysis

In order to determine if the CNC has a real effect on the thickness of the nanocomposite film,
a t-test analysis was performed. The results of the test, shown in Figure 8, indicate a statistically
significant difference in the variance for CH-CNC, compared to NCH-CNC. Thus, we can be assured
that CNC will make the film network more rigorous.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 14 
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3.6. Water-Resistance

Chitosan-based films have low water resistance, but the addition of CNC is one of the most
promising ways to overcome this problem. In the presence of the CNC, the water-resistance properties
(vapour or liquid) of CH and NCH are modified is presented in Table 2.
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Table 2. Water-resistance properties of film composites.

Sample Water liquid Penetration
Rate (10−3 µL s−1)

Water Vapour Permeability
Constant (10−15 m2 s−1 Pa−1)

CH 8.3 3.39
NCH 0.3 4.65

CH-CNC 0.5 1.98
NCH-CNC 0.1 1.25

This reinforcing effect is more significant for resistance to liquid water. Figure 9 shows the behavior
of the film with nanocrystalline cellulose towards a water droplet. Thus, only NCH-CNC could retain
water droplets more than five minutes where other samples absorbed water and were damaged in less
than twenty seconds. The figures below show how the water penetrates when the water liquid drops
on the surface of the film. It appears that water spread randomly to all directions in the pure chitosan
film. CNC addition leads to a more circular shape of water penetration. Under gravity only, the water
moves to all directions with the same force. The tendency to form more circular shapes of the film
show that water resistance force spread more homogeneously when CNC was involved.
Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 14 

 

  

(a) (b) 

Figure 9. Record of water droplet penetration on film composites: (a) initial condition at 0 s, (b) after 

film absorb water liquid at 16 s. 

4. Conclusions 

We produced chitosan solution and nanochitosan suspension added with nanocellulose and 

evaluated their properties: zeta potential and hydrodynamic diameter of the colloidal suspension as 

well as density and viscosity of the solution and suspension. Differences in properties in the liquid 

phase are clearly visible when one of the constituents is in the nanoform. We then produced films 

from the evaporation of the different solutions and suspensions and evaluated their properties as a 

function of their constitution. These were clearly shown to be dependent on the nature of the chitosan 

constituent (polymeric or nanoparticle) and the presence of nanocellulose. It was found that film 

morphology was smoother when the constituent was in nanoform and that film thickness was 

decreased by the adjunction of nanocellulose. Finally, it was shown that nanocellulose was essential 

for improving the water resistance (in liquid or vapour form) of the films. 

Author Contributions: M.P.P. took care of sections 1–4, proposed the subject of the review to all the other 

authors, and took care about the general planning of the work; E.Y.W. organized Section 2, the figures, tables, 

and organized references; F.N. took care about Section 3.4; D.C. prepared Sections 3.1; 3.2; K.S. prepared Section 

3.3; E.G. wrote the abstract and the conclusions and supervized all the work; and, finally, all the authors 

contributed equally to the general organization of the manuscript and its revision, with helpful suggestions 

about the content and the style of the text.  

Funding: The authors thank the Ministry of Research, Technology, and Higher Education of the Republic of 

Indonesia (Kemenristek DIKTI) for providing scholarship under the 4 in 1 IDB project. We also Gratefully 

supported by the European Union through FEDER funding, by the Région Haut de France, the Ecole Supérieur 

de Chimie Organique et Minérale (ESCOM), and Université de Technologie de Compiègne (UTC). 

Conflicts of Interest: The authors have no conflicts to declare. 

References 

1. Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical 

nanomaterials. Int. J. Adv. Res. 2016, 4, 411. 

2. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 

1819–1841, doi:10.1016/j.msec.2013.01.010. 

3. Gomes, L.P.; Souza, H.K.S.; Campiña, J.M.; Andrade, C.T.; Silva, A.F.; Gonçalves, M.P.; Paschoalin, V.M.F. 

Edible chitosan films and their nanosized counterparts exhibit antimicrobial activity and enhanced 

mechanical and barrier properties. Molecules 2019, 24, 127, doi:10.3390/molecules24010127. 

Figure 9. Record of water droplet penetration on film composites: (a) initial condition at 0 s, (b) after
film absorb water liquid at 16 s.

4. Conclusions

We produced chitosan solution and nanochitosan suspension added with nanocellulose and
evaluated their properties: zeta potential and hydrodynamic diameter of the colloidal suspension as
well as density and viscosity of the solution and suspension. Differences in properties in the liquid
phase are clearly visible when one of the constituents is in the nanoform. We then produced films
from the evaporation of the different solutions and suspensions and evaluated their properties as
a function of their constitution. These were clearly shown to be dependent on the nature of the
chitosan constituent (polymeric or nanoparticle) and the presence of nanocellulose. It was found that
film morphology was smoother when the constituent was in nanoform and that film thickness was
decreased by the adjunction of nanocellulose. Finally, it was shown that nanocellulose was essential
for improving the water resistance (in liquid or vapour form) of the films.
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