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ABSTRACT
Introduction: Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic
imaging technique that identifies corneal nerve fiber damage. Small studies suggest that
CCM could be used to assess patients with diabetic peripheral neuropathy (DPN).
Aim: To undertake a systematic review and meta-analysis assessing the diagnostic utility
of CCM for sub-clinical DPN (DPN-) and established DPN (DPN+).
Data sources: Databases (PubMed, Embase, Central, ProQuest) were searched for stud-
ies using CCM in patients with diabetes up to April 2020.
Study selection: Studies were included if they reported on at least one CCM parame-
ter in patients with diabetes.
Data extraction: Corneal nerve fiber density (CNFD), corneal nerve branch density
(CNBD), corneal nerve fiber length (CNFL), and inferior whorl length (IWL) were compared
between patients with diabetes with and without DPN and controls. Meta-analysis was
undertaken using RevMan V.5.3.
Data synthesis: Thirty-eight studies including ~4,000 participants were included in this
meta-analysis. There were significant reductions in CNFD, CNBD, CNFL, and IWL in DPN-

vs controls (P < 0.00001), DPN+ vs controls (P < 0.00001), and DPN+ vs DPN-

(P < 0.00001).
Conclusion: This systematic review and meta-analysis shows that CCM detects small
nerve fiber loss in subclinical and clinical DPN and concludes that CCM has good diagnos-
tic utility in DPN.

INTRODUCTION
Diabetic peripheral neuropathy (DPN) affects ~50% of patients
with diabetes and leads to significant morbidity including neu-
ropathic pain, erectile dysfunction, and foot ulceration1. Cur-
rently, the diagnosis of DPN in clinic relies on symptoms, loss
of sensation to the 10 g monofilament, neurological examina-
tion, and occasionally electrophysiology2. However, these meth-
ods do not reliably detect small nerve fiber damage which
occurs in early DPN3.
In 2003, we showed that the ophthalmic technique of corneal

confocal microscopy (CCM) can identify corneal small nerve

fiber loss in patients with early and established DPN4. Subse-
quently we and others demonstrated good diagnostic utility for
DPN5–7, comparable to intra-epidermal nerve fiber density
(IENFD)8,9. CCM also predicts incident DPN8,10 and identifies
individuals at higher risk of developing DPN11. However, some
studies have failed to demonstrate corneal nerve fiber loss in
patients with and without DPN12,13, which has been attributed
to a small sample size13 and variances in image acquisition and
analysis protocols14.
We have undertaken a systematic review and meta-analysis

to generate a definitive single estimate for the diagnostic utility
of CCM in sub-clinical and clinical DPN.
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METHODS
Data sources and searches
This systematic review and meta-analysis is reported in accor-
dance with MOOSE guidelines15. The protocol was registered
with the International Prospective Register of Systematic
Reviews (PROSPERO) on November 2020
(CRD42018093498). Four databases were chosen to search for
this systematic review: PubMed, EMBASE (Ovid), CENTRAL,
and web of science (WoS)- (1900-present). In the PubMed
and CENTRAL database both Mesh subject headings and key-
words were searched; in Embase-(1988-present) Emtree subject
headings and keywords were utilized. Numerous terms were
tested for relevancy and the final search strings for the three
databases can be found in Table S1 in the supplement. Article
language was limited to English and no date restrictions were
set. A segment of the grey literature was searched through
the use of dissertation and theses (ProQuest) and Clinicaltri-
als.gov. The databases were searched from inception to April
2020.
We included observational studies that reported on at least

