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Abstract
Chromosome 21 abnormalities are the most frequent genetic findings in childhood B cell precursor acute lymphoblastic leukemia
(BCP-ALL) cases. Majority of patients are effectively diagnosed with fluorescence in situ hybridization (FISH) and karyotyping;
however, some cases may require additional tools to be used. Bone marrow samples of 373 childhood BCP-ALL patients were tested
for chromosome 21 copy number variations (CNVs) with Multiplex Ligation-dependent Probe Amplification (MLPA) P327 array.
Results fromMLPA and cytogenetics were compared between groups according to the type of abnormality found on chromosome 21.
Out the group of 235 patients, chromosome 21multiplication was found by FISH assay in 56 cases (23.81%), ETV6-RUNX1 fusion in
34 (14.47%) and iAMP21 in 3 (1.28%) children, remaining 142 (60.43%) patients had no known chromosome 21 aberration. Median
peak ratios of all tested probes inMLPA in aforementioned groups were 1.47 (IQR 1.28–1.77) vs. 1.00 (IQR 1.00–1.09) vs. 2.79 (IQR
1.97–2.83) vs. 1.00 (1.00–1.11), respectively. Aforementioned peak ratio ofETV6-RUNX1 fusion groupwas similar with patients of no
known chromosome 21 aberration (p= 0.71). Interestingly, both groups differed from patients with chromosome 21 multiplication
(p< 10−5) andwith iAMP21 (p < 10−5). All cases of iAMP21were correctly recognized byMLPA.MLPA seems to be good additional
tool in the diagnostic process of chromosome 21 CNVs, especially in cases with iAMP21.
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Introduction

Genetic abnormalities of the chromosome 21 are the most
common findings among children diagnosed with B cell

precursor acute lymphoblastic leukemia (BCP-ALL) (Li
et al. 2014a; Johnson et al. 2015). Molecular subtypes of
BCP-ALLwith changes in the chromosome 21 are in majority
connected with good prognosis, e.g., hyperdiploidy with chro-
mosome 21 multiplication or ETV6-RUNX1 fusion
t(12;21)(p13.2;q22.q) (Depil et al. 1998; Harewood et al.
2003) with 5-year survival rates exceeding 90% in both cases
(Brown et al. 2007; Vora et al. 2013, 2014; Gu et al. 2016;
Moorman 2016). Recent update of WHO classification for
hematologic malignancies defined additional new category
of BCP-ALL with aberrations of chromosome 21 that is
intrachromosomal amplification of chromosome 21
(iAMP21) (Wenzinger et al. 2018). In contrary to aforemen-
tioned changes concerning chromosome 21, iAMP21 is
known to be negative predictive and prognostic factor
(Heerema et al. 2013; Harrison et al. 2014; Gu et al. 2016;
Kim et al. 2016; Yang et al. 2017) if not treated with high-risk
protocol.

Those primary genetic abnormalities are identified greatly
by karyotyping and fluorescence in situ hybridization (FISH)
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at the time of diagnosis for further risk stratification and treat-
ment decisions. However, due to low mitotic cells count in the
tested sample of bone marrow or low volume of the specimen,
up to 30% of ALL patients lack reliable cytogenetic test re-
sults (Wang et al. 2016). This revealed the need to fill this gap
by alternative diagnostic methods. Among other SNP array,
next-generation sequencing or Multiplex Ligation-dependent
Probe Amplification (MLPA) seems to be a useful tool for
detecting primary genetic aberrations in this subgroup of pa-
tients (Harrison et al. 2014; Fuka et al. 2015; Benard-Slagter
et al. 2017).

MLPA is a well-known, relatively fast, and efficient meth-
od for copy number variation (CNV) detection. On the other
hand, several downsides, e.g., semi quantitative results, re-
quirement of high concentration of good quality DNA, cannot
be overlooked. A few studies attempted to settle whether
MLPA is reliable method in CNVs diagnostics and if it mirrors
accurately results from FISH assay; however, conclusions
were inconsistent (Garcia et al. 2013; Duployez et al. 2015;
Fuka et al. 2015; Ivanov Öfverholm et al. 2016; Wang et al.
2016; Benard-Slagter et al. 2017; Ittel et al. 2017; Yang et al.
2017).

