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At present, only a few drugs have been approved by the FDA for therapy of viral infections in
humans. There is a great need for antiviral drugs with increased potency and decreased toxicity,
as well as drugs to treat viral diseases for which no drug or vaccine is currently available. Two
approaches for development of antiviral drugs are described-an empirical strategy and a
rational strategy-with several examples of each.

Although many compounds have potent antiviral activity in cell culture, only a small fraction of
these will go on to become antiviral drugs for use in humans. At this time, only seven synthetic
compounds and alpha interferon have been approved by the FDA for therapy of viral infections in
humans. None of these approved drugs are without toxicities, however, and hence there is a great
need for antiviral drugs with increased potency and decreased toxicity, as well as for drugs to treat
viral diseases for which no drug or vaccine is currently available. Two approaches for the
development of antiviral drugs-the empirical and the rational strategies-and their applications
and future directions are discussed.

INTRODUCTION

Many compounds have potent antiviral activity in cell culture, but only about 1
percent of these compounds that have antiviral activity in cell culture are also active in
animal systems. Of those that have good antiviral activity and acceptable toxicity in
animals, only a few become antiviral drugs for use in humans. Seven synthetic
compounds (Fig. 1) and alpha interferon have been approved by the FDA as antiviral
agents. The specific viral infections for their use as well as the molecular basis for their
antiviral activity have been well reviewed [1-9] (Table 1). Four of these compounds
are for the therapy of infections caused by members of the herpesvirus family. The
clinically approved antiherpetic drugs include: 5-iodo-2'-deoxyuridine (idoxuridine;
IUdR; IdUrd); 5-trifluoromethyl-2'-deoxyuridine (trifluridine; F3TdR;F3dThd;TFT);
9-f-D-arabinofuranosyl adenine (vidarabine; ara-A); and 9-(2-hydroxyethoxyme-
thyl)guanine (acyclovir; ACV). A fifth compound, amantadine (1-aminoadamantane;
1-adamantanamine HCI), is approved for the therapy and prophylaxis of respiratory
infections caused by the influenza A virus. A sixth antiviral agent, ribavirin (1-
,B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide; virazole), is approved for therapy of
severe respiratory infections in infants and children caused by the respiratory syncytial
virus. The seventh antiviral agent, 3'-azido-3'-deoxythymidine (AZT; zidovudine), has
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FIG. 1. Structure of anti-
viral agents approved by the
FDA for use in humans.

TABLE 1
Site of Inhibition of FDA-Approved Antiviral Drugs

Proposed Site of Inhibition

Interacts with the external surface of the cellular plasma membrane to pre-
vent penetration of influenza A virus. High concentrations of amantadine
also inhibit fusion of viral and endosome membranes by increasing the
pH of the lysosome, thereby preventing the pH 5-catalyzed conforma-
tional change of the membrane protein that is required for subsequent re-
lease of the viral genome into the cytoplasm.

This compound is phosphorylated to the mono-, di-, and triphosphate deriv-
atives with subsequent incorporation into viral DNA. A direct correlation
exists between incorporation of idoxuridine into HSV-1 DNA and inhibi-
tion of the formation of infectious virus. Substituted viral DNA decreases
formation of polyadenylated mRNA with subsequent inhibition of the
formation of specific proteins.

Like idoxuridine, it is phosphorylated to the mono-, di-, and triphosphate
derivatives. As the triphosphate, it is incorporated into DNA with a sub-
sequent adverse effect on mRNA and protein biosynthesis. In addition,
the monophosphate of trifluridine inhibits thymidylate synthetase,
thereby decreasing the pool sizes of competing thymidine nucleotides.

There are multiple sites of inhibition, but the inhibition causally related to
the antiviral activity has not yet been established:

(1) Ara-ATP is a potent inhibitor of ribonucleoside diphosphate re-
ductase from both infected and uninfected cells, but that from HSV-
infected cells is more sensitive to inhibition.

(2) Ara-ATP prevents post-transcriptional addition ofpoly A to viral
mRNA.

(3) Ara-ATP inhibits RNA-dependent RNA polymerase of vesicular
stomatitis virus.
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TABLE 1-Continued

Proposed Site of Inhibition

Acyclovir

Zidovudine (AZT)

Ribavirin

Interferon

(4) Ara-ATP is a competitive inhibitor of dATP for both mammalian
as well as viral DNA-polymerases; however, HSV DNA polymerase
is about tenfold more sensitive with a Ki of 0.3 ,M for viral DNA
polymerase versus 5.0 ,uM for cellular DNA polymerase a.

(5) Ara-ATP is also a substrate for DNA polymerase and is incorpo-
rated in internucleotide linkages in both viral and cellular DNA.

