
Translational proteomics: the importance of mass 
spectrometry-based approaches
Interest in using mass spectrometry (MS) for clinical 
analyses has grown significantly in the past few years due 
to its success in studies of human specimens, such as its 
recent applications for single cell analysis of bone marrow 
[1], direct blood sampling in multiple disease states, such 
as cardiac injury [2] and breast cancer [3], and the 
identification of Gram-negative bacilli in multiple clinical 
samples, including blood, tissue and urine [4,5]. MS 
analyses are utilized to obtain highly accurate mass 
measure ments of molecules in a sample, and can sensi-
tively detect and identify molecules and subtle changes in 
their composition and abundance. In parti cu lar, MS-
based proteomic applications have received considerable 
attention. Proteomics is the study of the entire comple-
ment of proteins in an organism, tissue or cell and their 
changes under different conditions, from disease states to 
environmental variations. It has been estimated that the 
human proteome contains more than 2 million different 
protein products or ‘proteoforms’ [6-8].

Since human proteins perform cellular functions essen-
tial to health and/or disease, obtaining knowledge of their 
presence and variance is of great importance in under-
standing disease states and for advancing translational 
studies, especially those related to personalized medicine 
[9,10]. Human blood contains combinations of potentially 
detectable proteins from different parts of the body, and 
may be the single most informative sample for character-
izing an individual’s health [11]. From a clinical perspec-
tive, finding specific disease markers or biomarkers in 
such fluids represents an attractive alternative to tissue 
samples, due to the relative ease and less invasive nature 
of collection, and the large volumes that are normally 
obtainable. Proteomic studies promise to provide insights 
into the dynamic nature of biological systems through 
analysis of the proteins in biofluid and tissue samples, 
thereby defining the state of the organism at the 
molecular level. This approach not only incorporates the 
complexity of gene expression, but importantly also 
allows characterization of proteoforms generated by 
post-translational processes. Proteome measurements 
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therefore have great potential for translational applica-
tion, since both normal and altered cellular functions of 
the human body are ultimately dependent on the expres-
sion and regulation of proteins. Moreover, disruptions in 
protein expression are likely to serve as early indicators of 
disease (that is, biomarkers) or targets for drug develop-
ment and therapeutic intervention. These promising 
clinical applications have driven the development of MS-
based approaches for proteomics, as well as other -omic 
level analyses, for studying human biofluid and tissue 
samples (Figure 1).

Over the past decade, studies of protein biomarkers 
have allowed advances in early, non-invasive diagnosis of 
significant diseases, such as the identification of C-
reactive protein and troponin I as biomarkers for myo-
cardial infarction, and prostate specific antigen for prostate 
cancer [12-14]. Despite these successes, efforts to identify 
biomarkers have not been nearly as successful as 
originally anticipated since proteomic analyses of blood 
and other biological fluids have proven to be immensely 
challenging because of the enormous complexity of the 
samples, the vast dynamic range of protein concen tra-
tions of potential interest (for example, greater than ten 
orders of magnitude in blood plasma), and the fact that 
analytes of clinical interest are often present at the low 
end of this concentration range [15-17]. To further 
exacerbate these challenges, verification and population-
scale validation of biomarkers requires the analysis of 
hundreds or even thousands of high-quality clinical 
samples. The collection and storage of these samples 
must be done carefully and monitored using standardized 
protocols to reduce variations due to endogenous enzyme 
activities or sample contamination. These studies also 
require multiple control groups and diagnostic sub-
categories of patients that are ideally gathered longi tu-
dinally over the course of disease progression. The 
analysis of many patient samples is required to charac-
terize normal human genetic heterogeneity and disease 
heterogeneity [18,19]. High throughput measurements 
are therefore essential to achieve biostatistical signifi-
cance (Figure 2).

While current MS-based proteomic measurements are 
capable of providing great depth of coverage through the 
use of extensive fractionation and analysis, this generally 
precludes the throughput required and the levels of 
sensitivity and specificity necessary for the rapid identi-
fication of clinically useful biomarkers. However, recent 
technological advances in automated parallel sample 
processing methods [20], multidimensional separations 
prior to MS [21,22], instrumentation components and 
approaches [23-27], and high-performance informatics 
tools [28-30] have facilitated measurements with both 
increased sensitivity and higher throughput for trans-
lational applications. In this review, we discuss the 

current state of MS-based proteomics with regard to its 
advantages and current limitations, and we highlight 
translational applications that are being enabled by these 
recent technological advances.

