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Summary

The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic 

growth that coordinates anabolic and catabolic cellular processes with inputs such as growth 

factors and nutrients, including amino acids1–3. In mammals, arginine is particularly important and 

promotes diverse physiological effects including immune cell activation, insulin secretion, and 

muscle growth, largely through activation of mTORC14–7. Arginine activates mTORC1 upstream 

of the Rag GTPases8, through either the lysosomal amino acid transporter SLC38A9 or the 

GATOR2-interacting CASTOR1 (Cellular Arginine Sensor for mTORC1)9–12. However, the 

mechanism by which the mTORC1 pathway detects and transmits the arginine signal has been 

elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric 

CASTOR1 binds arginine at the interface of two ACT domains, enabling allosteric control of the 

adjacent GATOR2-binding site to trigger dissociation from GATOR2 and the downstream 

activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology 

with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the 
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mTORC1 pathway exploited an ancient amino-acid-dependent allosteric mechanism to acquire 

arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the 

mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor.

To understand the molecular mechanisms through which CASTOR1 detects arginine and 

signals its presence to mTORC1, we determined the crystal structure of arginine-bound 

CASTOR1 to 1.8 Å resolution (Extended Data Table 1). CASTOR1 forms a rod-shaped 

homodimer, with the monomers associated in a side-by-side manner and rotated 180° with 

respect to each other (Fig. 1a). While sequence analysis of CASTOR1 predicted the 

presence of two ACT (Aspartate Kinase, Chorismate mutase, TyrA) domains12,13, the 

structure reveals that each monomer actually contains four tandem ACT domains. ACT1 

displays the canonical βαββαβ ACT domain topology14,15, whereas ACT3 and ACT4 each 

lack the final β-strand and ACT2 contains two additional β-strands (Fig. 1a, Extended Data 

Fig. 1a).

The dimerization interface buries ~950 Å2 of surface area at the intersection of α1 and α5, 

from ACT1 and ACT3, respectively (Fig. 1b). Four inward facing isoleucines (Ile28 and 

Ile202) form the hydrophobic core of the symmetrical interface, flanked on each side by 

tyrosine-histidine pairs (His25 and Tyr207) that form both pi-stacking and hydrogen-bond 

contacts with the opposing monomer (Fig. 1b). To understand the importance of 

dimerization for CASTOR1 function, we generated constitutively monomeric mutants of 

CASTOR1 (Y207S and I202E, Fig. 1c). Interestingly, although dimerization is dispensable 

for arginine binding (Extended Data Fig. 2a), these mutants interacted weakly with 

GATOR2 and failed to inhibit mTORC1 signalling in cells (Fig. 1c, Extended Data Fig. 2b), 

indicating that CASTOR1 must be dimeric to robustly inhibit GATOR2 upon arginine 

starvation.

CASTOR1 binds arginine through a narrow pocket at the interface of ACT2 and ACT4, 

distal to the dimerization interface (Fig. 1a, 2a, b). The side-chain of arginine points towards 

a loop connecting β15 and β16 (β15-loop), where the backbone carbonyls of Thr300, 

Phe301, and Phe303 coordinate the guanidinium group of arginine (Fig. 2a). Immediately 

adjacent to the β15-loop, the anionic side-chain of Asp304 forms an additional stabilizing 

salt-bridge with the cationic arginine side-chain (Fig. 2a). On the opposite side of the pocket, 

the hydroxyl side-chain of Ser111 and backbone carbonyl of Val112 in the α3-loop anchor 

the free amine of arginine in place, while the free carboxyl points towards a water-filled 

cavity that separates it from ACT2 (Fig 2a, b). Consistent with a critical role for these 

contacts in arginine sensing by CASTOR1, mutation of either Ser111 or Asp304 (S111A, 

D304A) abolished the arginine binding capacity of CASTOR1 in vitro (Fig. 2c). 

Furthermore, when expressed in HEK-293T cells, these mutants bound constitutively to 

GATOR2 and strongly inhibited mTORC1 signalling even in the presence of arginine (Fig. 

2D).

