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How to balance land demand conflicts
to guarantee sustainable land development

Hongxi Liu,1,2 Britaldo Silveira Soares-Filho,3 Argemiro Teixeira Leite-Filho,3 Shanghong Zhang,4 Jizeng Du,2

and Yujun Yi2,5,*

SUMMARY

Severe arable land loss and ecological problems raise attention to protect/
develop land for food and ecology demand. Spatial conflict appears in front of
multidemand for urbanization, food, and ecology. Our study took China as an
example and explicitly outlined spatial preference of urbanization, food, and
ecology. From the aspect of land amount, there are enough lands to support
multidemandwith a surplus of agriculture land of 45.53 106 ha. However, spatial
conflict widely appears among the multidemands. We tested the impacts of
different priorities on urban pattern, crop yield, and ecology and found the prior-
ity of food > ecology > urbanization gave the best outcome. Our results verified
the importance of including priority of land multidemand to avoid confusion and
increase efficiency in the implementation of land policies.

INTRODUCTION

Humanity entered the 21st century with 7.6 billion people, and the global population is expected to grow to

9.2 billion by 2050.1,2 The growing population continues to fuel competition for already limited land

resources to meet the demand for housing, food, and ecology.3 Urbanization rate is projected to reach

70% by 2050, requiring 90–150million hamore land for urban area. Food production is estimated to require

120 million ha more land to close the yield gap by 2050.1 The post-2020 biodiversity framework, an impor-

tant strategic plan for ecological conservation, calls for least 30% land and sea areas globally conserved.

Increasing demands continue questioning whether the limited land resource is able to simultaneously sup-

port urbanization, food, and ecology. Spatial conflict under such multi-demand makes a need of assessing

priority impacts on land sustainability.

China may act as a good example showing great efforts to achieve sustainable development against high

pressure from growing population. China occupies the third largest area in the world and supports about

22% of the world’s population with only 7% of the world’s arable land.4 Maintaining basic food self-suffi-

ciency is always an important concern of the government. Over the past 3 centuries, the growing demand

for food has led to the expansion of agricultural land and the decrease of forest area. However, the growth

and globalization of China’s economy in recent decades has led to a loss of over 2 million ha of arable land,

most of which has been urbanized.5–8 The expansion of agriculture and urban land has both resulted in high

levels of ecological degradation. As a consequence, China faces major problems related to urban expan-

sion by overpopulation, food security by arable land loss, and ecological degradation by urbanization or

food security.9

The Chinese government started emphasizing the demand of food and ecology by adjusting its land use

policies. In 2009, the government issued a policy of the highest level (call redline policy in China) to meet

land resource demand from food, i.e., Redline of Arable Land Policy (RAL). RAL delineates a bottom line to

maintain at least 120 million ha of arable land and strictly prohibits converting those lands to urban to

ensure domestic food security. To meet the ecology demand, in 2002, the government issued the world’s

largest government-financed ecological restoration program, i.e., the Grain for Green policy, which

increased forest cover by 4%, gaining around $216 billion ecological benefit by 2010.10 This ecological

restoration program will continue and aim to increase the forest cover from 23.5% in 2015 to 25% in

2030. In 2014, another redline policy was published to conserve ecology: the Ecological Conservation

Redline Policy (ECR). ECR promises to promote protected areas (PAs) over 2.4 million km2 by 2030,11

covering over 25% of the China mainland.
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These land use policies tend to balance multidemand of land resource but showed potential conflict and

unexpected negative outcomes to sustainability. For instance, the Grain for Green policy reduced area of

agriculture land10; the RAL policy shifted urban expansion pressure from agriculture to ecological land,

leading to a loss of over 2000 ha of forest by urban encroachment.5 Studies have been carried out to discuss

sustainable development meeting a specific goal, such as arable land protection for food security and

establishment of PAs for ecological conservation.11–13 However, a question raises that when spatial conflict

occurs between land multidemands, what is the suitable priority order to achieve land sustainable

development.

Our study focused on conflicts between urbanization, food, and ecology. We calculated and mapped their

land demand and identified the potentially spatial conflict. We then designed scenarios based on different

priorities (Table 1), projected land uses in 2030 through a land use/cover change (LUCC) model, and as-

sessed the impact on urban pattern, crop yield, and ecology. Accordingly, we suggested priority of land

demand under conflicts. Our results aremeant to support the improvement of policies aimed at sustainable

land use in China, seeking to establish an integration between rapid urbanization, food security, and

ecological improvement that could be replicated around the world.

RESULTS

Land conflicts between urbanization, food, and ecology

From the aspect of amount of demand, there is no conflict among urbanization, food, and ecology (Table 2).

From 2015 to 2030, urbanization requires 12.9 3 106 ha, 8.3 3 106 ha of which is expected to be converted

from agriculture land; reforestation needs 11.33 106 ha, and 6.23 106 ha is from agriculture. Based on agri-

culture land of 2015, when maintaining the 120 3 106 ha by RAL, there are lands of 60 3 106 ha possibly

being transferred for other uses, which completely meets the land demand of 14.53 106 ha by urbanization

and reforestation.