In this study, we have tried to assess the relevance ofMLPA
as a tool for detecting CNVs at chromosome 21 and compare
it with karyotyping and FISH assay results to define its role as
complementary tool in diagnostic settings.

Materials and methods

Study design and group description

There were 235 children enrolled in the study diagnosed with
BCP-ALL between September 2002 and May 2015. The age
under 18 years, treatment based on ALL-IC BFM 2002 or
2009, available karyotyping and/or FISH results, and bone
marrow sample from the point of diagnosis for DNA extrac-
tion were among inclusion criteria. All children were
Caucasian, treated in the clinical centers of the Polish
Pediatric Leukemia/Lymphoma Study Group. The study was
approved by an authorized institutional board and a written
consent for participation was required from every patient prior
to enrolment.

Out of the collected group, 51.74% (193 patients) were
female; median age at the diagnosis was 4.66 (IQR 2.90–
8.64). Follow-up time ranged between 0.11 and 12.6 years
with mean of 4.31 years. Median blast count of tested samples
was 92.40% (84.20–96.00). Patients were divided into four
groups according to different chromosome 21 abnormality
diagnosed in FISH and karyotyping for further comparisons:
chromosome 21 multiplication regardless of hyperdiploidity
status, ETV6-RUNX1 fusion, iAMP21, and cases with no
known aberration considering chromosome 21.

Bone marrow processing

Available samples of bone marrow collected at diagnosis
were archived in the TRIzol reagent and stored at – 80 °C.
The TRIzol manufacturer’s extraction protocol (Ambion
by Life Technologies, Carlsbad, CA, USA) was used.
Both DNA quality and quantity were measured at the
NanoDrop station (NanoDrop 8000, Thermo Scientific,
Waltham, MA, USA).

Multiplex ligation-depended probe amplification
(MLPA)

For all collected bone marrow samples, MLPA analysis with
P327 – B1 and B2 iAMP21-ERG probemixes was applied
(MRC Holland, Amsterdam, The Netherlands). Data were
analyzed using GeneMarker v2.6.3 software according to the
manufacturer’s protocol (Softgenetics, State College, PA,
USA). The absolute fluorescence was normalized by compar-
ing peak patterns of DNA in the sample of interest with the
sample DNA of a healthy individual. The relative probe ratio
of tested samples was then compared with average relative
probe ratio in the reference samples to calculate Dosage
Quotient (DQ). DQ values between 0.85 and 1.15 were con-
sidered as normal, between 0.65 and 0.35 as heterozygous
deletion, lower than 0.35 as homozygous deletion, between
1.35 and 1.55 as heterozygous duplication, and 1.70 and 2.20
as homozygous duplication. Ratios higher than 2.20 for
RUNX1 probes were considered as iAMP21 amplifications
which is higher or similar threshold that was acknowledged
in articles considering corresponding analyses (Fuka et al.
2015; Kim et al. 2016).

Data on karyotyping and FISH assay were available for all
235 patients. Tests were conducted by certified external diag-
nostic laboratory and are basis for both iAMP21 and ETV6-
RUNX1 fusion detection. Hyperdiploid cases with additional
chromosome 21 were detected based on FISH method. For
iAMP21 confirmation, 5 signals from RUNX1 specific probe
in FISH array must have been detected as a diagnostic criteri-
on (Harrison et al. 2014). MRD at day 15 was measured by
flow cytometry in a reference laboratory with 10% being the
threshold for a positive result.

Data analysis

Results with a p value lower than 0.05 were considered
statistically significant. Statistica 12.0 software (TIBCO
Software Inc., Palo Alto, CA, USA) was applied for all
computations. Categorical variables are presented as per-
centages and differences between the groups were calcu-
lated with χ2 test. Continues variables were presented as
medians with interquartile range and differences between
groups were computed with Kruskal-Wallis test or Mann-
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Whitney U test for paired groups. Post hoc computations
were conducted with Tukey’s HSD test. For result presen-
tation, GraphPad Prism 7.05 software (GraphPad
Software. La Jolla, CA, USA) was used.