(6) Slowing ofDNA elongation has been reported, and this effect
could be a consequence of the 3'-exonuclease activity associated with
HSV DNA polymerase. Thus by continuous incorporation and re-

moval of ara-AMP from the terminal position, ara-ATP could act as

a pseudo chain terminator.
(7) Ara-ATP inhibits terminal deoxynucleotidyl transferase.
(8) Ara-A, without being phosphorylated, inhibits S-adenosylhomo-

cysteine hydrolase, and this inhibition results in an accumulation of
S-adenosylhomocysteine. The consequence of this effect is an inhibi-
tion of S-adenosylmethionine-dependent methylation reactions such
as those involved in capping of viral mRNA.

The molecular basis for its selective antiviral activity is the preferential
phosphorylation of ACV by HSV- encoded thymidine kinase. Once the
monophosphate of ACV is formed, it is converted by cellular enzymes to
the di- and triphosphate derivatives. The triphosphate of ACV is a com-

petitive inhibitor of the utilization of dGTP for the synthesis of viral
DNA. It preferentially inhibits herpesvirus-encoded DNA polymerase,
for which it has about a hundredfold greater binding affinity than for the
cellular enzyme. It also is incorporated into the viral DNA and termi-
nates elongation of the DNA. When incorporated, the ACV-substituted
DNA template inhibits the viral DNA polymerase by formation of a

tight complex.
AZT is phosphorylated by cellular enzymes to the mono-, di-, and triphos-

phate derivatives. The triphosphate of AZT is terminally incorporated
into DNA and is responsible for the inhibition of HIV-l replication. The
toxic effects of AZT may result from its inhibition of the replication of
mitochondrial DNA in bone marrow cells, which could lead to a dimin-
ishing cellular content of mitochondria until ATP or some other critical
metabolite becomes limiting for cell growth or viability [10].

It is phosphorylated to the mono-, di-, and triphosphate derivatives by cellu-
lar enzymes. As the monophosphate, it may decrease the pool size of
GTP and dGTP, which are required for RNA and DNA synthesis, re-

spectively, by inhibition of inosinate dehydrogenase. This enzyme con-

verts inosinate to xanthylate, which is the precursor for guanosine mono-

phosphate. The triphosphate of ribavirin inhibits the viral-specific
mRNA capping enzymes, guanyl transferase and N7 methyl transferase,
the consequence being an adverse effect on viral protein formation. It
also is a potent inhibitor of the influenza virus RNA polymerase.

The basis for the antiviral activity is not clear, and different sites of inhibi-
tion may be involved, depending on the specific virus and/or host cell in-
volved. The antiviral state is initiated by the binding of interferon to a

specific receptor on the cell surface. Synthesis of viral proteins may be
prevented by one or both of the following interferon-induced events:

(1) Induction of 2', 5'-adenylate synthetase which converts ATP to a

2', 5'-polyadenylate, which in turn activates a latent endonuclease
that hydrolyzes viral mRNA.

(2) Induction of a protein kinase that phosphorylates an inactive initia-
tion factor (eIF-2), which now inhibits initiation of peptide chain
synthesis. Viral adsorption, penetration, uncoating, assembly, and
release have also been implicated.

Drug
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TABLE 2
Some Toxicities of FDA-Approved Antiviral Drugs

Toxicity

Amantadine

Idoxuridine

Trifluridine

Vidarabine

Acyclovir

Zidovudine (AZT)

Ribavirin

Interferon

Nervousness, difficulty in concentrating, drowsiness, anxiety, insomnia, diz-
ziness, headache

High levels of drug or when administered to patients with renal impair-
ment: acute delirium, visual and auditory hallucinations, convulsions,
coma

Systemic administration: Bone marrow depression, alopecia, stomatitis
Topical administration: Contact dermatitis, follicular conjunctivitis, lid

changes, lacrimation, punctate epithelial keratopathy in therapy of her-
petic keratitis

Toxicities similar to idoxuridine. Most frequent is mild transient stinging
upon therapy of herpetic keratitis, punctate epithelial damage, eyelid
edema

Topical administration: Therapy of herpes keratitis can produce lacrima-
tion, foreign body sensation, burning, irritation, photophobia.

Systemic administration: Nausea, vomiting, and diarrhea. High doses may
cause dizziness, hallucinations, psychosis, hepatotoxicity, and bone mar-

row depression. In experimental animals, it is oncogenic and teratogenic
and therefore a concern in use during pregnancy or in infants.