When we turned to the spatial aspect, land demand conflicts widely occur between urbanization, food, and

ecology (Figure 1), especially for that between urbanization and food. Urbanization occurs mostly in the

eastern region from 2015 to 2030, a politically and economically key region of China (Figure S1). Urbaniza-

tion is most evident in the capital and economic zone of the Yangtze River Delta. This region is an economic

powerhouse and has many millions of migrants from less-developed areas of China. Arable land in China is

mainly distributed in northeastern, and eastern, parts surrounding several important economic zones (Fig-

ure S2). Around 52% of newly urban land from 2015 to 2030 have been and would be converted from arable

land under no limitation (e.g., implementation of RAL), leading to arable land loss of 6.8 3 106 ha

(Figure 1A).

Table 1. Summary of designed scenarios

Scenario no. Priority Explanation

S0 – BAU (business as usual)

S1 URB > ECO > FOOD No limits on urban expansion or reforestation

S2 URB > FOOD > ECO No limits on urban expansion; reforestation is

not allowed to encroach arable land

S3 ECO > URB > FOOD Urban expansion is not allowed to encroach arable

land. No limits on reforestation

S4 ECO > FOOD > URB Urban expansion is not allowed to encroach arable

land or ECR area. No limits on reforestation

S5 FOOD > URB > ECO Urban expansion and reforestation are not

allowed to encroach arable land

S6 FOOD > ECO > URB Urban expansion is not allowed to encroach

arable land or ECR area; reforestation is not

allowed to encroach arable land

ECO, ecological conservation and restoration; ECR, Ecological Conservation Redline policy; FOOD, arable land protect;

URB, urban expansion.
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Following ECR’s guidance, we mapped the expanded PAs by 2030 (Figure S3), namely the land demand for

ecological conservation. Considering the existing PAs and the areas that could be potential conservation

units, we verified that 36% of the Chinese territory could be protected, within the range of 25–36% esti-

mated by previous studies.11,14 The total to be protected, in association with existing PAs, would represent

44% of the carbon storage capacity in ecosystems, 61% of the soil conservation capacity, and 48% of the

water retention. New PAs in association with existing PAs would also protect 70% of areas susceptible

to water erosion and 68% of areas susceptible to desertification. Overlapped land of ECR and urbanization

was 2.1 3 106 ha, making up 16.54% of newly expanded urban land (Figure 1B).

Reforestation would occur mostly in northeastern and southwestern parts of China (Figure S4). It showed

low conflict to urbanization land demand with overlapping lands of 0.4 3 106 ha, accounting for 1.56%

of newly expanded urban land (Figure 1C). Reforestation would take 6 3 106 ha of land from agriculture,

of which 2.2 3 106 ha would be from arable land, accounting for 20.16% of reforestation land from 2015

to 2030 (Figure 1D).

Impacts of a different priority on urban pattern

Priority of urbanization, food, and ecology made two distinct urban landscapes (Figure 2). When we gave

priority to urbanization, urban accumulation would be strengthened in eastern China (Figure 2A). This accu-

mulation was particularly obvious along the railway andmajor road lines in Beijing-Tianjin-Hebei and Yang-

tze delta urban agglomerations. Changing priority to ecology, i.e., no urban expansion in ECR area, had

little impacts on this accumulation (Figure 2B) because (1) overlapping area of urbanization and ECR

only made up 16% of urbanization land and (2) ECR area was mostly distant away from the railway or

road line. Implementation of ECR shifted urban area away with a median distance of 14.4 km and a

maximum distance of 29.9 km, comparing to urban expansion under no limitation.

When giving priority to food over urbanization, i.e., implementation of RAL, urban accumulation was weak-

ened along the railway and road lines (Figures 2C and 2D). This was because urban and traffic development

preferred to locating surrounding arable land for the convenience of grain transportation. Strict protection

of arable land obviously would change urban landscape in 2030, but will not shift newly expanded urban

land to very distant area, indicating by a median distance of 28.8 km and maximum distance of 64.7 km,

away from urban expansion under no limitation (Figure 2). When giving priority to food and ecology

over urbanization, i.e., implementation of RAL and ECR, newly expanded urban land showed a median dis-

tance of 14.9 km and maximum distance of 33.6 km to that under no limitation.

Newly expanded urban land under different priorities showed similar distance to traffic networks (Figure 2).

Under no limitation, newly expanded land is on average 19.6 km and 5.2 km away from the railways and

main roads, respectively. Implementation of ECR shifted the newly expanded urban close to the traffic

network by prohibiting built-up area expansion in PAs. Implementation of RAL or both RAL and ECR shifted

the newly expanded urban land away by less than 2 km away from the railways and less than 0.5 km away

from the main roads on average.

