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A B S T R A C T   

Event-Related Potential (ERP) designs are a common method for interrogating neurocognitive function with 
electroencephalography (EEG). However, the traditional method of preprocessing ERP data is manual-editing – a 
subjective, time-consuming processes. A number of automated pipelines have recently been created to address 
the need for standardization, automation, and quantification of EEG data pre-processing; however, few are 
optimized for ERP analyses (especially in developmental or clinical populations). We propose and validate the 
HAPPE plus Event-Related (HAPPE+ER) software, a standardized and automated pre-processing pipeline opti
mized for ERP analyses across the lifespan. HAPPE+ER processes event-related potential data from raw files 
through preprocessing and generation of event-related potentials for statistical analyses. HAPPE+ER also in
cludes post-processing reports of both data quality and pipeline quality metrics to facilitate the evaluation and 
reporting of data processing in a standardized manner. Finally, HAPPE+ER includes post-processing scripts to 
facilitate validating HAPPE+ER performance and/or comparing to performance of other preprocessing pipelines 
in users’ own data via simulated ERPs. We describe multiple approaches with simulated and real ERP data to 
optimize pipeline performance and compare to other methods and pipelines. HAPPE+ER software is freely 
available under the terms of GNU General Public License at https://www.gnu.org/licenses/#GPL   

1. Introduction 

There is growing momentum to standardize and automate electro
encephalography (EEG) and event-related potential (ERP) pre- 
processing to meet the needs of contemporary electrophysiological 
studies. Until recently, the traditional method of preparing EEG/ERP 
data for analysis involved removing artifact-laden segments through 
subjective manual editing. However, this process can result in signifi
cant data loss, especially in data from developmental and clinical pop
ulations characterized by high levels of artifact. This process has also 
become difficult to scale as sample sizes and electrode densities for 
recording have both increased substantially over the last decade. 
Furthermore, the subjective nature of manual editing impedes com
parisons across EEG acquisition systems, datasets, and laboratories. The 
solution appears in automated, standardized processing. However, 
software was often limited to single stages of EEG pre-processing, like 
line-noise removal (e.g., CleanLine (Mullen, 2012)) or automated ICA 
component rejection (i.e., MARA (Winkler et al., 2011), ADJUST 
(Mognon et al., 2011)); or was developed only on data with low levels of 

artifact; and lacked imbedded metrics to quantitatively assess their 
performance or data quality. HAPPE software (Gabard-Durnam et al., 
2018) proposed a solution to these limitations by providing an auto
mated, quantifiable, and standardized method of processing EEG data 
that is effective with high levels of artifact as seen in developmental and 
clinical populations. 

HAPPE is not alone in its endeavors; a growing number of pipelines, 
scripts, and software now also address the need for standardized pre- 
processing methods for EEG data. With the breadth of available tools 
comes a diversity of approaches to EEG data processing (Bigdely-Shamlo 
et al., 2015; Cassani et al., 2017; da Cruz et al., 2018; Debnath et al., 
2020; Desjardins et al., 2021; Gabard-Durnam et al., 2018; Gramfort 
et al., 2014; Hatz et al., 2015; Leach et al., 2020; Oostenveld et al., 2011; 
Pedroni et al., 2019; Tadel et al., 2011). Few empirical comparisons 
have been made between pipelines, and it may be difficult for re
searchers to assess which pipeline works best on their EEG data. More
over, pipelines differ in their limitations on the kinds of analyses that can 
be performed post-processing. Some pipelines are restricted to preparing 
data for time-frequency analyses or resting-state EEG data (Cassani 
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et al., 2017; Gabard-Durnam et al., 2018; Hatz et al., 2015). Pipelines 
also differ in the populations for which they have been validated. 
Namely, the majority of pipelines are tested and validated using data 
from healthy adults (Bigdely-Shamlo et al., 2015; Cassani et al., 2017; da 
Cruz et al., 2018; Mognon et al., 2011; Nolan et al., 2010; Pedroni et al., 
2019). Far fewer specify compatibility and validation with develop
mental or clinical populations, whose data often have physiological and 
acquisition differences from healthy adult data. Exceptions include 
MADE (Debnath et al., 2020) (validated in developmental data); 
EEG-IP-L (Desjardins et al., 2021), and HAPPE (Gabard-Durnam et al., 
2018) (validated in clinical and developmental data). The optimal 
pipeline would offer validated solutions suitable to developmental, 
clinical, and adult EEG/ERP pre-processing needs to facilitate compar
isons across studies and ages. 

Here we propose and validate the HAPPE plus ER (HAPPE+ER) 
software to address these limitations for ERP pre-processing, improve on 
the original HAPPE pre-processing strategies, and increase accessibility 
across acquisition setups and user coding fluencies. ERP analysis is a 
common approach to characterize EEG data by examining the time- 
locked neural responses to stimuli recorded during task paradigms 
(Herrmann and Knight, 2001). As such, ERPs are precise temporal rep
resentations of neural activity. Moreover, different components of the 
time-locked ERP waveforms reflect disparate sensory, perception, af
fective, and cognitive phenomena in the brain (Herrmann and Knight, 
2001; Klawohn et al., 2020; Lopez-Calderon and Luck, 2014). To facil
itate automated, standardized processing of EEG data for ERP analyses 
across the lifespan, HAPPE+ER includes both code to pre-process ERP 
data and code that enables the efficient, automated creation of processed 

Fig. 1. Image illustrating the HAPPE+ER pipeline’s processing steps. Intermediate outputs are noted by the light blue boxes on the right and are labeled according to 
the folder where they are saved. User options are displaced to the left, with bright green arrows indicating all possible methods of flow between options. 
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ERP figures and measures, including (but not limited to) peak and mean 
amplitudes, latencies, and area under the curve (though we note our 
focus is primarily pre-processing given the excellent tools available for 
sophisticated ERP visualization and quantification like ERPLAB 
(Lopez-Calderon and Luck, 2014), EEGLAB (Delorme and Makeig, 
2004), and ERA Toolbox (Clayson and Miller, 2017)). HAPPE+ER 
(pronounced “happier”) incorporates pre-processing steps for ERP de
signs that we validate in adult, developmental, and clinical data. 
HAPPE+ER also introduces a novel pipeline quality report of metrics 
reflecting each pre-processing step’s performance on ERP data to aid 
researchers in assessing whether the pipeline is effectively 
pre-processing their data. That is, HAPPE+ER now includes comple
mentary, quantifiable measures of quality for both data inputs (data 
quality report) and processing methods (pipeline quality report). In 
conjunction with these changes, data can be input from an increased 
array of file formats and acquisition layouts, including caps from EGI, 
BioSemi, and Brain Products. These changes greatly expand the breadth 
of data for which HAPPE+ER is suitable while maintaining standardi
zation across a variety of input parameters and output analyses, 
rendering HAPPE+ER a flexible software suited to electrophysiological 
processing across the lifespan and populations. 

The following sections first detail and justify the HAPPE+ER pipe
line’s pre-processing steps for ERP analyses and outline HAPPE+ER’s 
quality control metrics (Fig. 1). Second, we compare HAPPE+ER’s 
approach to artifact correction with multiple alternative approaches in 
simulated ERP data (comparisons in real adult, developmental, and 
clinical ERP data available in supplements). Third, we evaluate 
HAPPE+ER’s effectiveness as a pipeline with ERP datasets relative to 
other automated pipelines. Finally, we outline how to access HAPPE+ER 
software and the datasets included in this manuscript as freely-available 
public resources. 

2. HAPPEþER pipeline steps 

Fig. 1 HAPPE+ER pipeline schematic. 

2.1. HAPPE+ER data inputs 

HAPPE+ER accommodates multiple types of EEG files with different 
acquisition layouts as inputs, with additional options on top of those 
previously supported in HAPPE 1.0 software. See Table 1 for complete 
layout and formatting options accepted by the HAPPE+ER pipeline. For. 
set formatted files, the correct channel locations should be pre-set and 
embedded in the file (e.g., by loading it into EEGLAB (Delorme and 
Makeig, 2004) and confirming the correct locations) prior to running 
through HAPPE+ER. Each batch run of HAPPE+ER must include files 

collected with the same channel layout (company, acquisition layout/
cap, and electrode number) and paradigm (resting-state or 
event-related), each of which users must specify for a given run. The 
same is true of file formats, in that a single run will support only a single 
file type across files, specified by the user. HAPPE+ER processes data 
collected with any sampling rate, and files within a single run may differ 
in their individual sampling rates. 