Advances in MS-based translational proteomics
The primary translational application of MS-based pro-
teo mics is biomarker development. However, as already 
mentioned, its success has so far been quite modest and 
has been mainly limited to preclinical studies. Biomarker 
development is a multi-stage process that consists of 
discovery, verification, validation and commercialization 
[15]. For MS, the measurements fall into two categories, 
where the first utilizes a discovery approach to identify 
potential protein biomarkers and the second involves 
verification to further assess and initially validate these 
biomarkers using a larger population. Performing high-
quality measurements and rigorous statistical analyses 
are essential in both steps as valuable patient samples are 
used. Currently, both MS-based proteomic discovery and 
verification approaches use bottom-up methods (Figure 3) 
in which proteins are digested into smaller peptides 
before analysis [31]. However, the two approaches aim to 
obtain different types of information.

Discovery approaches
In the discovery phase, broad quantitative MS measure-
ments often aim to identify peptides and proteins that 
differ significantly in abundances between patient and 
control groups. The main advantage of this approach is 
its largely unbiased ability to characterize a whole 
proteome or enriched sub-proteome in a single measure-
ment, so that the protein alterations corresponding to a 
pathological or biochemical condition at a given time can 
be investigated. However, performing discovery-based 
proteomic analysis has proven to be quite difficult using 
plasma and serum samples. In plasma, proteins have 
concen trations ranging from approximately 3 × 1010 pg/ml 
for albumin to the low pg/ml range for some cytokines 
and proteins, such as those potentially secreted or leaking 
into blood, for example from tumors (Figure 4a). Because 
of this huge dynamic range and the fact that the proteome 
in human biofluid samples is mainly represented by only 
a few high abundance proteins  - the 22 most abundant 
proteins represent approximately 99% of the total protein 
mass (Figure  4b)  - analyzing all plasma proteins simul-
taneously is enormously challenging [11,32], even after 
depletion of the most abundant proteins, as this exceeds 
the dynamic range of mass spectrometers that are 
typically used for discovery efforts (often approximately 
1 × 103 to 1 × 104 for a single spectrum). To provide an 
extended dynamic range for increased protein coverage it 
is necessary to couple front-end separations such as 
liquid chromatography (LC), multi-stage immunoaffinity 
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depletion [33-35], fractionation [36], or a combination of 
all three with MS analyses. While advanced LC 
separations have already provided improvement in the 
depth of coverage for proteins detected in MS studies 
[37], a major problem is their concomitant reduction in 
throughput, as bottom-up LC-MS analyses typically 
require in the order of 1 h. The detection of more proteins 
(for example, thousands) from plasma is possible with 
extensive off-line fractionation prior to on-line LC-MS 
analyses [38], but days or weeks of LC-MS measurements 
are then necessary for analysis of the multiple fractions. 
While this approach is highly attractive for the detection 
and discovery of potential biomarkers, the inherently low 
throughput largely precludes population studies to enable 
investigation of human and disease heterogeneity, and 
also limits the possibility of performing personal profil-
ing. Thus, technological advances that greatly decrease 
LC separation times or eliminate them entirely while still 
maintaining a high depth of coverage are crucial for 
future clinical applications.

To attain further information and identify unknown 
peptides with high accuracy in bottom-up MS studies, 
tandem MS (MS/MS) measurements, involving multiple 
steps of MS analysis and peptide fragmentation, are 
essential. Currently, many immunoassays used in trans-
lational studies measure analytes indirectly by detecting 
them through their interaction with other molecules, 
such as antibodies. MS provides an advantageous alter-
native to immunoassays as it involves direct measure-
ments and allows the acquisition of exact peptide 
sequence information through high mass accuracy MS/
MS measurements, thereby allowing unknown peptides 
to be identified with a great degree of confidence. The 
simultaneous collection of MS and MS/MS measure-
ments involves the acquisition of a preliminary mass 
spectrum of intact peptides, followed by disso cia tion or 
fragmentation of a peptide(s) of interest, and acquisition 
of the fragmentation mass spectrum. This process is 
repeated for the duration of the entire LC separation, 
resulting in thousands of MS and MS/MS spectra. To 