Impacts of different priority on food and ecology

Scenarios S4 – S6 showed better outcome in food and ecology than scenarios S1 – S3 (Figure 3). They

(S4 – S6) increased crop yield by 6.82–7.97 billion tons, C stock by 15.12–15.16 PgC, and tree richness

by 978–1086 species than the ‘‘business as usual’’ (BAU) scenario. Scenarios S4 – S6 have in common

the priority of food over urbanization, while scenarios S1 – S3 are on the contrary. On the premise of

Table 2. Comparison of land demand and supply

Land

transformation

(106 ha)

Demand (106 ha)
Available

agriculture land

(106 ha)

Surplus (+)

or deficit (�)

of agriculture

land (106 ha)Total

Agriculture

land

Urban expansion 12.9 8.3 60

Reforestation 11.3 6.2

Sum 24.2 14.5 60 45.5
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giving first priority to urbanization, ecology before food did not improve ecology. Compared with the

scenario S1 (order: URB > ECO > FOOD), scenario S2 (order: URB > FOOD > ECO) saved around

0.08 billion in crop yield and showed 6.37-PgC higher C stock and 256 more tree richness. When ecology

is prioritized over food, we allow arable land to be converted to forest, which is more fertile and has

higher soil organic carbon (SOC) than agriculture land as it supports more crop yields. However, tree

planting on organic soils increased soil respiration and decreased SOC, which canceled out the incre-

ment in C stocks in tree biomass and resulted in net C loss.15–17 This also explained slight improvement

in ecology under scenario S3 (order: ECO > URB > FOOD) although giving ecology the highest priority.

Figure 1. Spatial conflict between land multidemands

(A) Distribution of newly expanded urban land by 2030 and protected arable land.

(B) Distribution of newly expanded urban land by 2030 and protected areas identified by the Ecological Conservation

Redline (ECR) policy.

(C) Distribution of newly expanded urban land and newly reforested land by 2030.

(D) Distribution of newly reforested land by 2030 and protected arable land. For maps of newly expanded urban land,

arable land, ECR, and newly reforested land, refer to Figures S1–S4.
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Of all 6 scenarios, S6 with a priority of FOOD > ECO > URB had the best outcome on crop yield and

ecology.

DISCUSSION

In response to crop yield loss, ecological and environmental degradation from rapid economic develop-

ment, China stressed the importance in sustainable development and invested heavily, such as land

resources, in arable land protection, ecological restoration, and conservation. These efforts proved to

be a success in maintaining crop production and improving ecosystem services.18 Sustainable land use be-

comes more challenge for the next decade, with population achieving the peak by 2030 in China. Our work

provides new insight into dealing with spatial conflict of land multidemand. We calculated there would be

enough land to support urbanization, food, and ecology (Table 2), but spatial conflict widely existed that

Figure 2. Urban landscape in 2030 under different expansion modes

(A) Under ‘‘urban preference’’ mode, referring to urbanization priority, which has no limits on urban expansion.

(B) Under ‘‘urban preference’’ refers to urbanization priority, which has no limits on urban expansion.

(C) Under ‘‘urban with ECR’’ refers to giving priority to ecology over urbanization, which does not allow urban expansion

encroaching protected areas.

(D) Under ‘‘Urban with ECR&RAL’’ refers to giving priority to food and ecology over urbanization, which does not allow

urban expansion encroaching arable land and protected areas.
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over 50% urban and over 20% reforestation intended to encroach arable land (Figure 1). Different priorities

highly influenced outcomes of land development.

Urbanization priority influences on food and ecology

Ongoing rapid urbanization was projected to reach 70% by 2050 in China.With such trend, urbanization has

been considered amain driver of LUCC. These lands only covered 4.3% of themainland of China but were a

major contributor to the national land use change and a threat to food security.6 The land surrounding cities

often contains fertile soil and showed strong competing interests between urbanization and food. Historic

LUCC in China gave priority to urbanization and threatened crop production. From 1980 to 2010, 57.61% of

built-up land was converted from arable land, resulting in an arable land loss of 3.18 3 106 ha.19 Food im-

ports are a potential solution that could be used by China to meet its food requirements.1 However, as

China becomes dependent on food imports, it also becomes vulnerable to peaks in commodity prices,

restrictive tariffs, among other problems that can affect its import capacity and consequently affect national

food security.20,21 Sustainable urban development mitigates crop yield loss, but the sustainable mode from

the shared socioeconomic pathways still has 50–63% of newly expanded urban lands converted from

croplands, leading to 1–4% reduction of global crop production.7 Based on our modeling results, giving

priority to urbanization led to crop yield losses of 0.65–0.76 billion tons compared with the BAU scenario

(Figure 3).

Figure 3. Impacts of different scenarios on crop yield, carbon stock and tree richness

(A) Changed crop yield compared to the BAU (business as usual) scenario in 2030.

(B) Changed carbon stock.