Together, these data explain the molecular determinants of specificity in the CASTOR1-

arginine interaction. While Ser111 fixes the position of the free amine, the location of the 

β15-loop and Asp304 sets a strict length requirement for the bound ligand (Extended Data 

Fig. 3a). In addition, the positions of the three hydrogen-bond donating nitrogens in the 
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guanidinium group facilitate contacts with both the carbonyl oxygens in the β15-loop and 

the side-chain of Asp304 (Fig. 2a). Finally, the gap behind the free carboxyl group of 

arginine suggests that CASTOR1 can tolerate ligands with modifications to that functional 

group (Fig. 2b). We tested these predictions by interrogating the ability of various arginine 

analogues to disrupt the CASTOR1-GATOR2 interaction in vitro (Fig. 2e, Extended Data 

Fig. 3b). Consistent with our structural analysis, while the carboxy-modified arginine-

methyl ester triggered full dissociation of CASTOR1 from GATOR2, compounds with 

alterations to the guanidium group, α-amine, or side-chain length had no effect.

In addition to the main pocket contacts described above, a highly conserved, glycine-rich 

loop connecting β14 and α7 in ACT4 (“β14-loop”, residues 269–280) wraps over the 

arginine-pocket, fully burying the bound ligand (Fig. 2a, 3a, Extended Data Fig. 1a). The 

β14-loop forms several hydrogen-bonds with arginine through the backbone amides of 

Gly279 and Ile280, as well as the backbone oxygens of Gly274 and Glu277 (Fig. 2a, 3a). 

The ordered conformation of the β14-loop also places it just along the ACT2-ACT4 

interface, enabling it to form several intramolecular contacts with residues in ACT2 (Fig. 

3a). Cys278 hydrogen bonds with the backbones of Val110 and S111 in the α3-loop, while 

Asp276 forms a salt-bridge with Arg126. In addition, Glu277 extends in the opposite 

direction to form another salt-bridge with His175. (Fig. 3a). Thus, the β14-loop facilitates 

the formation of numerous inter-ACT-domain contacts in the presence of arginine. Indeed, 

the arginine and β14-loop contribute ~40% of the total buried surface area in the ACT2-

ACT4 interface of the arginine-bound structure (390 Å2 out of 980 Å2).

The glycine-rich β14-loop is predicted to have a high propensity for disorder, and our 

structure suggests that these inter-ACT-domain contacts could stabilize it in an ordered 

conformation over the bound arginine. Indeed, mutation of key residues in both the β14-loop 

(D276A, E277A, C278A) and the adjacent ACT domains (R126A, H175A) significantly 

reduced the arginine binding capacity of CASTOR1 (Fig. 3b, c), indicating that the inter-

ACT-domain contacts formed by the β14-loop are required for arginine sensing by 

CASTOR1. In addition, we found that the N-terminal (ACT1 and ACT2) and C-terminal 

(ACT3 and ACT4) halves of CASTOR1 associate in both an arginine- and β14-loop-

dependent manner when expressed as separate polypeptides in HEK-293T cells12 (Fig. 3d), 

indicating that arginine likely induces a conformational change in CASTOR1 by stabilizing 

the ACT2-ACT4 interaction.

In addition to CASTOR1, human cells express a related protein, CASTOR2, which shares 

63% sequence identity but does not bind arginine12. Although the regions of CASTOR1 

directly involved in arginine binding are well conserved (Extended Data Fig. 1a), we 

identified residues along the ACT2-ACT4 interface (His108 to Val110) that differ between 

CASTOR1 and CASTOR2 (Extended Data Fig. 4a). Switching these residues of CASTOR1 

with those in CASTOR2 abrogated arginine binding in vitro and converted CASTOR1 to a 

nearly constitutive GATOR2-interactor in cells, resembling CASTOR2 (Extended Data Fig. 

4b–d). Interestingly, these residues immediately precede Ser111 and hydrogen bond with 

Cys278 in the β14-loop (Fig. 3a, Extended Data Fig. 4a), suggesting that their identity may 

be critical for the proper positioning of the α3-loop to enable arginine binding and/or the 

association of ACT2 and ACT4. The corresponding mutation in CASTOR2 
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(108QNI-110HHV) however was not sufficient to confer arginine binding, suggesting that 

additional differences also contribute (Extended Data Fig. 4d).

To understand how arginine induces dissociation of CASTOR1 from GATOR2, we 

identified five highly conserved sites in CASTOR1 required for the interaction with 

GATOR2 (Y118, Q119, D121, E261, D292, Fig. 4a, Extended Data Fig. 1a). Importantly, 

these mutants still bind arginine in vitro and homodimerize when expressed in cells 

(Extended Data Fig. 5a, b). Interestingly, these residues cluster along the surface of the 

ACT2-ACT4 interface, adjacent to but on the opposite face of the protein as the arginine-

binding pocket (Fig. 4b, c). Glu261 and Asp292 are closely linked to the β14-loop, 

separated only by β14 and helix α7, respectively (Fig. 4c). Furthermore, the critically 

important residue Asp121 is buried in the ACT2-ACT4 interface, providing one explanation 

for why the arginine-bound conformation is incompatible with the CASTOR1-GATOR2 

interaction (Fig. 4c).