Results

In all collected cases of BCP-ALL (235 children), cytogenetic
testing was used to determine CNVs of genes located on the
chromosome 21. Chromosome 21 aberrations were found in
93 (39.57%) bone marrow samples at the time of diagnosis.
Among these patients, chromosome 21 multiplication was the
most frequent finding (60.22%, 56 cases), ETV6-RUNX1 fu-
sion was diagnosed in 36.56% (34 cases), iAMP21 amplifica-
tion in 3.23% (3 children). Forty out of all 60 hyperdiploidic
(with more than 51 chromosomes) cases bore chromosome 21
multiplication (66.67%). Described differences in incidence
were not statistically significant (Supplementary Table 3). In
the group of patients with chromosome 21 gain, the mean
count of additional chromosomes 21 was 1.8 with the highest
number of 5 additional copies per cell.

Clinical characteristics of the group

Clinically, groups with chromosome 21 aberrations signifi-
cantly differed according to the age at diagnosis with
iAMP21 positive being the oldest group with median
12.65 years old (p = 0.0118). ETV6-RUNX1 fusion group
was predominantly male (58.82%) which is the highest rate
among analyzed groups (p = 0.5865). Patients without consid-
ered primary chromosome 21 abnormalities had the highest
WBC at onset of 16.35 × 103/μL (p = 0.0286). Median blast
count at diagnosis deviated between 84.00 and 94.80% across
all groups (p = 0.0594). Poor steroid response was most fre-
quent in group with lack of chromosome 21 aberration
11.27% and differences between groups were not significant
(p = 0.1256). All clinical data are shown in Table 1.

Among iAMP21 patients, 1 was treated according to inter-
mediate risk (IR) and 2 as high-risk (HR) group of relapse. For
ETV6-RUNX1 fusion, positive cases and group with chromo-
some 21 gain only 17.65% and 10.71% of children were treat-
ed as HR group, respectively. Among patients with lack of
chromosome 21 aberration, 31 cases (21.83%) were stratified
to HR treatment protocol.

In case of MRD at day 15, differences between groups
were statistically significant (p = 0.0114) with median
values of 2.45% vs. 0.63% vs. 0.30% vs. 27.60% for
group with lack of chromosome 21 aberrations, chromo-
some 21 gain, ETV6-RUNX1 fusion, and iAMP21 group,
respectively. Analysis of MRD at day 15 positive results
in flow cytometry with the cut-off at 10% reported no
significant difference between the groups with p value Ta
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of 0.1077, with the highest incidence of positive MRD
(66.67% cases) in the iAMP21 group, 19.64% in chromo-
some 21 gain group, 20.59% in ETV6-RUNX1 fusion
group, and 31.69% in patients with the lack of chromo-
some 21.

MLPA results

Median peak ratios of all tested MLPA probes varied signifi-
cantly (p < 10−5) between distinguished groups and are
depicted on the Fig. 1a and Table 2. Median peak ratio for
patients with lack of chromosome 21 aberration equaled 1.00

(IQR 1.00–1.11) and was similar to cases with ETV6-RUNX1
fusion 1.00 (IQR 1.00–1.09) (post hoc p = 0.7094). For pa-
tients with chromosome 21 gain, median ratio reached 1.47
(IQR 1.28–1.77) that was interpreted as a heterozygous am-
plification of tested region and the results differed significant-
ly from groups of no known chromosome 21 aberration (post
hoc p = 0.0001) and ETV6-RUNX1 fusion (post hoc 0.0001).
In cases with iAMP21, peak ratios were the highest with a
median value of 2.79 (IQR 1.97–2.83) exceeding values for
homozygous duplication in MLPA and differed significantly
from aforementioned groups (no known chromosome 21 ab-
erration p = 0.0001, chromosome 21 multiplication p =