(C) Changed tree richness. Scenario S1 is of the order URB > ECO > FOOD; S2 is URB > FOOD > ECO; S3 is

ECO > URB > FOOD; S4 is ECO > FOOD > URB; S5 is FOOD > URB > ECO; S6 is FOOD > ECO > URB. Detailed

explanation of each scenario refers to the Table 1; changed carbon stock within protected areas refers to Figure S5.
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In addition to crop yield loss, urbanization leads to ecological degradation. Urban land was not much con-

verted from ecological land. But urbanization and the resultant arable land loss encroached forest and

grassland. This indirect encroachment on ecological land from urbanization has been widely observed in

urban agglomerations such as Beijing-Tianjin-Hebei region and Yangtze delta region.19 Our results also

showed that despite a small conflict between urbanization and ecology (Figure 1), urbanization priority still

leads to 5.97 PgC of carbon stock loss by 2030 at most (Figure 3).

Food priority influences on urban pattern, crop yield, and ecology

Giving priority to food over urbanization is efficient in terminating crop yield loss by urban expansion (Fig-

ure 3). Such a shift in priority is not easy. In the early 1990s, the Chinese government issued the General

Land use Plan to protect arable land and control the scale of built-up land, but this plan was proved

inefficient to effectively stop the rapid loss of arable land by urbanization.22–24 In 2009, RAL was published

to strictly protect arable land from urban expansion but took 9 years to terminate arable land loss until 2018.

Arable land still reduced by 7.5 million ha from 2010 to 2020 based on the second and third national land

surveys.

Impedance of shifting priority to food lies in locating newly expanded urban lands to marginal land which

may be distant and inconvenient for living. Our simulation results verified that changing priority between

food and urbanization obviously affected urban pattern, breaking urban accumulation along the railway

and road lines, but the cost is acceptable (Figure 2), indicated by similar distance of newly expanded urban

land to traffic network under different expansion modes. Since 2008, the Chinese government proclaimed

the ‘‘4 trillion yuan stimulus packages’’, 37.5% of which (i.e., 1.5 trillion yuan) was invested to improve infra-

structure of railways and roads. A well-developed traffic network helps to decrease the cost of shifted urban

land by RAL andmakes it feasible to prioritize food over urbanization. Urban pattern under food priority fits

the expectation of sustainable urban development by the government, which stressed the decentration

and the importance of multicenter instead of mega-city expansion. For instance, Beijing has become the

first mega city proposing to maintain development while reducing its scale by developing the subcenter

in the next 5 years. Highly saved crop yield loss, acceptable cost, and decentralized urban pattern all

support to give priority to food over urbanization.

Ecology priority influences on food and ecology

Land demand of ecology includes conservation and restoration. PA establishment has long been the

dominant tool of ecological conservation to tackle the global ecological crisis, and especially to conserve

biodiversity.25–27 By 2018, 11800 PAs have been established in China, covering over 18% of the country’s

territory.28 This ratio would be increased to 25–36% of the mainland claimed by the issued ECR policy.

Reforestation is a typical tool of ecological restoration. The reforestation project in China has increased for-

est cover to 19% of national mainland in 201029 and plans to increase forest cover to 25% in 2030. PAs

establishment and reforestation projects indicate China’s attention on ecology.

Overlapping area of urbanization and ecology makes up 16% (PAs of ECR) and less than 2% (reforested

land) of newly expanded urban land. Although urbanization causes severe ecological degradation, urban

expansion does not directly take much land from ecological lands,5 which explains low conflict between

urbanization and ecology. This low competition contributes to the success of ecological policies. Based

on the satellite data (2000–2017), China contributed to 25% of the global net increase in leaf area with

only less than 7% of global vegetated area.29 The national ecological conservation and restoration policies

have shown ecological improvement of most ecosystem services increasing from 2000 to 2010, such as soil

retention, flood mitigation, and water retention.29 Within these 10 years (2000–2010), China experienced

fast economic development, as well as increased ecosystem services, proving that improving ecosystem

services and economic growth can co-exist.18 Our results verified that low conflict between urbanization

and ecology continues to next decade from 2015 to 2030 (Figure 1). Giving priority to ecology over urban-

ization did not change the urban pattern as much as giving priority to food. Still ECR implementation saved

around 15 TgC of carbon stock from urbanization within the identified area of ECR from 2015 to 2030

(Figure S5).

The conflict between ecology and food has been widely recognized. Agricultural products loss is often

regarded as the cost of PA establishment.30,31 ECR expands PAs and promises not to disturb farming

activities.11 Therefore, we analyzed the conflict between arable land and reforestation, instead of PAs
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expansion (Figure 1). Over 50% of reforestation from 1999 to 2019 occurred in agricultural land,

converting over 34 million ha agriculture to natural vegetation. However, the crop yield increased

from 508.39 million tons to 663.84 million tons in the same period.10 On one hand, improvement of agricul-

ture techniques, such as mechanization and fertilization, increased the unit crop yield. On the other hand,

reforestation targeted at agricultural land with low productivity and high ecological frangibility, such as

land in steep slope (>25�), therefore gained ecological benefit with small crop yield loss. Our study distin-

guished arable land from agricultural land. Conflict decreased therefore from 5.8 3 106 ha of agricultural

land to 2.23 106 ha of arable land, which led to a crop yield loss of 1.15 billion tons. Our results showed that

attention was still required on reforestation encroaching arable land. Protection of these arable lands (i.e.,

giving priority to food over ecology) not only saved crop yield loss but also benefited ecology (Figure 3).