Together, these results suggest a model where arginine binding orders the glycine-rich β14-

loop to enable the intramolecular association of ACT2 and ACT4 (Fig. 3a–d). This 

association of these domains would alter the positions and exposure of the residues required 

for GATOR2 binding, which also lie along the ACT2-ACT4 interface (Fig. 4a–c), thereby 

triggering the dissociation of CASTOR1 from GATOR2 and the subsequent activation of 

mTORC1 (Fig. 4e).

The observation that CASTOR1 both inhibits mTORC1 signalling and interacts with 

GATOR2 in an arginine-sensitive manner suggests that CASTOR1 may regulate mTORC1 

by inhibiting GATOR2, a mechanism analogous to that of the recently identified leucine 

sensor Sestrin216–19. Using our GATOR2 binding-deficient mutants, we were able to test 

this hypothesis directly. Indeed, in contrast to wild-type CASTOR1, the GATOR2-binding 

deficient YQ118–119AA and D121A mutants both failed to inhibit mTORC1 signalling in 

cells (Fig. 4d). Moreover, due to their ability to dimerize with endogenous CASTOR1, these 

mutants also functioned as dominant negatives, rendering mTORC1 fully resistant to 

arginine starvation (Fig. 4d). Thus, the CASTOR1-GATOR2 interaction is required to signal 

arginine deprivation to mTORC1.

Although defined by their common topology, ACT domains are highly diverse in sequence 

and form a wide range of structural assemblies14,15. Comparison of our structure with other 

ACT domain-containing proteins in the Protein Data Bank (PDB) revealed that CASTOR1 

shares substantial structural homology with the allosteric regulatory domains of bacterial 

Aspartate Kinases (AKs), including those found in E. coli (AKeco) and cyanobacteria 

(AKsyn)20,21 (Fig. 5a, Extended Data Fig. 6a). AKs catalyze the first step of a metabolic 

pathway that synthesizes several amino acids, including lysine, and display allosteric 

feedback inhibition when downstream products bind to the regulatory domains22. 

Interestingly, AKeco binds lysine through pockets that bear striking resemblance to the 

arginine-binding pocket of CASTOR120 (Fig. 5b). Furthermore, AKeco residues Arg305, 

Glu346, and Val347, which correspond to the positions of the critical GATOR2-binding 

residues Glu261, Tyr118, and Gln119, respectively, directly participate in the lysine-

dependent inhibition of the kinase domain in AKeco20 (Fig. Extended Data Fig. 6b). Thus, 
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the overall structure, mode of amino-acid binding, and likely allosteric mechanism of 

CASTOR1 all resemble those found in the regulatory domain of prokaryotic AKs.

These similarities suggest that CASTOR1 shares an evolutionary origin with prokaryotic 

AKs. Interestingly, AKs are found throughout bacteria, archaea, and many eukaryotic 

lineages, but were lost prior to the emergence of metazoa, while CASTOR1 homologues are 

only present in metazoa (Fig. 5c). Thus, in order to acquire arginine sensitivity in early 

multicellular animals, the mTORC1 pathway may have taken advantage of this more 

ancient, lysine-sensitive regulatory mechanism (Fig. 5d). This exploitation of a pre-existing 

allosteric module is analogous to the models proposed for the evolution of hormone-receptor 

signalling23 and yeast MAP kinases24, and may enable the more rapid incorporation of novel 

signalling responses into existing pathways25.

Together, our results provide a structural basis for arginine sensing by the mTORC1 

pathway. Furthermore, our data using arginine analogues suggests that our structure may be 

useful for predicting compounds that can modulate arginine sensing by CASTOR1 in vivo. 

As deregulation of mTORC1 is common in human diseases, including cancer26,27, the 

identification of novel pharmacological regulators of mTORC1 activity is of particular 

interest.