one of the following CCM parameters: corneal nerve fiber
density (CNFD), corneal nerve branch density (CNBD), cor-
neal nerve fiber length (CNFL), or inferior whorl length
(IWL) in any of the following three groups: patients with type
1 and/or type 2 diabetes with diabetic peripheral neuropathy
(DPN+), without diabetic peripheral neuropathy (DPN-), and
controls. Cross-sectional and longitudinal observational studies
were included in this systematic review and meta-analysis.
Narrative reviews, systematic reviews, correspondence, and case
reports were excluded. Study country, age, diagnosis (DPN+,
DPN-, control), duration of diabetes, HbA1c, software used
for image analysis, CNFD, CNBD, CNFL, and IWL were
extracted when available. Studies using CCMetrics, ACCMet-
rics, ImageJ, and other morphometric software to quantify
CNFD, CNBD, and CNFL were included. IWL was quantified
using CCMetrics and ACCmetrics only. Data presented as
median (IQR) were converted into mean – SD using an
online calculator and data presented as mean – SEM were
converted into mean – SD using the RevMan calculator16.
HbA1c presented in (%) was also converted into (mmol/mol)
using the NGSP calculator, where NGSP % must be between
3 and 2017. Original studies that staged DPN as per the dia-
betic neuropathy study group in Japan (DNSGJ) were classi-
fied as: DPN- for stage I, DPN+ for stages II–V, for meta-
analysis reporting purpose18,19. Stage I was reported as DPN-

and stages II–III were reported as DPN+ in this study20.
Patients classified according to the modified neuropathy dis-
ability score (NDS) were grouped as: scores between 0–2
(DPN-) and 3–10 (DPN+)21,22. No neuropathy was classified
as DPN- and mild-severe neuropathy was classified as
DPN+23–26. No differentiation was made for either painful or
painless DPN and both were classified as DPN+27,28. Where
the vibration perception threshold (VPT) was used, <15V was
classified as DPN- and ≥15V as DPN+4.

Study selection
After the removal of duplicates, all citations were screened for
relevance using the full citation, abstract, and indexing terms,
before excluding studies deemed as irrelevant. Where there was
a lack of consensus a third (senior) author was consulted.
Duplicates were removed and the most recent and complete
versions of the studies were reviewed for eligibility. Relevant
studies were assessed by two reviewers (HG and INP) to assess
eligibility according to the pre-specified inclusion and exclusion
criteria. Full manuscripts of these potentially eligible citations
were obtained. Two reviewers made the final inclusion and
exclusion decisions independently and in the case of disagree-
ment, a third reviewer was consulted to resolve any conflicts. A
flow chart of search results was produced (Figure S1). A data
collection tool was developed to extract the data from each
study. Data verification was undertaken by two reviewers (HG
and INP). In the event of missing data, the authors were
emailed to obtain unpublished data.

Data extraction and quality assessment
The included studies were assessed using the Cochrane Collab-
orations tool for assessing the risk of bias (section 8.5)29. The
tool categorizes the risk of bias into high, moderate, low, or
unclear risk. This tool assessed six domains: selection bias, per-
formance bias, detection bias, attrition bias, reporting bias, and
other bias, where applicable. Quality assessment was undertaken
by two reviewers (AK and GP). If the risk of bias of a study
was unclear, the effect of removing the study was checked and
relevant outcomes were reported (Table S2).

Data synthesis and analysis
Meta-analysis was performed in RevMan (version 5.3)30. Ran-
dom effects meta-analysis was used in anticipation of hetero-
geneity due to differences in study population and type and
duration of diabetes. The mean difference (MD) with a 95%
confidence interval (CI) was calculated for CNFD, CNBD,
CNFL, and IWL. The Chi-squared (v2) test was used to test for
difference between subgroups. The I2 statistic was calculated,
which is derived from Cochrane’s chi-squared test Q and is
used to describe the percentage of between-study variations
attributed to variability in the true exposure effect29. An I2

value of 0–40% was classified as not important, 30–60% moder-
ate, 50–90% substantial, and 75–100% considerable29.

RESULTS
The search strategy identified 1,310 records (Figure S1). In
total, 557 papers were screened on the basis of titles and
abstracts, of which 508 were excluded, leaving 49 full text
papers of which 38 were included in the meta-analysis.