Fig. 1 a Median peak ratios of
RUNX1 probes in MLPA P327
according to the type of
chromosome 21 aberration; *p =
0.6812; **significant difference
between median values with
p < 10−5. Dotted line represents
threshold of 2.20 above which
MLPA suggests iAMP21
diagnosis. b Median peak ratios
of all probes in MLPA P327
according to the group of
chromosome 21 aberration. *p =
0.7094; **statistically significant
difference with p < 10−5
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0.0001, ETV6-RUNX1 fusion p = 0.0001; all in post hoc
analyses). As it is shown on Fig. 1a, there are cases with
chromosome 21 gain (10 samples, 17.86%) that have median
peak of MLPA P327 probes in the range between 0.85 and
1.15—if basing on these results, they would have been
interpreted as normal and are false-negative examples. In the

group negative for chromosome 21 CNVs, 22 cases were
found to be false positive in MLPA suggesting duplications
(15.49%). No other cases of false positive nor negative results
were reported. Surprisingly, all groups but iAMP21 are char-
acterized by a unified level of median peak ratios of every
probe in applied MLPA probe mixes (Fig. 2).

Table 2 Median values and range of peak ratios of all MLPA P327 probes and selectively RUNX1 probes according to the group. Data from the table
are graphically presented by Fig. 2A and B. p values represent group comparison with patients of no chromosome 21 aberration

No chromosome 21
aberrations

Chromosome 21
multiplication

p value ETV6-RUNX1
fusion

p
value

iAMP21 p value

Median peak ratio of all probes in
MLPA P327

1.00 (1.00–1.11) 1.47 (1.28–1.77) < 0.001 1.00 (1.00–1.09) 0.709 2.79 (1.97–2.83) < 0.001

Median peak RUNX1 probes ratio 1.00 (1.00–1.07) 1.46 (1.25–1.73) < 0.001 1.00 (1.00–1.11) 0.681 2.81 (2.30–3.38) < 0.001

Fig. 2 Median values on x-axis of each probes from MLPA P327
iAMP21-ERG probemix on y-axis in groups. Probes order reflects loca-
tion on the chromosome 21. Differences of median peak ratios between
the groups were statistically significant with p < 10−5. ADAMTS5ADAM
Metallopeptidase With Thrombospondin Type 1 Motif 5; ALL-IC BFM
Acute Lymphoblastic Leukemia Intercontinental Berlin-Frankfurt-
Münster; APP Amyloid Beta Precursor Protein; BACH1 BTB Domain
And CNC Homolog 1; BCP-ALL B cell precursor Acute Lymphoblastic
Leukemia; BTG3 BTG Anti-Proliferation Factor 3; CISH Chromogenic
in situ hybridization; CNV Copy Number Variation; COL6A2 Collagen
Type VI Alpha 2 Chain;CYYR1 Cysteine And Tyrosine Rich 1;DYRK1A
Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A; ERG
ETS Transcription Factor ERG; ETS2 ETS Proto-Oncogene 2,
Transcription Factor; FISH Fluorescent in situ hybridization; HLCS
Holocarboxylase Synthetase; HSPA13 Heat Shock Protein Family A
(Hsp70) Member 13; iAMP21 intrachromosomal amplification of chro-
mosome 21; ITGB2 Integrin Subunit Beta 2; KCNE2 Potassium Voltage-

Gated Channel Subfamily E Regulatory Subunit 2; KCNJ6 Potassium
Voltage-Gated Channel Subfamily J Member 6; MIR155 MicroRNA
155; MIR99A MicroRNA 99a; MLPA Multiplex Ligation-dependent
Probe Amplification; MRD Minimal Residual Disease; NCAM2 Neural
Cell AdhesionMolecule 2;OLIG2Oligodendrocyte Transcription Factor
2; PRMT2 Protein Arginine Methyltransferase 2; PSMG1 Proteasome
Assembly Chaperone 1; qPCR quantitative Polymerase Chain Reaction;
RIPK4 Receptor Interacting Serine/Threonine Kinase 4; RUNX1 RUNX
Family Transcription Factor 1; SAMSN1 SAM Domain, SH3 Domain
And Nuclear Localization Signals 1; SIM2 SIM BHLH Transcription
Factor 2; SLC19A1 Solute Carrier Family 19 Member 1; SNP Single
Nucleotide Polymorphism; TFF1 Trefoil Factor 1; TIAM1 T Cell
Lymphoma Invasion And Metastasis 1; TMPRSS15 Transmembrane
Serine Protease 15; TMPRSS2 Transmembrane Serine Protease 2; WBC
White blood cell count;