Topical administration: Mild transient stinging upon instillation in eye,

punctate keratitis, follicular conjunctivitis, hypersensitivity
Systemic administration: Intravenous bolus may produce reversible renal
damage due to deposition of drug crystals in renal tubules; lethargy, ob-

tundation, tremors, confusion, hallucinations, agitation, seizures, coma,
phlebitis at injection site, rash, hives

Macrocytic anemia, granulocytopenia, fever, rash, edema, back pain, chest
pain, arthralgia, muscle spasm, anxiety, depression, reversible confusion

Aerosol administration. Deterioration of pulmonary function in patients
with chronic obstructive lung disease or asthma; dyspnea, chest soreness,

cardiac arrest, hypotension digitalis toxicity, pulmonary edema, revers-

ible anemia, mild headache, mild abdominal cramps, diarrhea. Precipita-
tion of drug when used with a ventilatory apparatus may produce serious
problems during therapy of RSV.

Fever, bone marrow depression, gastrointestinal symptoms, alopecia, nose

bleeds by nasal administration

been approved for therapy of acquired immune deficiency syndrome (AIDS) caused by
human immunodeficiency virus type 1 (HIV-1). Alpha interferon has been approved
recently for treatment of genital warts caused by the papilloma virus and applied by
direct injection into the lesion. Interferon is also approved for therapy of hairy cell
leukemia and Kaposi sarcoma.

None of these FDA-approved drugs, however, is without toxicities [9,10] (Table 2)
and hence there is a strong need for improved drugs not only to improve efficiency but
also to circumvent these problems of toxicity. There is also a need to find an effective
therapy of viral infections for which we do not at present have clinically useful drugs or

vaccines [11].
Among the human viruses or the diseases they produce for which we need useful or

improved drugs or vaccines, we may list the following: HIV-1 (AIDS), cytomegalovi-
rus, Epstein-Barr virus, HSV- 1, HSV-2, varicella virus, influenza A, influenza B,
enterovirus, hepatitis A, hepatitis B, adenovirus, common cold, bronchiolitis, croup,
dengue, poliomyelitis, measles, rabies, warts, chickenpox, mumps, and rubella.

Drug
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DISCUSSION

A variety of approaches have been pursued for the development of antiviral drugs, as
well as drugs in general, and these may be broadly classified as either the rational or
the empirical strategy [ 12-16].
The empirical approach involves repeated structure modification of a lead com-

pound until optimal antiviral activity is obtained, but with an acceptable therapeutic
index. The probability of producing such a compound can be improved by combining
structure-activity relationships with computer-graphic model building. This empirical
approach perhaps could be termed also the "rational serendipity" approach, because
structural modifications made are based on a rational extension of existing knowledge
with other or similar compounds. A simple structural modification may not, however,
produce the desired end product because any modification of structure will produce
changes in size, shape, electronic distribution, partition coefficient, solubility, pKa,
chemical reactivity, metabolism, and hydrogen-bonding capabilities [16]. The hope is
that the change being made will result in improved potency, selectivity, duration of
action, bioavailability, and reduced toxicity [16]. If the hope is realized, the achieve-
ment may be termed "rational serendipity."
An example of a "rational serendipity" approach for development of drugs is that

developed by Hitchings and his colleagues [ 17,18]. They were the first to study analogs
of purines and pyrimidine bases as potential inhibitors of nucleic acid biosynthesis. The
importance of nucleic acids for cellular replication had already been established. Their
approach then was systematically to examine the effect of structural changes on the
potency of a compound as an inhibitor of bacterial replication. Analogs of purines,
pyrimidines, nucleosides, and nucleotides have since been of value in the elucidation of
metabolic pathways as well as in the therapy of cancer, metabolic disorders, and
therapy of various infectious agents.

Another example of the empirical or "rational serendipity" approach is the
modification of the thymidine component ofDNA, by replacement of the methyl group
on carbon-5 of the pyrimidine moiety with an iodine atom (Fig. 2). Rationale dictated
that since the van der Waals' radii of the methyl group and the iodine atom were very
similar, 2.OOA and 2.1 5A, respectively, steric hindrance would not be a problem. The
serendipity entered in when 5-iodo-2'-deoxyuridine (idoxuridine, IDU, IdUrd, IUdR),
originally designed to be an anticancer drug, instead became the first antiviral
compound to be approved by the FDA for therapy of a viral infection-herpetic
keratitis.

There are many examples of structure modification which resulted in the formation
of compounds with antiviral activity. Figure 3 depicts compounds that are substrates
for the HSV-1 encoded thymidine kinase. The relationship to thymidine, the normal
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FIG. 3. Various compounds that are substrates of thymidine kinase encoded by herpes simplex

virus type 1.

substrate, is reasonable; however, that of the guanine derivatives, acyclovir and

ganciclovir, and that of thymidine monophosphate are rather surprising.