Stimuli markers, paradigm events, and/or conditions of interest 
(generally referred to as event markers moving forward) should be 
present in the data read into HAPPE+ER. How event markers become 
embedded in the data file will be stimulus-presentation software and 
acquisition system dependent. For some systems (e.g., EGI), native 
software facilitates translating event tracks (dropped by stimulus- 
presentation software) into conditions and trials marked within the 
data that HAPPE+ER (and other software) can read. HAPPE+ER relies 
on EEGLAB functions for reading in user data, so if EEGLAB registers a 
user’s event markers (which can quickly be verified through their GUI, 
please see HAPPE+ER user guide for further detail), HAPPE+ER will 
also be able to read those same event markers. If a user is unsure of their 
event marker names in the data, they can also use the EEGLAB GUI to 
verify event marker names before running HAPPE+ER on the data. 
Users may enter the full list of event marker types found across the 
dataset files, even if a single file does not contain all of those event types 
(e.g. participant did not complete the paradigm, did not generate a 
specific condition of interest via responses, etc.). Users do not need to 
know a priori which trial types exist in which files, either. HAPPE+ER 
outputs include all user-input stimuli conditions and will note that no 
trials for that condition(s) were detected in that specific file if this is the 
case. Similarly, users may also input a subset of the available event 
marker types within their files if desired, though only those user-input 
event marker types will be available for further HAPPE+ER processing 
(e.g. segmentation, baseline correction) and in HAPPE+ER outputs. 
Please note that while HAPPE+ER does not currently support.mat for
mats with separate event lists, this functionality is in progress for the 
next HAPPE+ER update. 

2.2. Channel selection (all, channels of interest (COI), channels of 
disinterest (COD)) 

HAPPE+ER offers a variety of options for channel selection such that 
the user can choose the channels that best fit the needs of their dataset. 
HAPPE+ER does not restrict the user to a specific number of channels, as 
no later processing steps rely on channel number for robust processing. 
Specifically, HAPPE+ER supports the following options: (1) Selecting all 
channels, which results in each channel included in the dataset being 
included in the following processing steps. (2) Alternatively, the user 
can select a subset of channels of interest, which can be selected via 
inclusion (channels of interest, COI) or exclusion (channels of disin
terest, COD) methods. 

Selecting the option to include user-specified channels will remove 
every channel not included in the user-specified list from subsequent 
processing with the inability to recover them later. For example, for data 
from a 128-channel cap where the user selects 20 channels, the post- 
HAPPE+ER processed data will contain only data for those 20 selected 
channels. 

Selecting the option to exclude channels does the opposite, excluding 
all user-specified channels and keeping those not included in the user- 
specified list. For example, for data from a 128-channel cap where the 
user specifies 8 channels, the post HAPPE+ER processed data will 
contain the remaining 120 channels. These options increase the ease of 
selecting channels based on the number of channels a user is interested 
in examining. 

2.3. Line noise removal 

HAPPE+ER removes electrical noise (e.g., 60 or 50 Hz artifact 

Table 1 
A list of acquisition layouts and associated file types supported by HAPPE+ER. 
Includes company name and number of channels/leads.  

Company Net Name Number of 
Channels 

Supported File Types 

Magstim EGI Geodesic Sesnor 
Net 

64 .mat (NetStation & 
MATLAB matrix),.raw,. 
set,.mff 

HydroCel 
Geodesic Sensor 
Net 

32, 64, 128, 
256 

.mat (NetStation & 
MATLAB matrix),.raw,. 
set,.mff 

Neuroscan Quik-Cap 32, 64, 128, 
256 

.cdt,.set,.mat (MATLAB 
matrix) 

Mentalab  1–16 .edf 
Other Low- 

Density 
Layouts  

~32 or fewer .set,.mat (MATLAB 
matrix) 

Other High- 
Density 
Layouts  

~33 or more .set,.mat (MATLAB 
matrix)  
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signal) from EEG through the multi-taper regression approach imple
mented by the CleanLine program (Mullen, 2012). Multi-taper regres
sion can remove electrical noise without sacrificing or distorting the 
underlying EEG signal in the nearby frequencies, drawbacks of the 
notch-filtering approach to line-noise removal (Mitra and Pesaran, 
1999). Specifically, HAPPE+ER applies the updated version of Clean
Line’s multi-taper regression which is more effective at removing line 
noise than the original version present in HAPPE 1.0. The legacy 
CleanLine version from HAPPE 1.0 is available as an option to the user, 
however the updated version is registered as the default. CleanLine’s 
multi-taper regression scans for line-noise signal near the user-specified 
frequency ± 2 Hz, a 4-s window with a 1-s step size and a smoothing tau 
of 100 during the fast Fourier transform, and a significance threshold of 
p = 0.01 for sinusoid regression coefficients during electrical noise 
removal. This process is highly specific to the frequency of electrical 
noise, which the user can specify to be 60 Hz or 50 Hz. The user may also 
specify harmonics to reduce if there is excessive line noise in additional 
frequencies (e.g. 30 Hz, 25 Hz). Pipeline quality control metrics for the 
effectiveness of line noise removal are automatically generated in 
HAPPE+ER and discussed in detail as part of the subsequent “Quality 
Control Metrics” section of this manuscript. 

2.4. Resample (250, 500, or 1000 Hz) (optional) 

Users may optionally choose to resample their data to 250, 500, or 
1000 Hz. Users may use this option to reduce file sizes or to align data 
with other projects or files collected at a lower sampling rate (note, users 
may not upsample data, e.g. from 500 to 1000 Hz). As HAPPE+ER 
functionality is optimized for these common sampling rates (e.g. 
wavelet-thresholding steps described below are optimized for data 
around these sampling rates), users with sampling rates far from any of 
these options may achieve optimal performance of HAPPE+ER by 
resampling (e.g. from 2000 Hz down to 1000 Hz). 

2.5. Filtering (100 Hz lowpass) 

HAPPE+ER applies an automatic low-pass filter at 100 Hz prior to 
artifact rejection and bad channel detection (if selected) so these steps 
can evaluate data within the frequency range of neural activity. Addi
tional filtering for the specific ERP(s) of interest as determined by the 
user occurs after artifact rejection. Note this filtering strategy differs 
from that in HAPPE 1.0, where a 1 Hz high-pass filter was applied to all 
files to facilitate optimal ICA decomposition (Winkler et al., 2015). 
HAPPE 1.0 precluded ERP analyses since filtering at 1 Hz excludes fre
quencies of interest in ERP analyses. 

2.6. Bad channel rejection (optional) 

HAPPE+ER can detect and remove channels that do not contribute to 
usable brain data due to high impedances, damage to the electrodes, 
insufficient scalp contact, and excessive movement or electromyo
graphic (EMG) artifact throughout the recording. HAPPE+ER performs 
the following steps (with thresholds determined by empirical optimi
zation and justified below) over the entire data file-length submitted for 
processing:  

1. Detect flat-line channels (via Clean RawData function; reject if flat >
5 s)  

2. Detect outlier channels based on their power spectrum (via EEGLAB 
rej_chan function run twice; reject if > 3.5 standard deviations or <
− 5 standard deviations from mean power)  

3. Detect remaining overwhelming line noise contamination (via Clean 
RawData’s line noise criterion; reject if > 6 standard deviations from 
mean line noise/neural signal ratio)  

4. Detect outlier channels based on correlation with all other channels 
(via Clean RawData’s channel criterion; reject if < 0.8 correlation 
with other channels) 

HAPPE+ER performs bad channel detection that is suitable for ERP 
data and expands the classes of bad channels that can be detected 
relative to HAPPE 1.0 by combining EEGLAB’s Clean Rawdata functions 
with power spectral evaluation steps as follows. First, HAPPE+ER runs 
the Clean Rawdata ‘Flatline Criterion’ to detect channels with flat 
recording lengths longer than 5 s, indicating no data collected at that 
location. If the channel contains a flatline that lasts longer than 5 s, the 
channel is marked as bad. 

After flat channels have been removed, HAPPE+ER includes a 
spectrum-based bad channel detection step similar to that used in 
HAPPE 1.0 where bad channel detection is achieved by twice evaluating 
the normed joint probability of the average log power from 1 to 125 Hz 
across the user-specified subset of included channels. Channels whose 
probability falls more than 3 standard deviations from the mean are 
removed as bad channels. While the HAPPE 1.0 method of legacy 
detection proved to be suboptimal for our test dataset (see Table 2), 
evaluating the joint probability of average power from 1 to 100 Hz was 
useful for optimizing bad channel detection alongside Clean Rawdata. 
HAPPE+ER thus includes a spectrum evaluation step with thresholds of 
− 5 and 3.5 standard deviations. Here, the standard deviations are not 
symmetric as artifact in the EEG signal mostly produces power spec
trums with positive standard deviations from the mean. Channels near 
the reference electrode (e.g. roughly within 1′′ of the reference elec
trode, in EGI nets, mostly channels in the nearest ring around online 
reference Cz) will have reduced amplitudes by virtue of sharing variance 
with the reference, rather than due to artifact, but will score below the 
mean in their average log power accordingly. To avoid falsely rejecting 
(good) channels near the reference electrode(s), the negative standard 
deviation threshold is set liberally (but arrived at through empirical 
testing) at –5 standard deviations. We note that the lenient lower 

Table 2 
Performance of bad channel parameters tested on twenty files from an EGI 
dataset. The settings for each individual step are separated by a newline within 
the cell.  