351(2019) 60:347–355Appl GeneticsJ



Subsequently, we analyzed RUNX1 gene amplification in
MLPA to determine iAMP21 cases in collected cohort to as-
sess accuracy of obtained results compared with data from
FISH assay. Out of 4 cases with RUNX1 probes median peak
ratio exceeding 2.20 in MLPA, 3 had iAMP21 confirmation.
First case of iAMP21was described with more than 12 signals
for RUNX1 per cell and confirmation in SNP array, the second
had confirmed 8–9 copies of RUNX1 in leukemia clone with
karyotype 47,inc/46,XX, and the third 6–9 copies of RUNX1
per cell and karyotype 46,XY,− 21,+ mar. The fourth patient
with RUNX1 probes peak ratio > 2.20 in MLPA suggesting
iAMP21 that was not confirmed by FISH assay was diag-
nosed with high hyperdiploidy with karyotype 67–
68,XXYY,− 1,+ 8,− 9,+ 14,+ 14,− 16,− 19,− 20,+21,+21. In
this case, peak ratios of all gene probes, not only RUNX1
region, at the chromosome 21 in MLPA P327 probemix were
unifiably risen that was not typical for iAMP21.

Median peak ratio for all 6 RUNX1 probes in MLPA of
iAMP21 positive cases was 2.81 (IQR 1.97–2.83) and
differed from other groups (post hoc p = 0.0001 when
compared with every group). In contrast, median peak
ratio of RUNX1 probes in ETV6-RUNX1 fusion cases
was within normal limits 1.00 (IQR 1.00–1.11), as well
as for samples with no known chromosome 21 aberrations
1.00 (IQR 1.00–1.07) (post hoc p = 0.6812). In cases with

chromosome 21 multiplication, median RUNX1 peak ratio
reached 1.46 (IQR 1.25–1.73) and was interpreted as het-
erozygous amplification and differed significantly from
aforementioned (post hoc p = 0.0001 when compared
with every group; Fig. 1b and Table 2). There were no
false-negative cases of iAMP21 in MLPA analysis after
verification with FISH assay.

Megabase region of amplification in iAMP21 cases

Interestingly, analysis of all 46 probes in MLPA P327 array for
genes located on chromosome 21 between 21q11.2 and 21q22.3
revealed that in cases with confirmed in FISH assay iAMP21,
region between genes NCAM2 (21q21.1) and RIPK4 (21q22.3)
is highly amplified in amegabase block (Fig. 2A and Fig. 3). The
size of the common region of amplification region was
20.77 Mbp in average. All cases contained concomitant ERG
amplification. Surrounding probes between 21q11.2 and
21q21.1 (HSPA13, SAMSN1,MIR99A,BTG3, TMPRSS15) were
characteristically not amplified in all cases of iAMP21 and the
region 21q22.3 with genes TFF1, ITGB2, SLC19A1, COL6A2,
and PRMT2 was not concomitantly amplified in 2 out of 3
iAMP21 cases. In contrary, cases with variable copy number of
the chromosome 21 or ETV6-RUNX1 fusion have had homoge-
nous level of probes’ peak ratios across MLPA P327 probe mix.

Fig. 3 A. Location of tested genes on chromosome 21; *megabase region
of amplification characteristic, in this study, only for iAMP21 cases.
iAMP21 positive 3 cases (B–D) in MLPA P327 B1 and B2 iAMP21-

ERG probemix. Probes lined on y-axis according to the location on the
chromosome 21. The x-axis represents probes’ peak ratios
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Discussion