Study characteristics
The studies were conducted in Canada10,26,31–33, United King-
dom4,8,9,21,24,25,28,34–42, Germany27, Denmark12, Australia43–49,
Japan18,19,22,50, and China23,51 (Table 1).
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Corneal nerve fiber density
DPN+ vs DPN-

Twenty-nine studies4,8–10,12,18,19,21–26,31–33,35,37–44,50,51 with 3,214
(1,677 DPN+ and 1,537 DPN-) participants were included in
the meta-analysis. The CNFD (fiber/mm2) was significantly
lower in the DPN+ group compared with the DPN- group
(MD = -7.01, 95% CI -7.45 to 6.57, P < 0.00001) (CCMetrics
(MD = -6.83, 95% CI -7.82 to -5.84, P < 0.00001), ACCMet-
rics (MD = -7.77, 95% CI -8.32 to -7.22, P < 0.00001), Ima-
geJ (MD = -3.48, 95% CI -4.64 to -2.33, P < 0.00001), and
morphometric software (MD = -11.40, 95% CI -15.42 to -
7.38, P < 0.00001)). There was a significant difference in the
magnitude of the CNFD reduction in the DPN+ group between
studies (v2 = 19.32, P = 0.0002) (Figure 1a).

DPN+ vs control
Twenty-nine studies4,8,9,12,18,19,21–28,31–35,37,38,40,41,43–45,50,51 with
3377 (1994 DPN+ and 1383 control) participants were included
in the meta-analysis. The CNFD (fiber/mm2) was significantly
lower in the DPN+ group compared with the controls (MD = -
11.94, 95% CI -12.25 to -11.62, P < 0.00001) (CCMetrics
(MD = -10.83, 95% CI -11.26 to -10.40, P < 0.00001),
ACCMetrics (MD = -13.75, 95% CI -14.26 to -13.25,
P < 0.00001), ImageJ (MD = -8.98, 95% CI -10.40 to -7.55,
P < 0.00001), and morphometric software (MD = -22.26, 95%
CI -27.67 to -16.85, P < 0.00001). There was a significant differ-
ence in the magnitude of the CNFD reduction in the DPN+

group between studies (v2 = 15.50, P = 0.001) (Figure 1b).

DPN- vs control
Twenty-seven studies4,8,9,12,18,19,21–26,31–33,35,37,38,40–45,50,51 with
3,035 (1,620 DPN- and 1,415 control) participants were
included in the meta-analysis. The CNFD (fiber/mm2) was sig-
nificantly lower in the DPN- group compared with the controls
(MD = -5.85, 95% CI -6.12 to -5.57, P < 0.00001) (CCMet-
rics (MD = -5.76, 95% CI -6.15 to -5.37, P < 0.00001),
ACCMetrics (MD = -5.91, 95% CI -6.32 to -5.50],
P < 0.00001), ImageJ (MD = -5.89, 95% CI -7.13 to -4.65,
P < 0.00001), and morphometric software (MD = -11.07, 95%
CI -16.34 to -5.80, P < 0.0001). There was no significant dif-
ference in the magnitude of the CNFD reduction in the DPN-

group between studies (v2 = 4.01, P = 0.26) (Figure 1c).

Corneal nerve branch density
DPN+ vs DPN-

Thirty studies4,8–10,12,18,19,21–26,31–33,35,37–41,43–46,50–52 with 3,552
(1,763 DPN+ and 1,789 DPN-) participants were included in

the meta-analysis. The CNBD (branch/mm2) was significantly
lower in the DPN+ group compared with the DPN- group
(MD = -3.36, 95% CI -4.11 to -2.61, P < 0.00001) (CCMet-
rics (MD = -10.37, 95% CI -12.56 to -8.18, P < 0.00001), and
ACCMetrics (MD = -8.20, 95% CI -10.20 to -6.20,
P < 0.00001). There was a significant difference in the extent
of the CNBD reduction in the DPN+ group between studies
(v2 = 30.97, P < 0.00001), (Figure 2a).