Bad Channel Parameters Accuracy 
(780 Total 
Channels) 

False Positive 
(741 Good 
Channels) 

False 
Negatives 
(39 Bad 
Channels) 

HAPPE 1.0 Legacy Detection  92.4%  41  18 
Flatline = 5; Channel Corr 
= 0.1; Line Noise Ratio = 20 
Spectrum = − 5, 3.5 
Channel Corr = 0.8; Line 
Noise Ratio = 6  

97.6%  9  10 

Flatline = 5; Channel Corr 
= 0.1; Line Noise Ratio = 20 
Spectrum = − 5, 3.5 
Channel Corr = 0.75; Line 
Noise Ratio = 6  

97.2%  7  15 

Flatline = 5; Channel Corr 
= 0.1; Line Noise Ration 
= 20 
Spectrum = − 5, 3.5 
Channel Corr = 0.8; Line 
Noise Ratio = 5  

97.3%  11  10 

Flatline = 5; Channel Corr 
= 0.1; Line Noise Ratio = 20 
Spectrum = − 4, 3.5 
Channel Corr = 0.8, Line 
Noise Ratio = 6  

97.2%  12  10 

Flatline = 5; Channel Corr 
= 0.1; Line Noise Ratio = 20 
Spectrum = − 6, 3.5 
Channel Corr = 0.8; Line 
Noise Ratio = 6  

97.6%  9  10  
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standard deviation criteria (− 5) for identifying outlier power spectra, 
while empirically part of the best-performing parameter combination, 
may allow low-amplitude (but greater than flat-line) bad channels 
through as good channels. This risk was evaluated (in our test dataset we 
did not observe any of these instances) and determined to be preferable 
to the observed regular exclusion of (good) low-amplitude channels near 
the user’s reference electrode with more conservative standard devia
tion criteria. Users should bear this risk in mind when evaluating their 
data. 

Finally, HAPPE+ER uses Clean Rawdata’s ‘Line Noise Criterion’ and 
‘Channel Criterion’ to detect additional bad channel cases. The line 
noise criterion identifies whether a channel has more line noise relative 
to neural signal than a predetermined value in standard deviations based 
on the total channel population, set in HAPPE+ER to 6 standard de
viations. Channel criterion sets the minimally acceptable correlation 
value between the channel in question and all other channels. If a 
channel’s average correlation is less than the preset value, it is consid
ered abnormal and marked as bad. HAPPE+ER uses a correlation 
threshold of.8 to identify bad channels through this approach. 

Note that bad channel detection is performed over the entire 
recording being processed via HAPPE+ER. In the event that users 
include breaks between tasks with participant activity (e.g. stretching, 
talking) or have periods of non-interest in the recording session and have 
concern about channel artifacts during those windows that would cause 
channels to be flagged as bad during pre-processing, there are several 
approaches to achieve optimal bad channel detection performance in 
HAPPE+ER. For example, they may segment out the recording periods 
of interest (e.g. specific paradigms) as the file inputs to HAPPE+ER. 
Alternatively, users may start and stop the EEG recording during data 
collection to prevent artifact-laden data collection during non-paradigm 
periods. Thus, options to optimize file inputs to HAPPE+ER exist for 
both extant data and new data collection protocols. 

To test the efficacy of different bad channel detection functions and 
determine the optimal criterion values for detection, we compared a 
series of automated options to a set of expert-identified bad channels for 
twenty files from an EGI dataset (each file had the same subset of 39 
channels evaluated). These channels were determined by three expert 
reviewers (two external to the authors, all three with over 8 years each 
of EEG processing expertise in developmental and adult data). These 20 
files were selected from a larger set because unanimous agreement was 
achieved across reviewers on the identity of good/bad channels (i.e. files 
in this test dataset had 100% expert reviewer agreement) to set clear 
benchmarks for the automated bad channel detection parameter testing. 
Expert review of bad channels was conducted prior to any automated 
testing to avoid bias. The files were then run through the HAPPE 1.0 
legacy detection method for bad channels as well as several iterations of 
the Clean Rawdata function and combinations of Clean Rawdata with 
spectrum evaluation to optimize channel classification (shown in 
Table 2). Note that for iterations of Clean Rawdata with Flatline Crite
rion included, the Flatline default of 5 s was determined to be sufficient 
for detecting flat channels and was not manipulated further. We eval
uated the outputs from each criterion for bad channel detection relative 
to the manually selected channels by summing the number of false 
negatives and false positives for each file and calculating the overall 
accuracy rate across files for that set of automated parameters. False 
negatives refer to channels that were manually marked as bad but not 
flagged as bad by the pipeline. False positives refer to channels that were 
manually marked as good but were marked bad by the pipeline. An extra 
emphasis was placed on finding the settings with high accuracy that 
produced the lowest number of false positives to avoid removing usable 
channels in the dataset. HAPPE+ER’s optimal settings produced 10 false 
negative channels and 9 false positive channels out of 780 channels 
across all 20 files for an overall accuracy rate of 97.6%. 

2.7. Wavelet thresholding 

To reduce the number of artifact-laden trials that must be rejected 
from any given file, artifact correction approaches may be applied to 
continuous EEG and ERP data prior to segmentation. Two dominant 
classes of artifact-correction approaches include independent compo
nent analysis (ICA) and wavelet-thresholding (used by HAPPE+ER). 
Briefly, ICA clusters data across electrodes into independent components 
that can segregate artifact from neural timeseries, while wavelet- 
thresholding parses data within frequency ranges using coefficients 
that can detect time-localized artifact fluctuations in either electrode 
data or independent components (see Gabard-Durnam et al., 2018 for 
detailed explanation). ICA requires rejection of entire timeseries which 
depends on sufficient segregation of neural from artifact data and 
appropriate selection of components for rejection to minimize the neural 
data rejected from artifact-laden timeseries. Wavelet-thresholding offers 
both time- and frequency-localized artifact detection and removal 
without distortion of the artifact-free underlying signal. That is, artifacts 
contaminating specific frequencies can be removed within the 
time-frame they occur without disturbing the remaining data in time or 
frequency dimensions with wavelet-thresholding. HAPPE+ER imple
ments wavelet-thresholding to perform this artifact correction prior to 
segmentation and trial rejection. We evaluated a number of artifact 
correction strategies to optimize HAPPE+ER (detailed in the validation 
section that follows) and determined that wavelet-thresholding per
formed best in removing artifact and retaining neural (or simulated 
neural) signal. Several features of the wavelet thresholding step required 
optimization for ERP analyses in both adult and developmental pop
ulations (optimization analyses reported in Supplemental File 1). Note 
that the wavelet-thresholding step in HAPPE+ER should complete on 
the order of seconds for most user computing configurations and file 
lengths (though we have only recorded run-times for files up to 5 min 
length routinely, run-time has not scaled up with longer files). Users 
accustomed to grabbing coffee or lunch during ICA run-time will need to 
adjust schedules accordingly. 

The user has two wavelet-thresholding options for ERP analyses 
within HAPPE+ER, specifically a “soft” or “hard” threshold to apply in 
removing artifacts from the signal. The soft threshold option may be 
optimal for users with minimally-artifact laden data (e.g., healthy adult 
samples) as this option can preserve ERP amplitudes best under condi
tions of generally clean signal. The hard wavelet threshold may be 
preferred by users with high- or variable-artifact contamination levels in 
their data (e.g., most developmental samples) as this option provides 
more rigorous artifact removal in conditions of high-artifact at the 
smallest cost to amplitude and preserves significantly more trials in 
artifact-contaminated data (see below section on HAPPE+ER compari
son to other artifact-correction approaches section for simulated ERP 
results illustrating this threshold choice). 

2.8. Filter for ERP using cutoffs 

HAPPE+ER allows the user to choose both filter type and filtering 
frequencies for restricting data to frequencies of interest in ERPs (e.g. 
0.1–30 Hz). Specifically, HAPPE+ER offers two filter types to choose 
from, (1) a Hamming windowed sinc FIR filter (EEGLAB’s pop_eegfilt
new function, filter order is estimated from user input frequency cut
offs), and (2) an IIR butterworth filter (ERPLab’s pop_basicfilter, order 
estimated as 3 * integer portion of (sampling rate /high-pass fre
quency)). Independent of filter type, users may input whatever high- and 
low-pass frequency cutoffs are desired. 

2.9. Segmentation (recommended) 

HAPPE+ER includes an optional data segmentation step for ERP 
analyses in which data is segmented around the events using the stim
ulus onset tags specified by the user. HAPPE+ER inherently corrects for 
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any timing offset as part of the segmentation process, using the offset 
input by the user at the start of the HAPPE+ER run (if no timing offset is 
present, user may specify a zero-millisecond offset during that process). 
Two additional options are available for ERPs if segmentation is 
selected: baseline correction (recommended) and data interpolation 
within segments (optional artifact correction step), described in detail 
below. Users may segment their data regardless of whether these other 
options are enabled (see Fig. 1 for complete diagram of optional 
segment-related options in HAPPE+ER). 