Importance of explicit spatial information and priority to achieve sustainable land

development

To achieve sustainable development, land strategies are proposed and sometimes suggest land quantity

for the specific demand. Spatial allocation is however mostly missed. For instance, Aichi target 11 requires

to protect 17% of each global ecoregion. This ratio is promoted to 30% by COP15, while missing explicit

spatial suggestions makes PAs expansion inefficient in conservation. Global PAs established by 2014 were

proved to fail targeting places with high concentrations of threatened vertebrate species.30 Chauvenet

et al. (2020) proved that different PA acquisition strategies had distinct results in realizing COP15 goal

and proposed to include explicit ecoregional representation within the new post-2020 PA target.31

China experiences inefficiency and confusion of land policies implementation because of the lack of spatial

information. By the end of 2014, PAs spanned 15% of China’s mainland but poorly covered areas of high

ecosystem services or biodiversity.32 RAL delineates the bottom line of 120 million ha arable land. Without

mapping the arable land, RAL is implemented as strict protection of agricultural land, which becomes a

main impedance of RAL implementation. It also led to a negative impact on ecology as the pressure of ur-

ban expansion was transferred from agriculture to ecological land. Moreover, the spatial ambiguity of land

use also causes unnecessary land conversion. SinceWorld Food Program gave warning of global food crisis

in 2021, some forests that had been converted from cropland were observed to return to farmland in China.

Previous studies verified the importance of spatial allocation in achieving a specific land-development

goal.13,31,33 Land policies start incorporating explicit information such as ECR in China, explaining the

way to identify PAs.34 Our study took China as an example and affirmed enough land resources to realize

demand of urbanization, food, and ecology. Priority should be determined to solve spatial conflict between

different demands to achieve land sustainable development. Accordingly, spatial information not only

helps to realize a specific land policy but is essential to properly allocate varied demand. Although spatial

contradiction widely exists between multiple demands of economic development, food security, and

ecological conservation, land area is still the first guarantee of a specific land policy. For instance, the

post-2020 biodiversity framework promoted conservation area from 17% to 30% while the explicit spatial

allocation was assigned to individual country. Despite scientific discussions on land use planning based

on resource competitions, land use policies, especially for national level, still emphasize meeting the

land area demand of the specific aspect. This would cause confusion that land area is sufficient to support

multidemands while spatial allocation can hardly meet the demand. We took China as a case study and

mapped preferred spatial allocation of urbanization, food security, and ecological restoration and conser-

vation. Our results clearly showed the spatial conflicts between land multidemands. Although some local

studies on land use planning tried to test scenarios of resources competition,35,36 the equally important

land policies are vague in their priority. Our study indicated the necessity to include explicit spatial

information in land policies in addition to area requirement. Still further studies are required to test our

proposition in other regions.

Conclusion

Despite a well-studied strategy to realize sustainable land development from a specific aspect, such as

arable land protection for food security, PA establishment for ecological conservation, and reforestation

for ecological restoration, spatial conflict from land multidemands as well as the priority impact is still

not clear. Our study identified spatial conflict between urbanization, food, and ecology and tested the

impacts of different priorities on urban pattern, crop yield, and ecology. The results provide suggestions

for their priority on potentially conflicted spots, taking China’s domestic effort as an example. We stress

the importance of including explicit spatial information of land development and affirm the feasibility of
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balancing urban sprawl, arable land protection, and ecological conservation/restoration. These issues are

relevant not only to China but also to the sustainable development of the world. A greater understanding of

potential land use changes will help protect high-quality arable land, provide scientific guidance for sus-

tainable urban development, long-term planning of ecological conservation, and ensure a domestic

food supply.

Limitations of study

Our study assumed a well-developed forest systemwhen calculating ecological benefits of reforested land,

which was not realistic for a 15-year simulation. Indeed, it is proved that reforestation may hardly achieve

equal ecological level compared with natural forest.37 The ecological level of reforested land depends on

environment (e.g., soil fertility, moisture, temperature, precipitation) and managements. As our study

aimed to test the impact of land policies priority, we assumed a forest-based system once lands were re-

forested, regardless of establishing time and other possible influences. Further studies are necessary to

discuss how reforestation may affect the efficiency of ecological policies.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and data should be directed to and will be fulfilled by the

lead contact: Yujun Yi (yiyujun@bnu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data description

Data used includes land-use data for LUCC analysis, geographical, plant, soil and climate data for ES calcu-

lation. Detailed explanations were as following:

Land-use dataset was acquired from Data Center for Resources and Environmental Sciences, Chinese

Academy of Sciences (RESDC). This data set was based on LandsatTM imagery between 1980 1990,

2000 and 2010, Landsat 8 imagery of 2015. The RESDC was built up by visual interpretation of images,

and released maps at a spatial resolution of 30 m.