Figure 1. Simultaneous MS analyses for understanding complex systems. Simultaneous study of the genome, transcriptome, proteome, 
glycome, lipidome and metabolome by MS provides a systems approach to understanding different conditions and disease states through analysis 
of variations in DNA, RNA, peptides/proteins, lipids and metabolites, respectively, in an organ, tissue, blood or other sample, or organism. MS is 
one of the only analytical tools that can perform measurements at each -omic level, and thus can provide a better understanding of molecular 
mechanisms and how they affect each other. PTM, post-translational modification.
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identify the peptides with MS/MS, genomic data are 
frequently used to generate theoretical sequences for 
bioinformatics tools such as Mascot [39], Sequest [40] 
and X! Tandem [41]. By evaluating all of the matched 
MS/MS spectra, the false discovery rate of the peptide 
identifications can be estimated [42-44], and improved 
informatics tools are increasingly allowing identifications 
from spectra that were previously unattributed due to 
unexpected sequences or modification states.

Another important step in bottom-up measurements is 
quantification of observed peptides to determine if any 
significant changes are occurring between samples. 
Quantitative measurements of peptide abundance can be 
performed with or without stable isotope labeling (SIL) 
of peptides (or proteins) using peptide ion peak inten-
sities or spectral counting (that is, ‘label-free’ quantifi-
cation) [45]. Several in vitro and in vivo labeling tech-
niques, such as stable isotope labeling of amino acids by 
cell culture (SILAC) [46,47], isobaric tags for relative and 
absolute quantification (iTRAQ) [48,49] and 18O-labeling 

[17] have been developed for MS-based quantification, 
and have been shown to provide lower standard 
deviations for peptide ion peak intensity measurements 
compared with the label-free methods [50]. When com-
bined with off-line fractionation, these SIL methods 
provide broad coverage for comprehensive proteome 
charac terization. However, label-free measurements using 
normalization of LC-MS analyses can also be quite effec-
tive and can avoid complications introduced by labeling 
approaches [51].

At present, data-dependent MS/MS analysis of selected 
peptides relies on an initial MS scan, and although it is 
widely used in proteomic discovery studies, it has inherent 
limitations that are associated with MS/MS under-
sampling in complex samples. To overcome these limita-
tions and improve quantification, the accurate mass and 
time (AMT) tag strategy was developed for use on either 
labeled or label-free samples [52]. In a typical AMT tag 
study, a database is created and populated with peptide 
masses and LC elution times from many LC-MS/MS 

Figure 2. Biodiversity in population proteomic studies. Population proteomics allows the analysis of protein biodiversity within a population. 
Because it is known that individual variation, such as the presence of point mutations and varying protein abundances, will be present in all human 
studies (as depicted by the different chromatograms), it has become essential to develop high throughput, sensitive analytical applications to 
enable measurements necessary for personalized medicine.
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measurements using representative samples from experi-
mental and control groups. High throughput LC-MS 
analyses are then performed for a large number of bio-
logical replicates and the acquired datasets are compared 
with the database to identify the peptides that are actually 
present. This approach allows the comparison of large 
numbers of peptide species that may not be identified in 
normal data-dependent MS/MS studies for reasons that 
include poor peptide fragmentation, co-elution of highly 
abundant species and/or informatics limitations  - 
presumably similar factors that leave a significant number 
of detected species in LC-MS/MS analyses unidentified. 
Other approaches, such as data-independent MS/MS 
strategies [25-27] (discussed later), have also been 
developed recently to significantly enhance unbiased 
discovery studies.

While these new approaches promise improved dis-
covery of biomarkers, analysis of plasma samples still 
remains challenging for MS-based approaches. Discovery 
efforts increasingly use proximal fluids or tissues that are 
expected to be rich in biomarker candidates and present 
less of a challenge in terms of the dynamic range of 
proteins [15]. Various methods, such as optimal cutting 
temperature compound-embedded tissues, and formalin-
fixation and paraffin-embedded tissues (with or without 
laser capture microdissection), have been developed for 
preparing clinical tissue samples for proteomic studies 
[53]. The results from these advanced preparation 
methods have been promising [54,55], and serve as a 
prelude to targeted discovery or verification efforts for 
measurements of candidate biomarker proteins at 
presumably much lower levels in blood samples.