Methods

Materials

Reagents were obtained from the following sources: HRP-labeled anti-rabbit secondary 

antibody from Santa Cruz Biotechnology; antibodies to phospho-T389 S6K1, S6K1, Mios 

and the FLAG epitope from Cell Signaling Technology; antibodies to the HA epitope from 

Bethyl laboratories; antibody to raptor from Millipore. All antibodies used have been 

published previously12,19. FLAG-M2 affinity gel and amino acids from Sigma Aldrich; 

RPMI without leucine, arginine, or lysine from Pierce; DMEM from SAFC Biosciences; 

XtremeGene9 and Complete Protease Cocktail from Roche; Inactivated Fetal Calf Serum 

(IFS) from Invitrogen; [3H]-labeled arginine from American Radiolabeled Chemicals.

Protein production and purification

Full-length, codon-optimized human CASTOR1 was N-terminally fused with a human 

rhinovirus 3C protease–cleavable His10-Arg8-ScSUMO tag and cloned into a PET-Duet-1 

bacterial expression vector. This vector was transformed into Escherichia coli LOBSTR 

(DE3) cells (Kerafast)28. Cells were grown at 37 °C to 0.6 OD, then protein production was 

induced with 0.2 mM IPTG at 18 °C for 12–14 h. Cells were collected by centrifugation at 

6,000g, resuspended in lysis buffer (50 mM potassium phosphate, pH 8.0, 500 mM NaCl, 30 

mM imidazole, 3 mM β-mercaptoethanol (βME) and 1 mM PMSF) and lysed with a cell 

disruptor (Constant Systems). The lysate was cleared by centrifugation at 10,000g for 20 

min. The soluble fraction was incubated with Ni-Sepharose 6 Fast Flow beads (GE 

Healthcare) for 30 min on ice. After washing of the beads with lysis buffer, the protein was 

eluted in 250 mM imidazole, pH 8.0, 150 mM NaCl and 3 mM βME. The Ni eluate was 

diluted 1:1 with 10 mM potassium phosphate, pH 8.0, 0.1 mM EDTA and 1 mM 
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dithiothreitol (DTT), and was subjected to cation-exchange chromatography on a 5 ml SP 

sepharose fast flow column (GE Healthcare) with a linear NaCl gradient. The eluted 

CASTOR1 was then incubated with 3C protease and dialyzed overnight at 4 °C into 10 mM 

potassium phosphate, pH 8.0, 150 mM NaCl, 0.1 mM EDTA and 1 mM DTT, followed by a 

second cation-exchange chromatography run on an SP sepharose fast flow column (GE 

Healthcare) with a linear NaCl gradient. The protein was further purified via size-exclusion 

chromatography on a Superdex S200 16/60 column (GE Healthcare) equilibrated in running 

buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1 mM EDTA and 1 mM DTT). 

Selenomethionine (SeMet)-derivatized CASTOR1 was prepared as described previously29 

and purified as the native version, except that the reducing-agent concentration (βME and 

DTT) was 5 mM in all buffers.

Crystallization

Purified CASTOR1 was concentrated to 6 mg/ml and incubated in 2 mM arginine for >1 

hour prior to setting crystal trays. Crystals were grown at 18 °C by hanging-drop vapor 

diffusion with 1 μl of protein at 6 mg/ml mixed with an equal volume of reservoir solution 

containing 0.1 M sodium acetate pH 5.0, 0.25 M ammonium acetate, and 22.5% PEG 3350. 

Selenomethionine-derivatized CASTOR1 crystallized in 0.1 M BIS-TRIS pH 5.6, 0.25 M 

ammonium acetate, and 22.5% PEG3350. Crystals were cryoprotected in mother liquor 

supplemented with 20% (v/v) ethylene glycol.

Data collection and structure determination

Data collection was performed at the Advanced Photon Source end station 24-IDC at 

Argonne National Lab, at 100 K. All data-processing steps were carried out with programs 

provided through SBgrid30. Data reduction was performed with HKL200031. A complete 

native dataset was collected to 1.8 Å (at wavelength 0.9792 Å) and a complete SeMet 

dataset, at the selenium peak wavelength (0.9792 Å), was collected to 2.2 Å. The phase 

problem was solved using single-wavelength anomalous dispersion (SAD) and selenium 

positions were determined in HYSS, run as part of the PHENIX AutoSol program32, for the 

SeMet dataset (space group P21, 4 molecules per asymmetric unit). An interpretable 2.2 Å 

experimental electron density map was obtained, and manual model building was carried out 

in Coot33. Subsequent refinement was carried out with the superior 1.8 Å native data set 

using phenix.refine to a final Rwork/Rfree of 17.2%/20.4%. Ramachandran statistics in the 

final model are 99% favored, 1% allowed, and 0% outlier.