In diagnostic setting for chromosome 21 gain, ETV6-
RUNX1 fusion, and iAMP21, cytogenetics is approved
and additionally required to validate any other method
used (Harrison et al. 2014). As for CNVs detection in
MLPA, among many advantages, like being fast and cost
effective method that is of importance in diagnostics,
there are major disadvantages to be aware of. For in-
stance, due to blast clone heterogeneity or too low total
blast count in tested samples, MLPA might be exposed to
high rate of false-negative results since it is based on
relative peak ratios and semi quantitative measurement
methodology. Reports on MLPA relevance in diagnostics
are contradictory. A few publications considering applica-
tion of MLPA in diagnostic setting of primary aberrations
proved inferiority when compared with FISH assay that is
unden i ab ly s t anda rd me thod fo r de t e c t i on o f
hyperdiploidy with chromosome 21 gain or ETV6-
RUNX1 fusion, with just several methods, e.g., real-time
PCR, karyotyping, and SNP array being appreciated aid
(Sinclair et al. 2011; Duployez et al. 2015; Fuka et al.
2015; Kim et al. 2016; Luskin et al. 2017). In contrary,
different publications argue that MLPA match results with
FISH, CISH array, and qPCR in cases with single-gene
CNV detection (Benard-Slagter et al. 2017).

Despite high value of FISH assay and karyotyping, its limi-
tations, as previously mentioned, cannot be overseen and those
cases may require alternative diagnostic tools. Surprisingly, in
our study, lack of cytogenetic results affected larger group of
patients than reported in previous publications (Wang et al.
2016). It was a consequence ofmissing data inmajority of cases,
which is a limitation of our study, and rarely low mitotic cell
count of the tested sample that limits feasibility of karyotyping.
Idealistically, using MLPA as an additional tool for multiple
target CNVs assessment would potentiate the process and make
it more effective. Being aware of possible false negative and
positive cases, MLPA could be cautiously applied in smaller
groups of patients that are not suitable for other verification.

Interestingly, in studied group, there were no false-negative
results of MLPA array of iAMP21 cases when validated with
FISH testing that establishes it as a reliable diagnostic tool in
this poor outcome subgroup. Median peak ratios of both
RUNX1 and all probes in MLPA P327 significantly distin-
guished patients between aforementioned groups, proving
consistency ofMLPA. Nevertheless, one previously published
study of iAMP21 detection in MLPA reported a few false-
negative results of iAMP21 detection (Kim et al. 2016).

Unfortunately, MLPA is able to diagnose only copy num-
ber variations and will oversee cases of ETV6-RUNX1 fusion
that does not change ETV6 nor RUNX1 copy number. As a

result, in this study, ETV6-RUNX1 fusion cases were reported
as normal peak ratios across all MLPA P327 probes.
Additionally, small number of patients in chromosome 21
gain group had peak ratios in MLPA within normal limits.
These false-negative results could be an example of MLPA
limitation, due to heterogeneity of the sample with a subclonal
chromosome 21 multiplication or low blast count of the sam-
ple that is difficult to trace by this semi quantitative method.

Although this study reported iAMP21 positive cases with
the megabase block of amplification between NCAM2
(21q21.1) and ITGB2 (21q22.3), other amplification regions
between PDE9A and COL6A2 were also described (Rand
et al. 2011). Previous studies defined molecular basics of
intrachromosomal amplification of 21 chromosome that result
from telomere attrition initiating breakage-fusion-bridge cycle
and consecutive chromothripsis (Li et al. 2014b). As a result
genes appear to bemore frequently amplified from centromere
to telomeric end of the chromosome. This intrachromosomal
amplification is said to appear prior even if coexisting with
other relevant genetic aberrations (Rand et al. 2011).
Surprisingly, reported in this study pattern of megabase am-
plification in iAMP21 patients is not consistent with the
extention of amplification in previous reports (Li et al.
2014a; Tsuchiya et al. 2017). However, the common region
of amplification consistently includes RUNX1, DYRK1A, or
RTS2 with genes behind the region 21q22.3 to be not ampli-
fied (Rand et al. 2011; Li et al. 2014b).

Despite limitations, based on the presented study, we can
conclude that MLPA is a good tool for diagnosis of iAMP21
and a useful aid in chromosome 21 CNVs detection.
Undoubtedly, it could be used as a complementary method
for FISH assay in the diagnostic setting.
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