Verification approaches
The verification phase typically uses a much larger 
number of samples, and focuses on a limited set of 
candidate peptides or proteins identified in the discovery 
approach. This approach can provide highly sensitive 

quantification of protein abundances and aims to identify 
a set of biomarker candidates with greater confidence. 
There have been significant developments in MS-based 
methods for the verification approach, providing much 
greater sensitivity, specificity and throughput, and more 
accurate quantification than broad discovery-based 
measurements.

Targeted quantitative MS-based measurements typically 
employ selected reaction monitoring (SRM), using triple 
quadrupole mass spectrometers. In SRM measurements, 
the triple quadrupole MS allows rapid detection of a 
series of targeted peptide ions and their corresponding 
fragments (that is, transitions) with multiplexing and 
‘scheduling’ capabilities (to perform pre-defined analyses 
during specific LC elution times) along with SIL internal 
peptide standards [56,57] to provide highly accurate 
quantification for up to hundreds of peptides during a 
single LC separation. The two-stage mass filtering in 
SRM (that is, for both peptide ions and their 
corresponding fragments) provides great sensitivity and 
specificity for detection of the targeted peptides. This 
capability often leads to observed limits of detection and 
limits of quantification (LOQ) of about 10 to 100 ng/ml 
in plasma  - several orders of magnitude lower than 
presently feasible with discovery-based platforms. More-
over, recent advances such as the use of protein depletion, 
limited fractionation, and targeted peptide enrichment 
methodologies, such as peptide isolation with stable 
isotope standard capture with anti-peptide antibodies 
(SISCAPA) [58], extend practical LOQ values to low 
ng/ml (or even low pg/ml) levels in blood samples 
[33,59]. The implementation of other instrumental 
modifications such as multi-inlet capillaries and dual-
stage ion funnels has led to further enhanced sensitivity 
[60]. While selection of the correct proteotypic or 
targeted peptides with good digestion and ionization 
efficiency requires some effort, this has increasingly been 
addressed using public repositories, including SRMAtlas 

Figure 3. Bottom-up MS approach. The most common MS-based proteomics approach is bottom-up analysis. In the bottom-up approach 
the proteins are first extracted from biofluids, cells or tissue. Enzymatic digestion of the proteins is then performed to fragment them into 
their corresponding peptide subunits, and the peptides are separated using LC and detected with MS. LC, liquid chromatography; MS, mass 
spectrometry; m/z, mass-to-charge ratio.
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[61,62], PeptideAtlas [63] and the Global Proteome 
Machine [64]. Recent computational developments have 
also allowed the creation of programs that effectively 

predict proteotypic peptides given a protein amino acid 
sequence [65,56], allowing the list of targeted peptides to 
be derived without the need to rely on discovery-based 

Figure 4. Protein dynamic range and percentage in blood plasma. (a) The normal range of protein abundances in plasma is illustrated 
for a subset of 34 proteins representing the most to least abundant. The figure was assembled using data from Anderson and Anderson [11]. 
Because the dynamic range of protein concentrations covers over ten orders of magnitude, with the proteins of interest present at the lower 
concentrations, analyzing plasma samples has proven to be very difficult. (b) The approximate percentages of each protein in plasma are further 
illustrated using pie charts for the most abundant 22 proteins representing approximately 99% of the plasma protein mass. The top 10 proteins 
that make up approximately 90% of all plasma proteins are shown on the left. The remaining 10% is further divided on the right with the least 
abundant remaining 1% group representing thousands of proteins, which are of most interest for biomarker studies. IgA, immunoglobulin A; 
IgG, immunoglobulin G; IgM, immunoglobulin M.
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proteomics data. Moreover, MS targeted measurements 
have also proved reproducible in assays across many 
differ ent proteomics laboratories [66]. These various 
features have made SRM the current method of choice 
for ultra-sensitive MS-based biomarker verification (or 
pre-clinical validation).