Structural analysis

Protein-protein and protein-ligand interfaces were analyzed using PDBePISA34. NCBI’s 

Vector Alignment Search Tool (VAST)35 was used to identify structurally related proteins in 

the PDB. The multiple sequence alignment (MSA) was generated in Jalview36 with the T-

Coffee alignment algorithm37. Sequences of CASTOR1 homologues were obtained via 

NCBI BLAST searches38. All structure figures were made in PyMol39.
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Cell lysis and immunoprecipitation

Cells were rinsed one time with ice-cold PBS and immediately lysed with Triton lysis buffer 

(1% Triton, 10 mM β-glycerol phosphate, 10 mM pyrophosphate, 40 mM Hepes pH 7.4, 2.5 

mM MgCl2 and 1 tablet of EDTA-free protease inhibitor [Roche] (per 25 ml buffer). The 

cell lysates were cleared by centrifugation at 13,000 rpm at 4°C in a microcentrifuge for 10 

minutes. For anti-HA-immunoprecipitations, the magnetic anti-HA beads (Pierce) were 

washed 3 times with lysis buffer. 30 μl of a 50/50 slurry of the affinity gel was then added to 

clarified cell lysates and incubated with rotation for 1 hour at 4°C. Following 

immunoprecipitation, the beads were washed 4 times with lysis buffer containing 500 mM 

NaCl. Immunoprecipitated proteins were denatured by the addition of 50 μl of sample buffer 

and boiling for 5 minutes as described40, resolved by 8%–16% SDS-PAGE, and analyzed by 

immunoblotting.

For co-transfection experiments in HEK-293T cells, 2.5 million cells were plated in 10 cm 

culture dishes. Twenty-four hours later, cells were transfected using the polyethylenimine 

method41 with the pRK5-based cDNA expression plasmids indicated in the following 

amounts: 50 ng CASTOR1-HA (wild-type or mutant), 50 ng CASTOR1-FLAG, 1 μg HA-

metap2, or 2 ng S6K. For in vitro dissociation experiments, 50 ng of wild-type CASTOR1-

HA was transfected into HEK-293T cells. The total amount of plasmid DNA in each 

transfection was normalized to 5 μg with empty pRK5. 36–48 hours after transfection, cells 

were lysed as described above.

For experiments that required amino acid starvation or restimulation, cells were treated as 

previously described42. Briefly, cells were incubated in arginine free RPMI for 50 minutes 

and then restimulated with 500 μM arginine for 10 minutes.

Arginine binding assay

5 million HEK-293T cells were plated in a 15 cm plate four days prior to the experiment. 

Twenty-four hours after plating, the cells were transfected via the polyethylenimine method 

with the pRK5-based cDNA expression plasmids indicated in the figures in the following 

amounts: 15 μg FLAG-Rap2A, 500 ng FLAG-CASTOR1 (wild-type or mutant). The total 

amount of plasmid DNA in each transfection was normalized to 15 μg total DNA with 

empty-PRK5. Forty-eight hours after transfection cells were lysed as previously described. 

If multiple samples of the same type were represented in the experiment, the cell lysates 

were combined, mixed, and evenly distributed amongst the relevant tubes.

Anti-FLAG beads were blocked by rotating in 1 μg/μl bovine serum albumin (BSA) for 20 

minutes at 4 °C, then washed twice in lysis buffer and resuspended in an equal volume of 

lysis buffer. 30 μl of bead slurry was added to each of the clarified cell lysates and incubated 

as previously described. Post-IP, the beads were washed as previously and incubated for one 

hour on ice in cytosolic buffer (0.1% Triton, 40 mM HEPES pH 7.4, 10 mM NaCl, 150 mM 

KCl, 2.5 mM MgCl2) with the appropriate amount of [3H]-labeled arginine and cold argine. 

At the end of one hour, the beads were aspirated dry and rapidly washed three times with 

cytosolic buffer. The beads were aspirated dry again and resuspended in 85 μl of cytosolic 

buffer. Each sample was mixed well and three 10 μl aliquots were separately quantified 
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using a TriCarb scintillation counter (PerkinElmer). This process was repeated in pairs for 

each sample, to ensure similar incubation and wash times for all samples analyzed across 

different experiments.