Geographical data referred to digital elevation map (DEM) at 90 m resolution from ASTER (Global Digital

Elevation Model).

Plant data referred to 1:1 million Chinese vegetation map and crop potential yield map. The vegetation

map is with 50 different vegetation species at 1 km resolution; the potential crop yield map is at 1 km res-

olution. Both maps were obtained from Data Center for Resources and Environmental Sciences, Chinese

Academy of Sciences.

Soil data used in this study included 1:1 million Chinese soil type map, soil organic carbon (SOC), soil

texture, fraction of volumetric field capacity, permanent wilting, CaCO3 content and root restricting layer

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Land use data Data Center for Resources and Environmental

Sciences, Chinese Academy of Sciences

https://www.resdc.cn/DOI/

Digital Elevation Map ASTER (Global Digital Elevation Model https://wist.echo.nasa.gov/�wist/api/imswelcome/

Precipitation China Meteorological Administration http://data.cma.cn/

Air temperature China Meteorological Administration http://data.cma.cn/

Software and algorithms

DINAMICA EGO Soares-Filho et al.38 https://www.dinamicaego.com/

ll
OPEN ACCESS

12 iScience 26, 106641, May 19, 2023

iScience
Article

mailto:yiyujun@bnu.edu.cn
https://www.resdc.cn/DOI/
https://wist.echo.nasa.gov/%7Ewist/api/imswelcome/
https://wist.echo.nasa.gov/%7Ewist/api/imswelcome/
http://data.cma.cn/
http://data.cma.cn/
https://www.dinamicaego.com/


depth. Among them, SOC, soil texture and fraction of volumetric field capacity and permanent wilting were

obtained from Soil Data Centre, which was digitalized to 1 km resolution based on the SecondNational Soil

Survey of 3758 soil profiles and the 1:1 million soil type map of China;CaCO3 content was fromHarmonized

World Soil Database at 1 km resolution; root restricting layer depth was from SoilGrid system at 250 m

resolution.39

Climate data included daily precipitation, daily air temperature, daily snow depth, daily wind speed and

daily potential evapotranspiration. Gridded daily precipitation and air temperature with 0.5�*0.5� resolu-
tion, fromChinaMeteorological Administration. The raw data were observed from 2400 stations over China

and have been passed though strict quality controls, including identification of outliers, assessment of

spatiotemporal consistency, and correction of suspect and erroneous data. The station observations

were transformed to 0.5�*0.5� grid-based data by the ANUSPLIN software developed by Australian

National University with thin plate smooth spline method, which is an interpolation scheme adopting three

variables (longitude, latitude, altitude), the square pretreatment and three times spline. In addition, the

digital altimetric data was introduced in order to weaken the effects of elevation on interpolation precision

under the condition of Chinese special landscape. Daily snow depth were from Environmental and Ecolog-

ical Science Data Center for West China, at 1 km resolution; wind speed and potential evapotranspiration

were from ECMWF’s Integrated Forecast System, at 1 km resolution.

LUCC model description

We simulated LUCC with Dinamica EGO, an environmental modeling platform incorporating spatial

analysis functions and developing spatial models. It was a cellular automated model that can simulate

spatial variations in landscape dynamics and first used to simulate colonization at frontiers in the Amazon.

Now this platform has been successfully applied on deforestation, urban expansion, infrastructure planning

worldwide. Dinamica EGO was used for two steps: 1) mapping urbanization, reforestation, RAL and ECR; 2)

simulating LUCC under different scenario settings.

We chose Dinamica EGO because it allowed to simulate LUCC per province and combine as a national

map. As economic level differs from each province, simulating LUCC based on provincial level is more

suitable and accurate than national level. In addition, ECR policy is a national policy but implemented

on provincial level, which asks to identify protection area for each province. When simulating LUCC under

different priorities/scenarios, we did not intend to outcome the ideal balance between different land

demand competition but focused on discussing impact of priorities on urban pattern, food production

and ecology. Though advanced land competition has been considered in LUCC model such as

CLUMondo and CoMoLa, driving these advanced models require input such as transfer resistance param-

eters, land service.40 Such spatial explicit information is hardly achievable. Land use policies also mostly

emphasize land area demand instead of using complicate tool to balance the competition. Considering

the land transfer resistance is subjective, our study made a simple assumption that each demand tended

to occupy self-best land and chose Dinamica EGO to test impacts of priorities of different land policies.

The methodology used for LUCC simulation consists of eight steps: (I) calculate the transition matrices, (II)

calculate the intervals for categorization of continuous variables, (III) calculate the coefficients of the evi-

dence weights, (IV) analysis of the correlation of maps, (V) adjustment and execution of the model for

the simulation of the LUCC, (VI) simulation validation, (VII) simulation and calibration run, and (VIII)

projection of the final future scenario.

Initially, transition matrices and continuous variable ranges are calculated where the model suggests the

classes that consider how representative each variable is in the area of study. With this result, can perform

the next step where the coefficients of the evidence weights are calculated for the determinants applying

the cellular automata theory. The spatial probability for each land use change is then obtained by summing

up the WoE of each spatial determinant. We use dynamic determinants of land use change, such as

distance to a specific land use type. For each time-step the dynamic distances are updated, the WoE is

calculated and the spatial probability updated.