DPN+ vs control
Thirty studies4,8,9,12,18,19,21–28,31–35,37,38,40,41,43–46,50,51 with 3,460
(2,072 DPN+ and 1,388 control) participants were included in
the meta-analysis. The CNBD (branch/mm2) was significantly
lower in the DPN+ group compared with the controls
(MD = -11.00, 95% CI -11.65 to -10.35, P < 0.00001)
(CCMetrics (MD = -20.87, 95% CI -22.05 to -19.68,
P < 0.00001), ACCMetrics (MD = -7.34, 95% CI -8.35 to -
6.32, P < 0.00001), ImageJ (MD = -4.79, 95% CI -6.05 to -
3.53, P < 0.0001), and morphometric software (MD = -21.81,
95% CI -26.61 to -17.01, P = 0.0003)). There was a significant
difference in the magnitude of the CNBD reduction in the
DPN+ group between studies (v2 = 30.98, P < 0.00001) (Fig-
ure 2b).

DPN- vs control
Twenty-six studies4,8,12,18,19,21–24,26,31–33,35,37,38,40,41,43–46,50–52 with
2,813 (1,606 DPN- and 1,207 control) participants were
included in the meta-analysis. The CNBD (branch/mm2) was
significantly lower in the DPN- group compared with the con-
trols (MD = -6.37, 95% CI -7.31 to -5.44, P < 0.00001)
(CCMetrics (MD = -11.08, 95% CI -13.40 to -8.75,
P < 0.00001), ACCMetrics (MD = -11.17, 95% CI -13.46 to -
8.88, P < 0.00001), ImageJ (MD = -3.34, 95% CI -4.52 to -
2.17, P < 0.0001), and morphometric software (MD = -16.26,
95% CI -21.14 to -11.37, P = 0.007)). There was a significant
difference in the magnitude of the CNBD reduction in the
DPN- group between studies (v2 = 33.32, P < 0.00001) (Fig-
ure 2c).

Corneal nerve fiber length
DPN+ vs DPN-

Thirty-four studies4,8–10,12,18,19,21–26,31–33,35,37–41,43–48,50–53 with
3,868 (1,855 DPN+ and 2,013 DPN-) participants were
included in the meta-analysis. The CNFL (mm/mm2) was sig-
nificantly lower in the DPN+ group compared with the DPN-

group (MD = -3.08, 95% CI -3.58 to -2.58, P < 0.00001)
(CCMetrics (MD = -3.74, 95% CI -4.49 to -2.99,

Figure 1 | (a) Forest plots of corneal nerve fiber density (CNFD) in patients with diabetic peripheral neuropathy (DPN+) and without diabetic
peripheral neuropathy (DNP-). (b) Forest plots of corneal nerve fiber density (CNFD) in patients with diabetic peripheral neuropathy (DPN+) and
healthy control. (c) Forest plots of corneal nerve fiber density (CNFD) in patients without diabetic peripheral neuropathy (DNP-) and healthy
control.
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P < 0.00001), ACCMetrics (MD = -2.80, 95% CI -3.57 to -
2.04, P < 0.00001), ImageJ (MD = -1.57, 95% CI -2.06 to -
1.09, P < 0.00001), and morphometric software (MD = -3.49,
95% CI -5.63 to -1.35, P = 0.001). There was a significant dif-
ference in the magnitude of the CNFL reduction in the DPN+

group between studies (v2 = 25.42, P < 0.00001) (Figure 3a).

DPN+ vs control
Thirty-two studies4,8,9,12,18,19,21–26,28,31–35,37,38,40,43–47,50–52 with
3,459 (2,036 DPN+ and 1,423 control) participants were
included in the meta-analysis. The CNFL (mm/mm2) was sig-
nificantly lower in the DPN+ group compared with the controls
(MD = -6.05, 95% CI -6.77 to -5.34, P < 0.00001) (CCMet-
rics (MD = -6.91, 95% CI -8.06 to -5.76, P < 0.00001),
ACCMetrics (MD = -5.49, 95% CI -7.03 to -3.95,
P < 0.00001), ImageJ (MD = -4.14, 95% CI -4.72 to -3.56,
P < 0.00001), and morphometric software (MD = -6.07, 95%
CI -8.64 to -3.50, P < 0.00001). There was a significant differ-
ence in the magnitude of CNFL reduction between studies
(v2 = 19.59, P = 0.0002) (Figure 3b).