In vitro CASTOR1-GATOR2 dissociation assay with arginine analogues

HEK-293T were transfected with HA-CASTOR1 constructs as described above. 48 hours 

after transfection, cells were starved for all amino acids for 50 minutes, lysed and subjected 

to anti-FLAG immunoprecipitation as described previously. The CASTOR1-GATOR2 

complexes immobilized on the HA beads were washed twice in lysis buffer with 500 mM 

NaCl, then incubated for 20 minutes in 1 mL of cytosolic buffer with 400 μM of the 

indicated compound. The amount of GATOR2 and CASTOR1 that remained bound was 

assayed by SDS-PAGE and immunoblotting as described previously.

Cell lines and tissue culture

HEK-293T cells were maintained at 37°C and 5% CO2 and cultured in DMEM 10% IFS 

supplemented with 2 mM glutamine, penicillin (100 IU/ml) and streptomycin (100 μg/ml). 

HEK-293T cells were obtained from the American Type Culture Collection (ATCC) and 

were free of mycoplasma contamination.

Statistical analysis

For the arginine-binding assays, two-tailed t tests were used for comparison between two 

groups. All comparisons were two-sided, and P values of less than 0.005 were considered to 

indicate statistical significance. The data meet the assumptions of the test and the variance is 

similar between groups that are being statistically compared.
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Extended Data

Extended Data Figure 1. Multiple sequence alignment of CASTOR1 homologues
a) Expanded Multiple Sequence Alignment of CASTOR1 homologues from various 

organisms. Positions are colored white to blue according to increasing sequence identity. 

Secondary structure features are labeled and colored by ACT domain as in 1A.
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Extended Data Figure 2. Dimerization deficient CASTOR1 mutants bind arginine but fail to 
inhibit mTORC1 in cells
a) The dimerization deficient CASTOR1 Y207S and I202E mutants bind arginine in vitro. 

FLAG-immunoprecipitates prepared from HEK-293T cells transiently expressing indicated 

FLAG-tagged proteins were used in binding assays with [3H]Arginine as described in the 

methods. Unlabeled arginine was included as a competitor where indicated. Values are Mean 

± SD for 3 technical replicates from one representative experiment.

b) Dimerization deficient CASTOR1 Y207S and I202E mutants fail to inhibit mTORC1. 

HEK-293T cells transiently expressing FLAG-S6K1 and HA-tagged CASTOR1 WT, 

Y207S, or I202E were starved of arginine for 50 min and, where indicated, restimulated for 

10 min. FLAG- immunoprecipitates were prepared from lysates and analyzed as in 1C. 

Phospho-S6K1 was used as an indicator of mTORC1 activity.
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Extended Data Figure 3. Model of lysine-binding in CASTOR1
a) Comparison of the arginine-bound pocket of human CASTOR1 with a model of the 

pocket with lysine in place of arginine. Arginine and lysine stick representations are shown 

in yellow and orange, respectively. The distances in the lysine-bound model, 3.8 Å and 5.0 

Å, are beyond the range of standard hydrogen-bonds and salt-bridges, respectively. ACT 

domains are labeled as in 1A.

b) Chemical structures of arginine analogues used in Fig. 2E. Differences relative to L-

Arginine are highlighted in oranges boxes.
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Extended Data Figure 4. Differences in the arginine-binding capacities of CASTOR1 and 
CASTOR2
a) Multiple sequence alignment of human CASTOR1 and CASTOR2, highlighting 

differences in amino acid sequence that are in close proximity to arginine binding residues in 

CASTOR1.

b) The CASTOR1 HHV108–110QNI mutant constitutively binds GATOR2 in cells. 

HEK-293T cells transiently expressing HA-metap2 or the indicated HA-tagged CASTOR1 

constructs were starved of arginine for 50 min and, where indicated, restimulated for 10 min. 

HA-immunoprecipitates prepared and analyzed as in 1C.

c) The CASTOR1 HHV108–110QNI mutant displays reduced arginine-binding capacity in 
vitro. Binding assays were performed with the indicated CASTOR1 or CASTOR2 constructs 

and immunoprecipitates analyzed as in 2C. Values are Mean ± SD for 3 technical replicates 

from one representative experiment.