2.10. Baseline correction (recommended) 

Users may perform baseline correction on segmented ERP data to 
correct drift-related differences between data segments. HAPPE+ER 
uses a standard mean subtraction method to achieve this correction 
where the mean value from the user-specified baseline window (defined 
relative to the stimulus onset) is subtracted from the data in the post- 
stimulus window. This step is implemented via the rmbase function in 
EEGLAB. The baseline correction option may be especially useful for 
users with saline-based acquisition systems and/or longer recording 
periods where drift is more commonly observed. 

2.11. Bad data interpolation (optional) 

For datasets (especially high-density datasets) where segment 
rejection would lead to an unacceptably low remaining number of seg
ments for ERP analysis, users may choose an optional post-segmentation 
step involving the interpolation of data within individual segments for 
channels determined to be artifact-contaminated during that segment, 
as implemented by FASTER software (Nolan et al., 2010). Users should 
consult Nolan and colleagues (2010) for justification and further 
explanation of this approach should they choose this option. Each 
channel in each segment is evaluated on the four FASTER criteria 
(variance, median gradient, amplitude range, and deviation from mean 
amplitude), and the Z score for each channel in that segment is gener
ated for each of the four metrics. Any channels with one or more Z scores 
that are greater than 3 standard deviations from the mean for an indi
vidual segment are marked bad for only that segment. These criteria 
may identify segments with residual artifacts in specific channels. Sub
sequently, for each segment, the channels flagged as bad in that segment 
have their data interpolated with spherical splines, as in FASTER. This 
allows users to maintain the maximum number of available segments, 
while still maximizing artifact rejection within individual segments. 
However, we caution users from implementing this option in cases 
where they have selected channel subset such that the channels are 
distributed with significant distance between them as the interpolation 
process would pull data from distal channels that does not reflect the 
appropriate activity profile for that scalp space. 

2.12. Segment rejection (recommended) 

For pre-segmented data or data run through HAPPE+ER’s optional 
segmentation step, users can choose to reject segments. If selected, 
segments can be rejected based on amplitude, joint probability, or both 
criteria. Amplitude-based rejection is useful for removing residual high- 
amplitude artifacts (e.g., eye blinks, drift from drying electrodes, dis
continuities). If selected, users specify an artifact amplitude threshold 
such that any segment with at least one channel whose amplitude 
crosses the provided threshold will be marked for rejection. HAPPE+ER 
suggests an artifact threshold of − 200–200 for infant data, and 
− 150–150 for child, adolescent, and adult data. However, users are 
strongly encouraged to run the semi-automated HAPPE+ER setting on at 
least several files in their dataset to visually check that the selected 
amplitude results in appropriate segment rejection in their own datasets. 
Joint probability-based rejection catches other classes of artifacts, 
especially high-frequency artifacts like muscle artifact. Two joint 

probabilities are calculated with EEGLAB’s pop_jointprob function. The 
joint probability of an electrode’s activity in a segment given that same 
electrode’s activity in all other segments is calculated (single electrode 
probability), and the joint probability of an electrode’s activity in a 
segment given all other electrodes’ activities for that same segment is 
calculated (electrode group probability). These joint probabilities are 
evaluated such that any segment is marked for rejection when either (1) 
a channel’s single electrode probability or (2) its electrode group 
probability is outside of 3 standard deviations from the mean (setting 
performed well with semi-automated visual review). All segments 
marked from the user-selected steps are then rejected simultaneously in 
a single step. Notably, this segment rejection step may be run on all user- 
specified channels, or on a subset of channels for a specific region of 
interest (ROI). The ROI-channel subset option allows users to tailor 
segment rejection for a specific ROI analysis and potentially retain more 
data per individual if that ROI is less artifact-contaminated relative to 
other ROIs in the channels selected for HAPPE+ER processing. 

2.13. Bad channel interpolation 

For all HAPPE+ER runs, regardless of segmentation options, any 
channels removed during the bad channel rejection processing step are 
now subject to spherical interpolation (with Legendre polynomials up to 
the 7th order) of their signal. Channel interpolation repopulates data for 
the complete channel set specified by the user and reduces bias in re- 
referencing if the average re-reference option is selected. The identity 
of all interpolated channels, if any, for a file are recorded in HAPPE’s 
processing report for users who wish to monitor the percentage or 
identity of interpolated channels in their datasets before further 
analysis. 

2.14. Re-referencing (average or COI) (optional) 

HAPPE+ER offers users the choice to re-reference the EEG data. If re- 
referencing, the user may specify either re-referencing using an average 
across all channels (i.e., average re-reference) or using a channel subset 
of one or multiple channels. For both re-referencing options, only 
channels within the user-specified channel subset selected for 
HAPPE+ER processing can be used for re-referencing. Re-referencing 
also reduces artifact signals that exist consistently across electrodes, 
including residual line-noise. During re-referencing, if there is a prior 
reference channel (e.g., an online reference channel), that channel’s 
data is recovered and included in the re-referenced dataset. For example, 
EGI data is typically online-referenced to channel CZ. In this example, 
users could now recover data at channel CZ by re-referencing to any 
other channel or channels in this step. 

2.15. Split data by event markers 

If the user enters more than one type of event marker (e.g. multiple 
conditions within a task, or multiple tasks that each contain one event 
marker), HAPPE+ER will split the data into files containing only the 
same event marker (e.g. condition-specific files) to facilitate further 
processing by event marker type, or to let the user trial-match across task 
conditions before generating ERP waveforms. HAPPE also allows for 
multiple markers to be categorized as a single condition, which will split 
the data into files containing only the event markers in that condition. 
For example, “happy_face” and “sad_face” event markers could be 
grouped into a “face” condition that would contain all trials for both 
event markers. Note that HAPPE+ER also retains the file that contains 
all event markers together. Thus, for files with multiple event markers 
read into HAPPE+ER, the data at this stage is parsed to provide: 1. File 
that contains all event markers, 2. files that each contain only trials with 
the same event-marker, and 3. files that contain only trials with the same 
condition. 
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3. HAPPEþER outputs: pre-processed ERP data 

HAPPE+ER generates several folders containing EEG files that are 
located within the user-specified folder of files for processing. EEG files 
are saved out after several intermediate processing steps so that users 
can explore in-depth and visualize how those steps affected the EEG 
signal in their own datasets. The intermediate files are separated into 
folders based on the level of processing performed on the data and 
include: (1) data after filtering to 100 Hz and line-noise reduction, (2) 
data post-bad channel rejection, (3) post-wavelet-thresholded data, and 
(4) data filtered at the user-specified ERP cutoffs. If segmenting is 
enabled, HAPPE+ER outputs one to three additional intermediate files: 
(5) post-segmented EEG data (always), (6) baseline-corrected data (if 
baseline correction is enabled), and (7) interpolated data (if bad data 
interpolation is enabled). If segment rejection is selected, HAPPE+ER 
saves the data post-segment rejection as well. All files at this stage 
contain data for individual trials (no trial averaging is performed during 
pre-processing). 

HAPPE+ER outputs fully pre-processed files that are suitable inputs 
for further analyses in one of several formats, selected by the user at the 
start of the HAPPE+ER run, to increase compatibility with other soft
ware for data visualizations or statistical analyses. Options include.mat,. 
set, and.txt formats. We recommend using the.txt file format, which 
outputs three files in total: (1) A.txt file containing the average value 
across trials for each electrode at each sampling timepoint, (2) A.txt file 
containing the data for each electrode for each individual trial, and (3) 
An EEGLAB.set file of the fully processed EEG. For data with multiple 
event-markers, outputs for both the file containing all event markers and 
files that each contain a single event-marker are provided and labeled 
accordingly. 

Finally, if the users ran HAPPE+ER in the semi-automated setting, 
the software generates an image for each file containing the fully pro
cessed data’s power spectrum. 

4. HAPPEþER outputs: quality assessments 

Alongside the fully processed data, HAPPE+ER also outputs the 
HAPPE Data Quality Assessment Report and the HAPPE Pipeline Quality 
Assessment Report, each described in detail below, for the file batch. 
Please note that the following list of data and pipeline quality metrics 
are current as of the resubmission of this manuscript (with HAPPE v2.1), 
but may be incomplete relative to subsequent versions of HAPPE+ER. 
Readers are encouraged to check the HAPPE user guide that comes with 
the software download for the complete and updated metric list and 
explanation for each HAPPE software version. 

4.1. HAPPE data quality assessment report 

HAPPE generates a report table of descriptive statistics and data 
metrics for each EEG file in the batch in a single spreadsheet to aid in 
quickly and effectively evaluating data quality across participants 
within or across studies. The report table with all these metrics is pro
vided as a.csv file in the “quality_assessment_outputs” folder generated 
during HAPPE+ER. We describe each of these metrics below to facilitate 
their use to determine and report data quality. 