DPN- vs control
Thirty studies4,8,9,12,18,19,21–26,31–33,35,37,38,40,41,43–48,50–52 with 3,149
(1,786 DPN- and 1,363 control) participants were included in
the meta-analysis. The CNFL (mm/mm2) was significantly
lower in the DPN- group compared with the controls
(MD = -2.87, 95% CI -3.34, -2.40, P < 0.00001) (CCMetrics
(MD = -3.12, 95% CI -4.06 to -2.19, P < 0.00001), ACCMet-
rics (MD = –2.63, 95% CI -3.43 to -1.83, P < 0.00001), Ima-
geJ (MD = -2.78, 95% CI -3.35 to -2.22, P < 0.00001), and
morphometric software (MD = -2.68, 95% CI -3.48 to -1.88,
P < 0.00001). There was no difference in the magnitude of the
CNFL reduction in the DPN- group between studies
(v2 = 0.72, P = 0.87), (Figure 3c).

Inferior whorl length
DPN+ vs DPN-

Six studies8,41,43,44,48 with 459 (205 DPN+ and 254 DPN-) par-
ticipants were included in the meta-analysis. The IWL (mm/
mm2) was significantly lower in the DPN+ group compared
with the DPN- group (MD = -4.11, 95% CI -5.10 to -3.12,
P < 0.00001) (CCMetrics (MD = -3.42, 95% CI -5.47 to -
1.36, P = 0.001), and ACCMetrics (MD = -4.40, 95% CI -5.53
to -3.28, P < 0.00001). There was no significant difference in
the magnitude of the CNFL reduction in the DPN+ group
between studies (v2 = 0.68, P = 0.41), (Figure 4a).

DPN+ vs control
Six studies8,28,41,43,44,48 with 520 (310 DPN+ and 210 control)
participants were included in the meta-analysis. The IWL
(mm/mm2) was significantly lower in the DPN+ group com-
pared with the controls (MD = -10.36, 95% CI -13.30 to -
7.42, P < 0.00001) (CCMetrics (MD = -11.62, 95% CI -15.97
to -7.28, P < 0.00001), and ACCMetrics (MD = -8.32, 95% CI
-9.40 to -7.24, P < 0.00001)). There was no significant differ-
ence in the extent of the IWL reduction in the DPN+ group
between studies (v2 = 2.08, P = 0.15), (Figure 4b).

DPN- vs control
Five studies8,41,43,44,48 with 399 (219 DPN- and 180 control)
participants were included in the meta-analysis. The IWL
(mm/mm2) was significantly lower in the DPN- group com-
pared with the controls (MD = -3.81, 95% CI -4.56 to -3.06,
P < 0.00001) (CCMetrics (MD = -4.43, 95% CI -5.56 t0 -
3.29, P = 0.003), and ACCMetrics (MD = -3.34, 95% CI -4.33
to -2.34, P < 0.00001). There was no significant difference in
the extent of IWL reduction in the DPN- group between stud-
ies (v2 = 2.11, P = 0.15), (Figure 4c).

DISCUSSION
In this large systematic review and meta-analysis of over 3,000
participants, CCM demonstrated a consistent reduction in four
major corneal nerve parameters in patients with DPN com-
pared with healthy controls and those without DPN. Further-
more, we demonstrate a lesser but significant reduction in all
corneal nerve parameters in patients without DPN compared
with controls, suggesting that CCM detects early sub-clinical
DPN. This is consistent with the demonstration of corneal
nerve loss in subjects with impaired glucose tolerance54, recently
diagnosed type 2 diabetes55 and children with type 1 diabetes56.
The greater corneal nerve loss in patients with DPN compared
with those without DPN is consistent with studies showing that
corneal nerve loss is associated with the severity of
DPN4,24,51,57,58 and has good sensitivity and specificity for diag-
nosing DPN5–7. Both CNFD and IENFD have a comparable
diagnostic performance for DPN8,9,59, although in a study of
patients with recently diagnosed type 2 diabetes there were dif-
ferences in the extent of small nerve fiber damage between
CCM and skin biopsy57. Additionally, a reduction in corneal
nerve parameters is associated with incident DPN10,53,60 and
greater corneal nerve loss41, and augmented nerve branching27

occurs in patients with painful diabetic neuropathy. CCM could
act as a biomarker as defined by the NIH Biomarkers