d) Comparison of the CASTOR1 HHV108–110QNI mutant and WT CASTOR2. HEK-293T 

cells transiently expressing HA-metap2 or the indicated HA-tagged CASTOR1 or 

CASTOR2 constructs were starved of arginine for 50 min and, where indicated, restimulated 

for 10 min. HA-immunoprecipitates prepared and analyzed as in 1C.
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Extended Data Figure 5. GATOR2-binding deficient CASTOR1 mutants still bind arginine and 
homodimerize
a) The CASTOR1 YQ118–119AA, D121A, E261A and D292A mutants bind arginine in 
vitro. FLAG-immunoprecipitates prepared from HEK-293T cells transiently expressing 

indicated FLAG-tagged proteins were used in binding assays with [3H]Arginine as described 

in the methods. Unlabeled arginine was included as a competitor where indicated. Values are 

Mean ± SD for 3 technical replicates from one representative experiment.

b) The CASTOR1 YQ118–119AA, D121A, E261A and D292A mutants dimerize in cells. 

HA-immunoprecipitates prepared from HEK293T-cells transiently expressing CASTOR1-

FLAG and HA-metap2 or the indicated HA-tagged CASTOR1 constructs were analyzed as 

in 1C.
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Extended Data Figure 6. Similarities between human CASTOR1 and prokaryotic Aspartate 
Kinases
a) Ribbon diagram views of human CASTOR1 (this paper), AKeco (PDB ID: 2J0x) and 

AKsyn (PDB ID: 3L76), highlighting the different modes of dimerization. AKs can dimerize 

through an interlocked-ACT domain conformation (as in AKeco) or through their kinase 

domains (AKsyn), both of which are distinct from the side-by-side ACT-domain 

dimerization in CASTOR1.

b) View of AKeco depicting positions of residues R305, E346, and V347, which correspond 

to the positions of GATOR2-interacting residues of CASTOR1.

Extended Data Table 1

Data collection and refinement statistics (SAD)

CASTOR1 + Arg Native CASTOR1 + Arg SeMet

Organism H. sapiens H. sapiens

PDB ID 5I2C

Data collection

Space group P21 P21
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CASTOR1 + Arg Native CASTOR1 + Arg SeMet

Cell dimensions

 a, b, c (Å) 91.39, 82.60, 96.67 91.76, 82.35, 96.71

 α, β, γ (°) 90, 116.23, 90 90, 116.04, 90

Peak

Wavelength (Å) 0.9792 0.9792

Resolution (Å) 86.7 – 1.80 86.89 – 2.20

Rsym (%) 7.2 (62.8) 10.4 (>100)

I/σI 25.9 (1.2) 22.6 (1.4)

Completeness (%) 97.85 (87.1) 98.2 (98.1)

Redundancy 3 (2.5) 6.4 (5.9)

Anomolous Completeness (%) 96.8

Refinement

Resolution (Å) 86.71 – 1.80

No. reflections 116,883

Rwork/Rfree 17.2%/20.4%

No. atoms 9,872

 Protein 9,012

 Arg 48

 Water 796

Average B-factors (Å) 40.2

 Protein 40.0

 Arg 26.8

 Water 46.4

R.m.s. deviations

 Bond lengths (Å) 0.007

 Bond angles (°) 0.85

*
Values in parentheses are for highest-resolution shell.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Architecture of human CASTOR1
a, Two orthogonal views of the CASTOR1 homodimer (ribbon diagram), with ACT-domains 

1–4 colored in green, purple, wheat, and pink, respectively. The bound arginine is shown in 

yellow. Disordered regions not observed in the crystal structure are omitted. b, View of the 

CASTOR1 dimerization interface, with side chains of key residues represented in stick form. 

c, Dimerization deficient CASTOR1 Y207S and I202E mutants display weaker interactions 

with endogenous GATOR2. HEK-293T cells transiently expressing FLAG-tagged 

CASTOR1 wild type (WT) and the indicated HA-tagged constructs were starved of arginine 

for 50 min and, where indicated, restimulated for 10 min. HA-immunoprecipitates were 

generated from cell lysates and analyzed by immunoblotting for the indicated proteins. Mios 

was used as a representative GATOR2 component.
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Figure 2. The arginine-binding pocket of CASTOR1
a, View of the arginine-binding pocket in CASTOR1, together with its Fo-Fc electron 

density map calculated and contoured at 4σ from an omit map lacking arginine. The bound 

arginine is shown in yellow. Hydrogen bonds or salt-bridges are shown as black dashed 

lines. Residues 269–273 are omitted for clarity. b, Steric view of the arginine-binding 

pocket, depicting the surface representation of CASTOR1 and stick model of arginine 

(yellow). The β14-loop (residues 269–280) is omitted for clarity. c, CASTOR1 S111A and 

D304A mutants do not bind arginine in vitro. FLAG-immunoprecipitates prepared from 

HEK-293T cells transiently expressing indicated FLAG-tagged proteins were used in 

binding assays with [3H]Arginine as described in the methods. Values are Mean ± SD for 3 

technical replicates from one representative experiment. d, The CASTOR1 S111A and 

D304A mutants constitutively bind GATOR2 and inhibit mTORC1 signaling in cells. 