4.1.1. File length in seconds 
HAPPE+ER outputs the length, in seconds, of each file prior to 

processing. 

4.1.2. Number of segments before segment rejection and number of 
segments post segment rejection 

HAPPE+ER reports the number of segments before segment rejection 
and post segment rejection. If segment rejection is not enabled, these 
numbers are identical. If the user enabled segment rejection in 
HAPPE+ER, they may evaluate the number of data segments remaining 

post-rejection for each file to identify any files that cannot contribute 
enough clean data to be included in further analyses (user discretion 
based on study design and ERP of interest). The user may also easily 
tabulate the descriptive statistics for remaining segments to report in 
their manuscript’s Methods section (e.g., the mean and standard devi
ation of the number of usable data segments per file in their study). 

4.1.3. Percent good channels selected and interpolated channel IDs 
The percentage of channels contributing un-interpolated data (“good 

channels”) and the identity of interpolated channels are provided. Users 
wishing to limit the amount of interpolated data in further analyses can 
easily identify files for removal using these two metrics. 

4.1.4. % Variance retained 
The percentage of the data retained post-wavelet-thresholding rela

tive to pre-wavelet-thresholding is provided for each file. Users may 
wish to exclude participants from further analysis if they do not have 
sufficient data retained after artifact correction. A note for develop
mental data that large head movements or signal discontinuities in the 
data can result in very low values for this metric but do not indicate 
poor-quality data. Studies with infants where this is most common (e.g. 
poor head control, more movement in general) should rely instead on 
the correlation coefficients pre/post wavelet thresholding at specific 
frequencies that are produced in the pipeline quality report as described 
below. 

4.1.5. ICA-related metrics 
As HAPPE+ER does not perform ICA on ERP data at time of publi

cation, the metrics measuring ICA performance in HAPPE 2.2 for ERP 
analyses are assigned “NA.” 

4.1.6. Channels interpolated for each segment 
If the user selected the Data Interpolation within Segments option of 

the additional segmenting options, HAPPE+ER will output a list of 
segments and the channels interpolated within each segment for each 
file. Otherwise, it will output “N/A.” Users wishing to limit the amount 
of interpolated data in further analyses can easily identify files for 
removal using this metric. 

4.2. HAPPE pipeline quality assessment report 

For each run, HAPPE+ER additionally generates a report table of 
descriptive statistics and data metrics for each EEG file in the batch in a 
single spreadsheet to aid in quickly and effectively evaluating how well 
the pipeline performed across participants within or across studies. Note 
that these metrics may also be reported in manuscript methods sections 
as indicators of how data manipulations changed the signal during 
preprocessing. The report table with all these metrics is provided as a.csv 
file in the “quality_assessment_outputs” folder generated during 
HAPPE+ER processing. 

4.2.1. r pre/post linenoise removal 
HAPPE+ER automatically outputs cross-correlation values at and 

near the specified line noise frequency (correlation between data at each 
frequency before and after line noise removal) and at any additional 
specified frequencies. These cross-correlation values can be used to 
evaluate the performance of line noise removal, as the correlation pre- 
and post-line noise removal should be lower at the specified frequency, 
but not at the surrounding frequencies beyond 1–2 Hz. HAPPE+ER will 
automatically adjust which surrounding frequencies are reported 
depending on the user-identified line noise frequency. This metric can 
also be used to detect changes in how much line noise is present during 
the recordings (e.g. if generally cross-correlation values are high when 
study protocol is followed, indicating low line-noise removal from the 
data, but a staff member forgets to remove their cell phone from the 
recording booth for several testing sessions, the degree of line noise 
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removal for those files summarized by this metric could be used as a flag 
to check in on site compliance with acquisition protocols). 

4.2.2. r pre/post wav-threshold 
HAPPE+ER automatically outputs the cross-correlation values 

before and after wavelet thresholding across all frequencies and spe
cifically at 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 8 Hz, 12 Hz, 20 Hz, 30 Hz, 45 Hz, 
and 70 Hz. These specific frequencies were selected to cover all canon
ical frequency bands across the lifespan from delta through high-gamma 
as well as the low-frequencies retained in ERP analyses. These cross- 
correlation values can be used to evaluate the performance of wave
leting on the data for each file. For example, if cross-correlation values 
are below 0.1 for all participants in the sample, the wavelet thresholding 
step has not progressed as intended (users are advised to first check their 
sampling rate in this case and visualize several raw data files). Note that 
this measure may also be used to exclude individual files from further 
analysis based on dramatic signal change during waveleting (indicating 
high degree of artifact), for example if the 0.5 Hz or all-data cross-cor
relations are below some threshold set by the user (e.g., 3 standard 
deviations from the median or mean, r values below 0.1). For infant ERP 
data, these cross-correlation values are preferred for indicating which 
files should be removed for poor quality data over the % variance 
retention metric described above. 

Through these quality assessment reports, HAPPE+ER aims to pro
vide a rich, quantifiable, yet easily accessible way to effectively evaluate 
data quality for even very large datasets in the context of automated 
processing. Visual examination of each file is not required, although it is 
available. Over and above the purposes of rejecting files that no longer 
meet quality standards for a study and evaluating HAPPE+ER perfor
mance on a given dataset, we also hope to encourage more rigorous 
reporting of data quality metrics in manuscripts by providing these 
outputs already tabulated and easily transformed into descriptive sta
tistics for inclusion in reports. Users may also wish to include one or 
several of these metrics as continuous nuisance covariates in statistical 
analyses to better account for differences in data quality between files or 
verify whether there are statistically significant differences in data 
quality post-processing between study groups of interest. 

Several metrics may also be useful in evaluating study progress 
remotely to efficiently track the integrity of the system and data 
collection protocols. For example, the r pre/post line noise removal 
metric may indicate environmental or protocol deviations that cause 
significant increases in line noise in the data, and the Percent Good 
Channels Selected and Interpolated Channel ID metrics can be used to 
track whether the cap is being applied and checked for signal quality 
prior to paradigms or whether a channel (or channels) is in need of 
repair. For example, if the T6 electrode starts consistently returning bad 
data for a specific cap, it may need to be examined for repair. For further 
guidance about using the processing report metrics to evaluate data, 
users may consult the User Guide distributed with HAPPE+ER software. 

5. Creating ERPs and calculating ERP values with the 
generateERPs script 

HAPPE+ER comes with an optional post-processing script in the add- 
ons/generate subfolder, called ‘generateERPs’, with the capability to 
generate ERP waveforms and perform a series of calculations on the 
resulting ERPs. This script is separate from the HAPPE+ER pipeline’s 
script to encourage users to check the quality of their data and 
HAPPE+ER’s performance prior to generating the ERP figures and 
measures. Any files that do not pass data quality thresholds should be 
removed from the outputs folder prior to running the generateERPs 
script, otherwise they will be included in the subsequent figures and 
metrics. Much like HAPPE+ER, generateERPs runs on input taken 
directly from the command line and enables the saving and reloading of 
running parameters, continuing HAPPE+ER’s aim of making processing 
accessible to researchers of all levels of programming familiarity. The 

user must simply provide the full path of the processed folder created 
during the initial HAPPE+ER run and answer the prompts that follow. 

To create ERP waveforms, users can select their channels of interest 
in an identical manner to channel selection in the HAPPE+ER pipeline 
(see above for more details). As part of channel selection, the user can 
additionally choose to include or exclude channels marked as “bad” 
during the HAPPE+ER processing run. If the user decides to exclude the 
bad channels detected during HAPPE+ER, they should first make a new. 
csv file that includes only the file names and bad channels columns from 
the Data Quality Assessment Report file generated by HAPPE+ER. This. 
csv file should be placed in the same folder as the processed data prior to 
running the generateERPs script. Note that if any files were removed 
post-processing due to insufficient data quality, they should be removed 
from the rows of this.csv as well. 

The user is also asked whether they want to calculate a set of stan
dard measures associated with the ERP for each file in the batch for 
subsequent statistical analysis. If so, the user must also specify: (1) la
tency windows of interest (e.g. 50–90 ms post-stimulus), (2) whether 
they anticipate a maximum or a minimum to be present in that window 
(i.e. a positive or negative ERP component, respectively), and (3) 
whether to calculate area under the curve and mean amplitude using 
temporal windows as bounds, using zero crossings present in the ERP 
data as bounds, or reporting measures with both methods (see Fig. 2). 

The generateERPs script will create an ERP timeseries for each sub
ject as well as an average ERP timeseries across subjects with both 
standard error and 95% confidence interval values for the average ERP, 
which are saved in a.csv output file in a new folder, “generated_ERPs”. 
The name of this file is “generatedERPs” plus any suffix associated with 
the selected data and the date. Three figures of these ERPs are also 
produced as generateERPs runs: (1) a figure containing the ERP of each 
subject, (2) the average ERP across subjects and the standard error, and 
(3) a combination of the first two figures. If enabled, generateERPs 
calculates the following values for each file and the average ERP across 
files, outputting them in an additional.csv file in the “generated_ERPs” 
folder. 