The next step is to analyze the correlation between thematic maps with a multi-criteria analysis that is

formulated to predict future scenarios by comparing the initial year with the final year. All determinants

must be spatially independent. In order to redefine the evidence weights, a set of correlation tests
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measuring Cramer’s coefficients, contingency coefficient, and joint information uncertainty are applied for

the detection of correlated variables. The fifth step is the adjustment and execution of the model for the

simulation of the LUCC, where the Dinamica EGO is used from the transition matrix calculated in the first

step to calculate the gross rates for the amounts of cells changed in themodel. The calibration of themodel

was made by adjusting the following parameters: the proportion of the change demand that is allocated by

the Expander rule and transferred to the Patcher rule, mean and standard deviation of the patch area and

the neighborhood search window.

LUCC model construction and validation

The historical data on land use were obtained from the Environmental Sciences and Resources Data Center

(RESDC) of the Chinese Academy of Sciences. These data are based on LandsatTM and Landsat 8 images.

We used the period from 1980 to 2000 for calibration and 2000 to 2015 for validation. The land use maps

were sampled for 250 m and include six land use classes: agriculture, forest, grassland, waterbodies, urban

and unused Land (saline-alkalized land, beaches, sand lands, quagmire and bare rocks). We have modeled

the seven major land use transitions identified in the period from 1980 to 2015: The transition from agricul-

ture, pasture or forest to urban areas (Urbanization), the transition from forest and pasture to arable land

and the transition from pasture and arable land to forest (Reforestation).

The transition probabilities are calculated based on spatial determinants obtained from the selection of

multidisciplinary sources. We use 10 spatial determinants expressed as proximity: proximity to arable

land, forests, grasslands, urban areas, large rivers, megacities (cities with a metropolitan area with a total

population of more than 10 million people), existing PAs and railroads, and 5 biophysical variables (soil

type, vegetation type, elevation, precipitation and average temperature).

The selection of the best LUCCmodel was made bymeans of the fuzzy similarity comparison test. The tech-

nique verifies the agreement between the observed and the simulated land use/cover datasets by obtain-

ing the number of coincident cells within increasing window sizes of a neighborhood by means of a fuzzy

neighborhood vector. Fuzzy similarity is a multi-resolution validation technique that derives the overall sim-

ilarity using two types of membership: no fuzziness and fuzziness of location, within a neighborhood

value.41 We compared the minimum similarities between simulated and observed maps to the similarity

of a random map with same number of changes and probability for all cells =0.5 (Neutral model).38 The

model performance was assessed based on the minimum fuzzy similarity measurement applied from a

pixel-by-pixel to an 131 to 21x21 neighborhood window.

The minimum similarity fuzzy index obtained for the best model isz30% at a spatial resolution of 1.25 km2,

while the maximum similarity fuzzy index isz70% (Figure S6). These results indicate that 30% of the change

pixels coincide in both land use maps in a cell-by-cell overlay. For the resolution and number of transitions

being modelled, the obtained values for the minimum similarity fuzzy index suggest that the model are

good and can be used in the simulation of land use change scenarios.42,43 The similarity of the 2015 simu-

lation was better than in the 2015 null model (A gain of 200% referring to relative increase in fitness in rela-

tion to its equivalent neutral model), indicating that the variables used represent an information gain

compared with random distribution (Figure S6).

Land demand and conflict analysis for urbanization, food and ecology

We defined land demand of urbanization as newly expanded urban from 2015 to 2030; land demand of

food as arable land under protection, referring to RAL, the highest-level policy in China to ensure food se-

curity; land demand for ecology as land for ecological conservation and for restoration. The former referred

to land demand by PAs establishment, referring to ERL policy, which promised to assign over 25% Chinese

mainland ecological conservation. The latter referred to reforestation program, which would increase the

forest cover from 23.85% in 2015 to 25% in 2030.

Land demand of urbanization was calculated based on the predicted urbanization rate in 2030. We

assumed a stable population density in urban from 2015 to 2030. Then urban land was calculated as

following:

Landurb�2030 =
Population2030$UrbRate2030

Population2015$UrbRate2015
$Landurb�2015 (Equation 1)
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which, Landurb�2030 and Landurb�2015 is urban area in 2030 and 2015, respectively; Population2030 and

Population2015 is population in 2030 and 2015, respectively; UrbRate2030 and UrbRate2015 is urban popula-

tion in 2030 and 2015, respectively. Population2030 and UrbRate2030 were taken from Sun’s study, which

estimated urbanization rate and population in 2030 for each province in China. Spatial allocation of the

increased urban land was mapped through the LUCC model (see ‘‘mapping urbanization and reforesta-

tion’’ for details).