HEK-293T cells transiently expressing FLAG-S6K1 and the indicated HA-tagged constructs 

were starved of arginine for 50 min and, where indicated, restimulated for 10 min. Both 

FLAG- and HA-immunoprecipitates were prepared from lysates and analyzed as in 1c. e, 
Effects of various arginine analogues on the CASTOR1-GATOR2 interaction in vitro. 

HEK-293T cells transiently expressing HA-CASTOR1 WT were starved of arginine for 50 

min. HA-immunoprecipitates were prepared from cell lysates then incubated with 400 μM of 

the indicated compounds for 20 min and analyzed as in 1c.
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Figure 3. Arginine facilitates the intramolecular association of the ACT2 and ACT4 domains of 
CASTOR1
a, Top-down view of the arginine- and β14-loop-mediated contacts between ACT2 and 

ACT4. Hydrogen bonds and salt-bridges are shown as black dashed lines. b, CASTOR1 

D276A, R126A, E277A, H175A, and C278A mutants display reduced arginine-binding 

capacity in vitro. Binding assays were performed and immunoprecipitates analyzed as in 2c. 

Values are Mean ± SD for 3 technical replicates from one representative experiment. c, The 

CASTOR1 D276A, R126A, E277A, H175A, and C278A mutants constitutively bind 

GATOR2 in cells. HEK-293T cells transiently expressing the indicated HA-tagged 

constructs were starved of arginine for 50 min and, where indicated, restimulated for 10 min. 

HA-immunoprecipitates prepared and analyzed as in 1c. d, CASTOR1 ACT1–2 (1–169) and 

CASTOR1 ACT3–4 (169–329) associate in an arginine- and β14-loop dependent manner. 

HEK-293T cells transiently expressing the indicated HA-tagged constructs were starved of 

arginine for 60 min and, where indicated, restimulated for 60 min. HA-immunoprecipitates 

were prepared and analyzed as in 1c.
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Figure 4. The GATOR2 binding site of CASTOR1 is at the ACT2-ACT4 interface and is required 
for signalling arginine deprivation to mTORC1
a, The CASTOR1 D292A, E261A, D121A, and YQ118–119AA mutants are deficient in 

GATOR2 binding. HA-immunoprecipitates prepared from HEK293T-cells transiently 

expressing the indicated HA-tagged constructs were analyzed as in 1c. b, Solvent-exposed 

surface view of the CASTOR1 homodimer highlighting the GATOR2-binding sites (red). 

Residue E261 is in a partially disordered loop and not visible in one monomer (left). c, 
Cross-sectional view of the ACT2-ACT4 interface showing the positions of the critical 

GATOR2-binding residues relative to the bound arginine (yellow) and the β14-loop. d, The 

GATOR2-binding-deficient YQ118–119AA and D121A mutants of CASTOR1 fail to inhibit 

the mTORC1 pathway and render cells insensitive to arginine starvation. HEK-293T cells 

were transiently transfected with FLAG-S6K1 and the indicated HA-tagged constructs. 

FLAG-immunoprecipitates were prepared and analyzed as in 1d. e, Model of how arginine 

releases CASTOR1 from GATOR2 to activate mTORC1.
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Figure 5. Insights into the evolution of arginine sensing by CASTOR1
a, (Top) Ribbon view of human CASTOR1 dimer (pink and purple) and AKeco dimer (blue 

and yellow, PDB ID 2J0X). (Bottom) Ribbon view of the human CASTOR1 monomer (left) 

and regulatory domain from AKeco (right). b, Comparison of the arginine-binding pocket in 

human CASTOR1 with the lysine-binding pocket in AKeco. Arginine and lysine are shown 

in yellow and orange, respectively. Hydrogen bonds and salt-bridges are shown as black 

dashed lines. c, Phylogenetic distribution of Aspartate Kinase (orange) and CASTOR1 

homologues (purple). d, Model of the evolution of CASTOR1 from the regulatory domain of 

an ancestral Aspartate Kinase.
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