5.1. Peak amplitudes and latencies 

For each user-specified temporal window, generateERPs calculates 
the specified peak (either maximum or minimum depending on user 
input) and the latency at which it occurs (Fig. 2). The user may specify 
the same temporal window twice to request both a maximum and 
minimum within that window. Additionally, the global maximum and 
minimum of the timeseries (Fig. 2), a list of all maximums, a list of all 
minimums, and the latencies associated with each value are reported. 

5.2. Mean amplitudes 

If the user has selected mean amplitude based on windows, gen
erateERPs calculates the mean amplitude of each user-specified latency 
window using said window’s start and end times as the upper and lower 
bounds. 

If the user has selected to calculate mean amplitude based on zero 
crossings, generateERPs locates the zero crossings in the ERP and creates 
new latency windows using these crossing points, the starting latency, 
and the ending latency as bounds (Fig. 2). 

5.3. Area under the curve 

If the user has selected area under the curve based on windows, 
generateERPs calculates the area under the curve using the user- 
specified latency windows’ start and end times as the upper and lower 
bounds (Fig. 2). This method also reports the global area under the 
curve, calculated using absolute values, for the entire ERP waveform 
post-stimulus onset. 

If the user has selected to calculate area under the curve based on 
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Fig. 2. In all panels, the shaded area is not included in calculations. A) Circles the maximum (green) and minimum (blue) values within a specified latency window 
as indicated by vertical black lines. B) Circles the maximum (green) and minimum (blue) values across the entire ERP waveform. C) Mean amplitude within a 
specified latency window is represented by a teal horizontal line, with user-specified boundaries indicated by solid black vertical lines. D) Mean amplitude is 
represented by a teal horizontal line, and the boundaries created by the script at zero crossings in the data as dashed lines. E) Area under the curve is represented in 
light purple, with user-specified boundaries indicated by solid black vertical lines. F) Area under the curve is represented in light purple, and the boundaries created 
by the script at zero crossings in the data as dashed lines. G) 50% area under the curve is represented in dark purple. User-specified boundaries are indicated by solid 
black vertical lines. The alternating dot-dash line represents the latency at which 50% area under the curve is reached within the window. H) 50% area under the 
curve is represented in dark purple. Script-generated boundaries at zero-crossings are indicated by dashed black vertical lines. The alternating dot-dash line rep
resents the latency at which 50% area under the curve is reached within the window. 
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zero crossings, generateERPs locates the zero crossings in the ERP and 
creates new latency windows using these crossing points, the starting 
latency, and the ending latency as bounds (Fig. 2). 

5.4. 50% Area under the curve and latencies 

If the user has selected 50% area under the curve based on windows, 
generateERPs calculates 50% of area under the curve for each user- 
specified latency window for bounds and the latency at which it is 
reached (Fig. 2). This selection also reports the 50% area under the curve 
for the entire ERP waveform post-stimulus onset and its associated 
latency. 

If the user has selected to calculate 50% area under the curve based 
on zeros, generateERPs creates latency windows using zero crossings in 
the ERP as bounds and reports the value and latency for this metric 
(Fig. 2). 

We provide this script with the hopes of facilitating ERP visualization 
and analysis. Additionally, the speed, automation, and inherent 
compatibility with HAPPE+ER aligns directly with HAPPE+ER’s goals 
of providing an accessible and standardized method of examining EEG/ 
ERP data. 

6. HAPPEþER comparisons to other pre-processing approaches 

In this section of the manuscript, we compare HAPPE+ER’s artifact- 
correction methods to multiple other artifact-correction approaches 
(defined in detail below). These comparisons were useful in optimizing 
HAPPE+ER’s performance (all approaches were considered for inclu
sion in HAPPE+ER), and also provide empirical comparisons relevant to 
alternative published pipelines and common reported pre-processing 
strategies in the literature. We tested these approaches using both 
simulated ERP data and real developmental and adult ERP data (real 
ERP data shown in Supplemental File 4). 

6.1. Artifact correction approaches defined 

Wavelet-thresholding and independent component analysis (ICA) 
offer two separate strategies for artifact correction. We evaluated a 
number of contemporary algorithms using wavelet-thresholding or 
different automated algorithms to reject artifact ICs in ICA, namely: 
iMARA (Haresign et al., 2021), ICLabel (Pion-Tonachini et al., 2019), 
MARA (Winkler et al., 2011), Adjusted ADJUST (Leach et al., 2020), 
manual IC rejection for comparison, and an approach with no contin
uous data artifact rejection prior to segmentation. Thresholds for the 
automated algorithms were selected that best-performed for real 
developmental and adult data since the optimum algorithm for auto
mated IC rejection with infant data was unclear, especially as multiple 
options have recently been released (e.g. Adjusted Adjust (Leach et al., 
2020), iMARA (Haresign et al., 2021)). Therefore, the IC rejection step 
was first optimized for subsequent method comparisons (Supplemental 
File 2). Briefly, we note that automated component rejection perfor
mance, regardless of algorithm, depended highly on the rejection 
threshold selected. That is, there appears to be a tradeoff such that 
standard/default rejection thresholds (e.g. 0.5 artifact probability in 
MARA/iMARA) enable increased trial retention rates but remove a 
larger percent of the data and so result in more shrunken ERP amplitudes 
than the liberal rejection thresholds (Supplemental File 2). Without a 
clear optimal algorithm-threshold option, we proceeded to test here 
with the liberal iMARA 0.2 threshold and ICLabel 0.8 combinations for 
automated component rejection to preserve ERP amplitude as that is a 
key ERP measure of interest. 

6.2. Comparison of artifact correction approaches for ERP analyses: 
simulated ERP data 

We tested the performance of ICA and wavelet-based artifact- 

correction approaches using simulated ERPs with known temporal and 
amplitude properties embedded within real developmental baseline 
(resting-state) EEG data. This simulated ERP approach brings together 
the advantages of both simulated and real data: known signal properties 
of interest via simulated signal with the complexity and real artifact 
profiles of actual EEG recordings. Note that we piloted a completely 
simulated EEG dataset using brown and pink noise with the simulated 
VEP timeseries embedded in it and real artifact added to the data, but it 
proved to be not viable for testing. The difference in complexity between 
the simulated baseline data and the embedded artifacts from real EEG 
made artifact rejection trivial across methods and did not properly 
reflect the challenges of pre-processing real data. 

Instead, our simulated ERP approach was performed as follows. The 
simulated VEP waveform was created using the SEREEGA EEGLAB 
plugin and referencing the VEP parameters set in the associated 2018 
paper (Krol et al., 2018). We constructed the VEP from three ERP 
components (N1, P1, and N2) specifying the center of the peak, width, 
amplitude, and amplitude slopes as shown in Table 3. These parameters 
are the same as described in Krol et al. (2018), except we shifted the 
centers for each component forward in time by 100 msec to create a 
pre-ERP baseline period of 100 ms and enable baseline correction (e.g., 
the P1 was shifted from 100 msec from simulated data start to 200 msec 
post-data start so the first 100 msec could be used for a baseline later). 
For more on the rational for these settings, refer to Krol et al. (2018) and 
Pratt (2011). 

Once the components were defined, we generated a lead field using 
the New York Head field and the BioSemi 64 channel montage. All three 
VEP components were assigned to two sources bilaterally in the occipital 
lobe (Fig. 3). To the other sources we assigned a noise parameter created 
from pink noise with an amplitude of zero to create a flatline signal 
across the rest of the field. With these settings, we generated the simu
lated dataset with 60 epochs of 500 msec each for a total of 30 s of 
simulated data (60 simulated VEP trials). 

After generating the simulated VEP signal, we prepared baseline 
(resting-state) EEG files from a developmental sample (ages 2–36 
months) so that the ERP could be added to this data and submitted to 
artifact correction approaches for comparison. We generated two sets of 
simulated ERP data for these comparisons, a clean vs. artifact-added 
dataset, and a dataset of full-length files. 

The clean vs. artifact-added dataset was created as follows to facili
tate comparisons of performance on data with different artifact levels. 
We created sixteen 30-second files using continuous segments of rela
tively artifact-free (clean) baseline data from full-length baseline files. 
Next, from 30-second sections of the same individuals’ EEG that were 
artifact-laden, we ran ICA and extracted artifact independent compo
nents (identified by an expert and labeled artifact by both ICLabel and 
MARA automated algorithms). We inserted the artifact ICs into that 
individual’s clean 30-second data segment to create an additional 16 
artifact-added files. To better equate performance of ICA with wavelet- 
thresholding on the shorter file lengths, we selected a subset of 39 
spatially-distributed channels in the baseline EEG files as described with 
real VEP comparisons (Supplemental File 3). We then selected a channel 
from the simulated dataset with a stereotyped and prominent simulated 
VEP waveform, in this case Oz, and added its timeseries to each channel 
of the clean and artifact-added files to create two VEP file sets with a 
known ERP morphology. This allowed us to compare artifact correction 

Table 3 
The parameters used to create each component of the simulated VEP, based on 
those set in Krol et al. (2018).  