Figure 2 | (a) Forest plots of corneal nerve branch density (CNBD) in patients with diabetic peripheral neuropathy (DPN+) and without diabetic
peripheral neuropathy (DNP-). (b) Forest plots of corneal nerve branch density (CNBD) in patients with diabetic peripheral neuropathy (DPN+) and
healthy control. (c) Forest plots of corneal nerve branch density (CNBD) in patients without diabetic peripheral neuropathy (DNP-) and healthy
control.
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Definitions Working Group61; it is non-invasive, easily mea-
sured, and produces rapid results with high sensitivity5–7. It
allows the detection of subclinical DPN, and there is minimal
overlap in corneal nerve parameters between patients with and
without DPN and healthy people. In addition, CCM identifies
those at risk of developing DPN10,11,53.
The outcomes of the current review extend considerably the

findings of a previous systematic review and meta-analysis
showing a reduction in CNFD, CNBD, and CNFL in patients
with and without DPN compared with controls from 13 studies
with 1,680 participants62 and a more recent trial sequential
meta-analysis which showed a reduction in CNFD, CNBD, and
CNFL in patients with and without DPN compared with con-
trols in 13 studies with 1,830 participants14.
In the present review we have included IWL which has the

potential to detect earlier nerve damage36,63,64, especially in
patients with painful diabetic neuropathy28,41.
The reliability of establishing a single estimate for the

effect size of corneal nerve outcome measures from all the
published studies may be affected by the inclusion of the
same subjects from several studies, type of CCM used to
acquire the images, the mode of image acquisition, and the
image analysis tool used to quantify corneal nerve parame-
ters. Our analysis showed that the type of software used
for image analysis had no significant influence on the
heterogeneity of corneal nerve outcomes. Whilst the cor-
neal nerve measure was lower when using automated
(ACCMetrics) compared with manual (CCMetrics, ImageJ)
software, the magnitude of difference in corneal nerve
parameters between groups was comparable38,65.
Our sensitivity analysis shows no evidence of significant bias

or heterogeneity (Doc S1). This was expected, given that there
may be differences in corneal nerve parameters between
patients with type 1 and type 2 diabetes5,7,13 and in relation to
HbA1c66 and glycemic variability67, presence of metabolic syn-
drome68 and hypertension or hyperlipidemia7,69.

CONCLUSIONS
Corneal confocal microscopy is a rapid, non-invasive and
reproducible imaging technique to quantify small nerve
fiber damage. Our systematic review and meta-analysis
provides robust evidence that corneal confocal

(a)

(b)

(c)

Figure 3 | (a) Forest plots of corneal nerve fiber length (CNFL) in
patients with diabetic peripheral neuropathy (DPN+) and without
diabetic peripheral neuropathy (DNP-). (b) Forest plots of corneal nerve
fiber length (CNFL) in patients with diabetic peripheral neuropathy
(DPN+) and healthy control. (c) Forest plots of corneal nerve fiber
length (CNFL) in patients without diabetic peripheral neuropathy
(DNP-) and healthy control.
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microscopy can be used to diagnose sub-clinical and
established DPN.
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Figure 4 | (a) Forest plots of inferior whorl length (IWL) in patients with diabetic peripheral neuropathy (DPN+) and without diabetic peripheral
neuropathy (DNP-). (b) Forest plots of inferior whorl length (IWL) in patients with diabetic peripheral neuropathy (DPN+) and healthy control. (c)
Forest plots of inferior whorl length (IWL) in patients without diabetic peripheral neuropathy (DNP-) and healthy control.
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