Addressing the challenges of translational 
proteomics
Despite significant advances in MS-based targeted 
analyses, several performance metrics, including measure-
ment throughput and detection sensitivity, still require 
compromises to biomarker discovery and verification 
approaches for the translational application of MS-based 
proteomic analyses. In particular, these deficiencies 
result in low sampling numbers and measurement quality 
that prevents detection of proteins present at low 
concentrations. To achieve further progress in trans la-
tional proteomics, technological developments in MS 
such as faster separations, more effective ion sources, 
higher instrumental resolution/mass accuracy, detectors 
with greater dynamic range, and advanced data acqui-
sition approaches are expected to increasingly allow 
broad non-targeted measurements that retain the 
benefits of targeted approaches.

Data-independent MS/MS acquisition has shown 
promise for improving the consistency of peptide identi-
fi cations, as well as for increasing protein sequence 
coverage in complex samples and creating broad un-
targeted measurements that are more similar to possible 
targeted measurements [25-27]. Data-independent acqui-
si tion is a strategy that systematically queries sample sets 
for the presence and quantity of essentially any protein of 
interest, using the information available in fragment ion 
spectral libraries to mine complete fragment ion maps. 
One way of performing data-independent acquisitions is 
by using sequential window acquisition of all theoretical 
fragment-ion spectra (SWATH™) MS, in which repeated 
cycling of a 25 Da precursor isolation window is used in a 
single analysis to obtain time-resolved fragment ion 
spectra for all analytes detectable within a user defined 
mass-to-charge ratio (m/z) precursor range. Initial results 
have been very promising, with queried peptides quanti-
fied with a consistency and accuracy apparently 
approaching that for SRM [25].Another approach to 
exploit data-independent acquisitions involves using an 
additional separation technique prior to fragmentation to 
increase measurement sensitivity and the ability to 
associate simultaneously fragmented precursor ions with 
their corresponding fragment ions. Fast gas-phase ion-
mobility spectrometry (IMS), taking place in a timescale 
of tens of milliseconds, offers an attractive ion separation 
approach for data-independent acquisitions. IMS was 
introduced in the 1970s [67] and utilizes the fact that ions 

subject to an electric field in a buffer gas quickly reach a 
steady velocity dependent on the ion shape: compact 
species drift faster than those with extended structures 
[68,69]. IMS can be easily coupled to quadrupole time-
of-flight MS, allowing placement of IMS between the LC 
and MS stages. The resulting IMS-MS instrument pro-
duces high-resolution spectra containing both the m/z 
and IMS drift time information concurrently. To perform 
data-independent acquisitions, all precursor ions are 
fragmented after the IMS separation but prior to MS 
detection to completely eliminate MS/MS under samp-
ling. Because fragmentation occurs after the IMS separa-
tion, all fragment ions have the same drift time as the 
precursors [70-72], allowing simplification of spectral de-
convolution, which adds a great benefit to this technique.

The increased sensitivity and reduced spectral conges-
tion in the IMS separation also has another advantage of 
reducing or completely avoiding the LC time in complex 
samples [73]. When IMS is coupled with MS, ions are 
separated prior to detection, reducing detector suppression 
while supplying an additional dimension for peptide 
identification. Practical use of IMS-MS was initially 
impeded by low sensitivity due to significant ion losses at 
the IMS terminus and during transfer to MS. However, 
this problem was solved by re-focusing ions with an ion 
funnel at the IMS-MS interface [74], essentially prevent-
ing ion losses during the operation. The introduction of 
ion funnels in 1997 [75] provided a huge improvement in 
sensitivity of MS instruments as it allowed ions to be 
focused through the small interface orifices necessary for 
ultralow MS vacuum pressures (1 × 10-7 to 1 × 10-8 Torr), 
as shown in Figure  5. The ion funnel is most often 
implemented in the source region of mass spectrometers 
to greatly increase the sensitivity of measurements, and 
has gained importance with its recent inclusion in 
commercially developed instruments. While these 
develop ments are just a first step in the convergence of 
discovery and verification platforms, further progress 
will be facilitated by emerging approaches for faster and 
higher resolution separations, improved MS resolution 
and extended detector dynamic range.