Component Latency Centered 
Around (msec) 

Width 
(msec) 

Amplitude 
(μV) 

Amplitude 
Slope 

N1  170  60  -7.5  -2 
P1  200  60  7.5  -2 
N2  235  100  -10  -3  
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effects on the simulated ERP at different spatial locations that may have 
different artifact-contamination profiles. 

A full-length dataset was created to complement the controlled 
artifact testing in the first approach above by examining artifact 
correction performance on files with typical lengths and ranges of 
artifact-contamination seen in developmental studies (mean file length: 
258 s, range: 119.996–509.996 s). This dataset was created using the 
addSimERP.m add-on script described later in this manuscript. To insert 
the VEP into a full-length dataset, we again used simulated VEP channel 
Oz from the dataset described above along with a set of 20 baseline EEG 
files from a developmental dataset. For each file, the script added the 
VEP timeseries to each channel of the data, repeating the timeseries in 
full as many times as possible to the nearest minute. Excess timepoints in 
the baseline data were then trimmed from the end of the dataset. For 
example, a file 125 s in length had 120 s of the repeating VEP timeseries 
added with the remaining 5 s removed. As with the clean and artifact- 
added files, this allowed us to examine the effect of pre-processing on 
a known ERP signal in a dataset of realistic length. 

We provide the simulated VEP signal as well as these clean and 
artifact-added datasets and full-length files containing the embedded 
simulated VEP as a public resource for future pipeline validation and 
comparisons via Zenodo (https://zenodo.org/record/5172962). 

With this simulated VEP embedded in real EEG datasets, we first 
batch-processed the files through HAPPE+ER up to the wavelet- 
thresholding step. At this point in processing, we either ran wavelet- 
thresholding (soft threshold option for the primary clean vs. artifact- 
added analyses, soft and hard thresholds illustrated for the additional 
full-length dataset) or ran ICA in EEGLAB (extended Infomax algorithm) 
and compared the following artifact correction approaches: wavelet- 
thresholding, ICA with MARA 0.5 automated rejection threshold, ICA 
with ICLabel 0.8 automated rejection threshold, iMARA with 0.2 auto
mated rejection threshold (equivalent to.8 probability of artifact IC for 
rejection), and ICA with manual IC rejection. Manual rejection of ICs 
was carried out via EEGLAB by an expert with over a decade of expe
rience in manually pre-processing EEG and ERP data, including using 
ICA-based rejection methods. Single-expert rejection was used to align 
with typical (at least as reported) laboratory practices in data process
ing. Given this analysis was conducted in response to reviewer request, 
the expert performed manual rejection while the automated approaches 
were also being tested but was not the same individual performing the 
automated analyses and was blind to the identity of the ICs and number 
of ICs rejected by the automated algorithms. Although the primary 
purpose of developing HAPPE+ER was to arrive at an automated pre
processing solution without subjective decisions, we also included the 
manual IC rejection as many labs currently use this approach and it has 
been shown previously to boost ICA performance in developmental data 
(e.g. Desjardins et al., 2021). Following the different artifact correction 
approaches applied to the simulated data, these datasets were processed 
further, including filtering to frequencies between 0.1 Hz and 35 Hz, 
segmentation, and baseline correction using a 100 msec baseline 
window. 

Simulated VEP timecourses and component peak amplitudes were 
then extracted using HAPPE+ER’s generateERPs processing script 

across all datasets as follows. The mean VEP timecourse averaged across 
trials was calculated for each channel and averaged over clusters of 
electrodes to create three ROIs: occipital (O1, O2, E71, E75, E76), mid- 
frontal (F3, 19, Fz, 4, F4), and right temporal (110, 109, T4, 102, 98) 
(Supplemental File 3 for ROI map). The peak amplitudes for the three 
VEP components, N1, P1, and N2 were then extracted from each ROI 
using the following user-defined windows in generateERPs given the 
ground truth simulated VEP latencies: N1 (150–190 ms), P1 
(180–220 ms), N2 (215–255 ms). To correct for any differences in the 
N1 component’s peak amplitude that could drive subsequent differences 
in measuring the P1 and N2 peaks if absolute amplitudes were used, we 
then calculated peak-to-peak amplitude values for all components 
following the N1 by subtracting the component of interest from the prior 
component’s peak amplitude (i.e. P1 – N1 peak values, N2 – P1 peak 
values). These N1, N1-P1, and P1-N2 amplitude values for all three 
spatial ROIs were then subjected to statistical analyses across pre- 
processing approaches. 

We compared artifact-correction approaches’ performance for both 
the clean vs. artifact-added dataset and the full-length file dataset for the 
three ROIs (occipital, frontal, and right temporal) by evaluating the 
following criteria:  

1. Rates of participant rejection. All files included in analyses were 
determined by an expert to have at least some sufficiently clean and 
usable trials, thus rates of rejecting entire files (i.e. all data or all 
trials removed) reflected un-necessary data attrition.  

2. ERP morphology distortion. Specifically, for the clean vs. artifact 
dataset, using trial-matched ERPs generated across approaches, we 
evaluated whether A) the amplitude (peak and peak-to-peak ampli
tude magnitudes statistically compared) varied across methods for 
artifact correction relative to the known simulated ERP morphology, 
both as an independent signal and when embedded within real 
baseline EEG without artifact correction. B) We also evaluated 
whether amplitudes post-correction differed as a function of artifact- 
contamination level pre-correction. Better performing methods for 
correction should minimize the difference between the post- 
corrected clean data ERP amplitudes and the post-corrected ERP 
amplitudes from the artifact-added data as these files share the same 
underlying clean EEG signal. That is to say, the better-performing 
methods should not change the amplitude of the simulated ERP as 
a function of original artifact-level. So we compared the mean dif
ferences between clean and artifact-added simulated ERP amplitudes 
post-artifact correction across approaches as well.  

3. ERP amplitude error around the mean. Evaluating the standard error 
(SE) around the peak ERP component amplitude means across par
ticipants in the clean vs. artifact dataset reveals the consistency of the 
estimates of the simulated ground truth values. This comparison is 
facilitated by the simulated conditions that do not contain any 
standard error around the mean amplitude values and because the 
exact same ERP was embedded into everyone’s EEG. Thus, any SE 
different from 0 reflects some error introduced into the estimates of 
amplitude. Of course, embedding the simulated data into the real 
EEG introduces SE. Therefore, artifact correction approaches are 
evaluated both on A) the absolute level of SE around ERP component 
estimates and B) whether they could reduce SE relative to the raw 
EEG conditions, suggesting higher consistency in the post-processed 
data across individuals. For the full-length datasets, the 95% confi
dence intervals around the mean simulated ERP were compared 
visually across approaches. This information combined with the 
amplitude distortion criterion above would indicate which artifact- 
correction approach most consistently and accurately re-captured 
the simulated ground truth values across individuals.  

4. Trial rejection (sensitivity to artifact). Artifact correction approaches 
that were relatively more insensitive to artifact in the data compared 
to other approaches would be revealed by higher rates of subsequent 
trial rejection during processing (as retained artifact would be 

Fig. 3. Topographical plots of each simulated VEP component (N1, P1, and N2) 
as generated by SEREEGA (Krol et al., 2018). 
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detected by the trial rejection criteria). To compare segment rejec
tion across approaches, we used a voltage threshold-based criteria 
(− 150 and 150 mV). That is, the best performing option would retain 
the most trials. 

6.2.1. Clean vs. artifact-added dataset comparisons 

6.2.1.1. Participant rejection. All methods tested on both clean and 
artifact-added datasets retained 100% of the participants. That is, there 
was no erroneous sample attrition regardless of processing strategy. No 
best performer with this criterion. 

6.2.1.2. ERP morphology distortion. Next, approaches were compared 
with respect to effects on simulated ERP morphology across clean and 
artifact-added datasets for each spatial ROI with all trials (prior to bad 
trial rejection to evaluate the success of the artifact correction step 
specifically) (Table 4 and Fig. 4). Artifact-correction approaches were 
compared to the simulated ground truth values for the N1, N1-P1, and 
P1-N2 peaks and peak-peak amplitudes. Notably, while the simulated 
ERP was embedded in real baseline EEG data for the artifact-correction 
approaches to run, this embedding only minimally changed the peak 
simulated values across all ROIs in the clean dataset (ERP signal 
embedded in the clean real data produced peak amplitudes that were on 
average 99.68% the ground truth simulated value). Therefore, we pro
ceeded with comparing approaches directly to the simulated ground 
truth given this negligible distortion to the simulated ground truth 
values in the clean real EEG. 