The second approach for drug development is the rational approach, and it requires

a sophisticated knowledge of the target structure-be it the active site of an enzyme, or
a receptor, or a macromolecule such as DNA, RNA, or a regulatory protein. Effective
use of this approach requires a knowledge of the structural, spatial, and electronic
requirements for a compound to interact uniquely with the target receptor. Today, not
only do we have the potential to determine the three-dimensional atomic structure of
target sites, but also how antiviral agents or drugs interact with these targets by use of
X-ray crystallography and nuclear magnetic resonance. Knowledge of how the atoms
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are arranged, when combined with molecular modeling and interactive computer
graphics, affords the design of specific drugs [13-16].

This approach may also allow us to understand how a known antiviral drug exerts its
effect. For example, the rhinovirus was crystallized and allowed to interact with a
Sterling-Winthrop compound which is known to prevent viral uncoating, and then the
complex was subjected to X-ray crystallography. Analysis afforded a computer-
graphic picture of how the drug binds into a hydrophobic pocket beneath the canyon
floor of the rhinovirus (Fig. 4). Tihis interaction produced a large conformational
change in 3-stretches of the VP- I polypeptide chain, which increased the rigidity of the
capsid proteins, with resultant inhibition of the disassembly of the virus [ 19-24]. Such
knowledge allows the more intelligent modification of structure and also allows us to
understand on an atomic level why these drugs are effective or ineffective.
An exciting approach for rational drug design is based on our understanding of gene

structure and function [25-27]. Some success has already been achieved in the
synthesis of "anti-sense" oligodeoxyribonucleotides, whose base pairs are complemen-
tary to critical regions of the viral genome or mRNA and, following specific
hybridization, block viral expression [28-31] (Fig. 5). Thus, selective inhibition of
gene expression is achieved. There are, however, several problems in the use of
anti-sense oligonucleotides: (1) attainment of a high concentration in the cell; (2) rapid
degradation by nucleases in plasma and cells; (3) transport into the cell; and (4)

FIG. 5. Inhibition of messenger RNA translation by anti-sense oligodeoxyribonucleotide polymer [28].
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possible limited accessibility of the target nucleic acid sequence because of the tight
binding proteins. Some of these problems have been approached in several laboratories
and will be briefly described.
The phosphodiester linkage, for example, has been converted into non-ionic phos-

photriesters, alkylphosphonates [32], and phosphorothioates [33], as well as non-
phosphorous moieties such as amides, carbonates, carbamate, and siloxane [34]. The
consequence of such conversion is a decreased sensitivity to enzymic degradation as
well as improved transport into the cell because of increased lipophilicity (decreased

3* 5.

FIG. 7. DNA triple-stranded formation of an oligodeoxyribonucleotide
with attached cleaving moiety (EDTA-Fe) to double-stranded DNA [37].
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polarity). Unfortunately, the alkylphosphonates introduce an undesirable chiral
phosphorus which complicates synthesis.
An increased stability of hybrid formation was achieved by the conjugation of an

intercalating compound such as an acridine derivative to either the 3'- or the
5'-terminal of the oligomer via a pentamethylene tether. The intercalating acridine
provides additional binding energy to stabilize the hybrid complex and also decreases
susceptibility to endonuclease degradation [35] (Fig. 6).

Transport of the oligodeoxyribonucleotide was markedly increased by covalently
linking cytidine to the 3'-terminus, oxidatively cleaving the 2', 3'-bond of cytidine, and
by subsequent reaction with the epsilon amino moiety of poly-L-lysine forming an
N-morpholino ring linking the oligomer to poly-L-lysine [36].
A potentially very important approach is termed "affinity cleaving." This technique

involves the use of a complementary oligomer to carry a reactive moiety, which can,
under appropriate conditions, destroy a specific portion of the nucleic acid genome.
The oligomer-conjugate can react with double-stranded DNA at a specific DNA
sequence, forming a triple helix, and a cleaving function, such as EDTA chelated to
Fe'+, under appropriate redox conditions can generate highly reactive hydroxyl
radicals from oxygen, which react and destroy the deoxyribose moieties. Where the
deoxyribose moiety is cleaved on both strands of DNA, the gene is destroyed [37-39]
(Fig. 7).

This method is truly a rational chemotherapeutic approach for inactivation of
specific genes. One can visualize destruction of any viral gene which is integrated into
cellular DNA. At present, the replicating virus but not the latent virus is susceptible to
inhibition by our present armamentarium of antiviral drugs. Can this technique
destroy the AIDS virus when it is integrated into cellular DNA as proviral DNA? Can
this approach destroy the latent herpesvirus responsible for recurrences of genital
herpes, or the varicella-zoster virus responsible for shingles, or, for that matter, an
oncogene if involved in the progression of cancer?

In summary, it appears that some exciting new approaches for the design of antiviral
agents are being pursued. We are, however, in the very early stages of development,
and there are many obstacles which must be overcome before the "rational-
serendipity" approach, or even what we optimistically term the "rational" approach,
becomes a truly rational approach.
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