Clinical implications
The potential to use MS-based proteomics in clinical 
settings is largely judged by their ability to make robust, 
sensitive, quantitative, specific and high-throughput 
measure ments for highly complex biospecimens. Clinical 
questions and the corresponding requirements for bio-
specimen detection determine the ability of MS to find 
and routinely measure high-quality biomarkers that have 
sufficient sensitivity and specificity to be clinically useful 
in screening large populations  - for example, for diag-
nostic tests or early disease detection. For instance, SRM 
has already been widely used for measuring metabolites 
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for newborn screening in clinical laboratories [76]. 
However, the detection of low abundance proteins in 
complex samples requires measurements of high 
sensitivity and large dynamic range, aspects of MS 
performance that are currently achievable and presently 
being greatly improved due to developments in MS-
based instruments and new separation technologies, as 
mentioned earlier. Narrowing large lists of differentially 
abundant proteins into defined patterns of biologically 
important variations, to reveal a much smaller set of 
candidate proteins that can be detected with the high 
sensitivity and specificity that is needed for clinical utility, 
requires verification studies typically involving many 
hundreds of samples at a minimum. Currently, the low 
throughput of conventional MS platforms severely inhibits 
biomarker verification. However, recent improvements in 
MS-based proteomic approaches, ranging from sample 
processing to data acquisition as outlined earlier, are 
resulting in rapid and highly sensitive MS analyses that 
are now providing a viable future for MS-based measure-
ments in clinical laboratories.

When comparing MS-based proteomics with immuno-
assays, which are the current gold standard in clinical 
detection of protein biomarkers, MS-based proteomics 
offer a significantly shorter lead-time and cost for assay 
development, high capability for multiplexed analysis, 
and the ability to be highly configurable or flexible for 
measuring different clinical analytes. With these 
advances and unique features, MS-based translational 
proteomics have the potential to become powerful tools 
for decision making in the clinic, alongside other 
approaches such as physical examination, in vivo 
imaging, histology, biochemical assays and assessment of 
demographic risk factors. Their potential applications for 
discovering and measuring protein biomarkers could 
include routine screening, staging of disease progression, 
prediction of the course of disease, assessment of disease 

outcome, monitoring disease recurrence, and 
personalized assessment of drug response and toxicity, to 
name a few.

Outlook and perspectives
The future of MS-based translational proteomics can be 
categorized by what is currently practical, and what is 
being enabled by recent technological developments. In 
the short term, proteomic measurements using targeted 
approaches are effective for high sensitivity and high 
throughput analysis of a limited set of biomarker candi-
dates, whereas unbiased broad measurements are effec-
tive for the detection of a much larger universe of bio-
marker candidates but with less sensitivity [27]. Improve-
ments to the sensitivity of broad measurements and the 
scope of targeted measurements are ultimately driving a 
convergence of these platforms and are expected to 
increase the ability to gain a predictive under standing of 
molecular processes in complex biological systems [77]. 
While MS-based proteomics offers valuable information 
for understanding complex biological systems, systems-
level quantitative analyses using a combination of broad 
proteomic, metabolomic, lipidomic and glycomic MS 
analyses (termed pan-omics) will be increasingly important 
(Figure  1). These approaches largely benefit from the 
same MS-based platform developments that are allowing 
advances in translational proteomics. The importance of 
each -omic measurement technology has already become 
evident  - for example, through the success of targeted 
measurements [76,78] - and their combination into trans-
formative pan-omics measurement capabilities would 
likely be crucial for understanding the complexity of 
biological systems. Thus, broad pan-omic discovery 
methods, if sufficiently sensitive and effective, would be 
expected to provide a much more informative clinical 
toolset of biomarkers for accurate prediction of disease 
onset, and for disease monitoring and prognosis.

Figure 5. Increased MS sensitivity with ion funnel focusing. Technology developments such as the ion funnel greatly increase MS instrument 
sensitivity by re-focusing all ions through narrow interfaces necessary to maintain the high vacuum required for MS measurements. Two ion funnels 
are depicted here. The first funnel on the left is a conventional ion funnel that focuses the continuous beam from two capillaries through a narrow 
inlet. The second funnel (right) is a trapping ion funnel used to trap and pulse ions for ion mobility spectrometry (IMS) experiments. ESI, electrospray 
ionization.
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Conventional ion funnel

Trapping ion funnel
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