Land demand of food security was 1203106 ha based on the RAL policy. The spatial allocation was mapped

by identify agriculture land of high crop yield (see ‘‘mapping RAL and ECR’’ for details). Land demand of

ECR was mapped by identifying area with high ecosystem services or high frangibility or high biodiversity

(see ‘‘mapping RAL and ECR’’ for details). Land demand of reforestation was calculated based the

increased forest cover rate. The spatial allocation of reforestation by 2030 was mapped through the

LUCC model (see ‘‘mapping urbanization and reforestation’’ for details).

Mapping urbanization and reforestation

Urbanization and reforestation in 2030 were mapped using the LUCC model, respectively. Conversions

from agriculture, forest and grassland to urban were included in the land transition matric to identify spatial

preference for urbanization. Similarly, conversions from agriculture and grassland to forest were consid-

ered in the matric when mapping reforestation. Urbanization was modelled for each province considering

the different urbanization rate at provincial level; while reforestation was modelled at the national level.

Land demand of urban expansion was calculated from Equation 1 and assigned to agriculture, forest

and grassland based on the ratio from 2000 to 2015 to obtain land transition matrices. Allocation of urban

expansion was determined by the probability map, which was generated based on the weights of spatial

determinants for certain land transition (see ‘‘LUCC model description’’ and ‘‘LUCC model construction

and validation’’ for details). Land demand of reforestation was calculated based on the increased rate of

1.15% forest cover from 2015 to 2030. Land transition matric of reforestation included transition from agri-

culture to forest and grassland to forest, and was obtained in the same way of calculating urban expansion

matric.

Mapping RAL and ECR

RAL and ECR were mapped by identifying land of high target value. RAL aims to protect arable land of

1203106 ha, while agriculture identified from the aerial image accounts for 1803106 ha, indicating a

potential of 603106 ha agriculture land for conversion to urban or ecological land. As there is no spatial

information for the arable land, we assumed that the RAL should target at agriculture of high crop yield

and mapped the land of 1203106 ha by top-ranking of crop yield, which was based on the crop yield

map by Xu et al., 2017.

ECR was mapped following the guidance released by CMEP, which targeted lands that provide essential

ecosystem services, ecologically fragile ecosystems and biodiversity hotspots. Ecosystem carbon storage

capacity, soil conservation capacity, and water storage capacity of vegetation were selected as indictors for

ecosystem services; the susceptibilities to water erosion and desertification were selected for ecologically

fragile ecosystems; tree species richness was selected for biodiversity. The above 6 indicators were used to

identify areas that should be protected using the "top-ranking method" according to the ECR guide-

lines.11,34 ECR mapping was processed at provincial level and came to a national map in combination

with current existing protected area in 2015. The proportion of ECR land proposed by each province

was listed in Table S1.

Scenarios design

In addition to the business as usual (BAU) scenario (S0), we designed another 6 scenarios representing

different priority of urbanization, food and ecology (Table 1). Priority was linked to the specific land policy.

The S0 scenario used annual land transition rate observed over a 15-year period (2000 and 2015), applied as

the annual rate of change for the simulation period. The S1 scenario simulated a priority of

urbanization > ecology > food, under which urban or forest expansion occurred under no limitation. The

S2 scenario simulated a priority of urbanization > food > ecology, under which urban expanded under

no limitation but reforestation could not encroach arable land by RAL. The S3 scenario referred to a priority

of ecology > urbanization > food, under which urban expansion was not allowed to encroach PAs of ECR.

The S4 scenario referred to ecology > food > urbanization, under which urban expansion was not allowed
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to encroach area of ECR or RAL. The S5 scenario was for the priority of food > urbanization > ecology.

Urban or forest expansion was therefore not allowed to encroach arable land by RAL. The last scenario

S6 was set for the priority of food > ecology > urbanization. Urban expansion was not allowed to

occur in the area of RAL or ERL, and reforestation was not allowed to take land from RAL. Scenarios

were analyzed based on mask and overlay assessment. For instance, in S1 with the priority of

urbanization > ecology > food, urbanization map was firstly determined by no limits on urban expansion.

Since reforestation occurred only on agricultural land, then the urbanization map was used as the initial

map for reforestation simulation. Instead, in S3 with the priority of ecology > urbanization > food, the refor-

estation was firstly determined by no limits. Then reforestation and ECR maps were used as a mask map,

which allowed no urban expansion, to simulate urban expansion.

Impacts analysis of different scenarios

We analyzed impacts of different scenarios on urbanization, food and ecology. When urbanization was not

assigned as priority (i.e. S3 – S6 scenarios), RAL or ECR implementation would shift urban away from its

preferred allocation. We therefore took urbanization with no limit (i.e. S1 and S2) as the reference, and

compared it to urban pattern under RAL limitation (i.e. S5), ECR limitation (i.e. S3), RAL and ECR limitation

(i.e. S4 and S6). The distance of shifted urban land to its preferred allocation was calculated to indicate if the

cost was acceptable. Impact on food was evaluated by calculating crop yield change of scenarios

compared to BAU. Two ecological indicators were selected to calculate impact on ecology compared to

BAU: carbon (C) stock and tree richness.
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