Across both the clean and artifact-added datasets and all spatial ROIs 
(occipital, frontal, and right temporal), wavelet-thresholding returned 
the peak amplitude values closest to the simulated ground truth for the 
vast majority of ERP components (16 out of 18 components evaluated (9 

of 9 clean components and 7 of 9 artifact-added components); mean 
difference from simulated amplitude value 0.4 mV, 3.1%) (Table 4). The 
ICA with manual rejection approach returned amplitude values closest 
to the simulated truth for the remaining two ERP components (frontal 
N1 in the artifact-added dataset, and occipital N1-P1 in the artifact- 
added dataset), but overall returned amplitudes on average 1.0 mV, 
7.2% different from the simulated truth. The other ICA approaches 
returned amplitude estimates noticeably different from the simulated 
truth (ICA with MARA 0.5: mean 4.5 mV, 32.5% different; ICA with 
iMARA 0.2 mean 2.5 mV, 18.1% different; ICA with ICLabel 0.8 mean 
3.2 mV, 22.6% different). That is, across VEP components, wavelet- 
thresholding returned amplitudes closest to the simulated truth, while 
no automated ICA approach performed nearly that well, and manual- 
rejection of ICs very rarely did. Still, within the ICA options, manual 
rejection did dramatically improve performance relative to even lenient 
automated rejection thresholds. Wavelet-thresholding provided the best 
performance in terms of minimal ERP morphology distortion across the 
scalp. 

Moreover, wavelet-thresholding returned estimates of the ERP peak 
amplitudes that were most similar across the clean and artifact-added 
conditions (Figs. 4 and 5). That is, wavelet-thresholding in the 
artifact-added condition returned amplitudes that were extremely 
similar to the amplitudes found in the clean data (mean amplitude dif
ference in artifact-added data amplitudes relative to clean data ampli
tudes: 0.1 mV, 1.0% difference) (Fig. 4). This difference between clean 
and artifact-added amplitude estimates for wavelet-thresholding was 
smaller than the difference observed between the raw EEG datasets 
(artifact-added vs. clean mean difference 0.2 mV, 1.7% difference). 
However, the ICA approaches variably reduced the ERP amplitudes 
more in the artifact-added condition compared to the clean condition 
(ICA with MARA 0.5 condition difference: 3.1 mV, 21% difference; ICA 
with iMARA 0.2 difference: 0.25 mV, 2.5% difference; ICA with 

Table 4 
Statistics for the performance of various artifact rejection methods on simulated data ERP morphology amplitude.   

Simulated Raw 
Data 

Wavelet 
Thresholding 

ICA with 
MARA.5 

ICA with 
iMARA.2 

ICA with 
ICLabel.8 

ICA with Hand 
Rejection 

Occipital               
Clean N1  -7.420  -7.514  -7.180  -6.038  -6.401  -5.804  -6.346 
Clean N1-P1  16.030  15.864  15.616  13.372  13.400  12.241  14.111 
Clean P1-N2  18.370  18.028  17.718  14.972  15.083  13.349  16.168 
Mean amplitude difference from 

simulated    
0.201  0.435  2.479  2.312  3.475  1.732 

Artifact-Added N1  -7.420  -7.293  -7.263  -4.265  -6.292  -5.717  -7.678 
Artifact-Added N1-P1  16.030  15.861  15.666  8.845  13.739  12.383  15.683 
Artifact-Added P1-N2  18.370  17.913  17.528  9.838  15.230  13.416  17.087 
Mean amplitude difference from 

simulated    
0.251  0.454  6.291  2.186  3.435  0.629 

Frontal               
Clean N1  -7.420  -7.407  -7.238  -5.540  -6.083  -6.387  -7.165 
Clean N1-P1  16.030  15.689  15.510  12.462  12.847  13.151  14.983 
Clean P1-N2  18.370  18.093  17.845  14.358  14.753  14.851  17.603 
Mean amplitude difference from 

simulated    
0.210  0.409  3.153  2.712  2.477  0.690 

Artifact-Added N1  -7.420  -6.656  -6.773  -4.259  -5.136  -5.100  -6.910 
Artifact-Added N1-P1  16.030  15.155  15.351  8.848  12.324  11.128  14.500 
Artifact-Added P1-N2  18.370  18.316  17.993  10.266  14.976  13.179  17.259 
Mean amplitude difference from 

simulated    
0.564  0.568  6.149  3.128  4.138  1.050 

Temporal               
Clean N1  -7.420  -7.662  -7.544  -5.420  -6.462  -6.569  -6.993 
Clean N1-P1  16.030  15.641  15.570  12.168  13.062  13.435  14.502 
Clean P1-N2  18.370  18.693  18.619  14.404  15.381  15.088  17.234 
Mean amplitude difference from 

simulated    
0.318  0.278  3.276  2.305  2.243  1.030 

Artifact-Added N1  -7.420  -7.332  -7.346  -4.557  -6.178  -5.619  -7.227 
Artifact-Added N1-P1  16.030  15.209  15.193  8.964  12.623  11.629  14.215 
Artifact-Added P1-N2  18.370  18.913  18.725  10.882  15.478  14.042  17.051 
Mean amplitude difference from 

simulated    
0.484  0.422  5.806  2.514  3.510  1.109  
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Fig. 4. Box and whisker plots illustrating the difference in the post-artifact corrected amplitudes of components N1, P1, and N2 across the frontal, temporal, and 
occipital regions of interest as a function of pre-correction artifact level (i.e. clean ERP amplitude post-artifact correction minus artifact-added ERP amplitude post- 
artifact correction). 
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ICLabel.8 difference: 0.99 mV, 7.7% difference; ICA with manual 
rejection: 0.5 mV difference, 3.8% difference). That is, the degree of 
artifact in the data affected the resulting ERP component amplitudes 
estimated post-artifact correction. This was observed even with the 
automated IC rejection algorithms set to liberal rejection thresholds, but 
was especially pronounced with the automated rejection algorithm set 
to the default threshold (21% amplitude estimate difference if the data 
corrected had 2 artifact ICs added to it). We also note that the artifact- 
added condition was by no means as artifact-heavy as many develop
mental EEGs the authors have observed in their time, thus this is likely a 
conservative estimate of these effects in the broader artifact conditions 
of most such studies. Given some degree of difference was observed here 
with manual IC rejection under conditions of some artifact, this differ
ence may be notable even with expert IC rejection for datasets with more 
severe or variable artifacts present. This is a particularly concerning 
trend as variable degrees of artifact present would covertly influence the 
estimates of ERP parameters of interest in analyses. 

Wavelet-thresholding may be spared from this artifact-dependent 
amplitude change because of how artifacts are rejected through ICA 
versus waveleting. That is, an entire file-length timeseries (IC) must be 
rejected during ICA, and more artifact will generally result in more 
timeseries rejected (which will shrink the signal amplitude if ICs are not 
extremely well segregated into artifact-only signal). However, wavelet- 
thresholding is both temporally and frequency-sensitive, and thus can 
remove artifacts within a timeseries within a specific frequency range 
without removing the entire timeseries for all frequencies. When tuned 
correctly, wavelet-thresholding is an extremely temporally- and 
frequency-sensitive approach to artifact removal (though not spatially 
sensitive to artifact clustering, as ICA is). These advantages may explain 
why wavelet-thresholding returned more consistent amplitudes 
regardless of artifact contamination. Alternatively, some may wonder if 
wavelet-thresholding is simply not removing any signal from the EEG 
and thus preserving amplitude (e.g. insensitive to artifact in the signal). 
Several indicators suggest otherwise. From this present analysis, the 
clean and artifact-added amplitudes produced by wavelet-thresholding 
were more consistent than in the raw conditions, indicating wavelet- 
thresholding was changing the artifact-added signal to better align it 
with the clean amplitudes (i.e. removing artifact that was distorting the 

amplitude). Further support for wavelet-thresholding removing artifact 
while retaining signal comes from the next two criteria evaluations on 
standard error across participants and rates of trial rejection post- 
artifact correction. 

Wavelet-thresholding was the best-performing option for limiting 
ERP morphology distortion in the simulated ERP data across clean and 
artifact-added conditions in the three spatial ROIs tested. 

6.2.1.3. ERP standard error. Next, approaches were compared with 
respect to the standard error (SE) around the peak ERP component 
amplitudes across participants in the dataset to evaluate the consistency 
of the estimates of the simulated ground truth values (Table 5). This 
comparison is facilitated by the simulated conditions that do not contain 
any standard error around the mean amplitude values and because the 
exact same ERP was embedded into everyone’s EEG. Thus, any SE 
different from 0 reflects some error introduced into the estimates of 
amplitude. Of course, embedding the simulated data into the real EEG 
introduced SE, with higher SE estimates in the artifact-added dataset 
relative to the cleaner dataset across the three ROIs and ERP components 
(artifact SE mean: 0.527, clean SE mean: 0.449). As different artifact 
profiles were added to the different EEGs, smaller SE in the artifact- 
added conditions would also indicate more robust artifact-removal 
across artifact profiles. Artifact correction approaches were evaluated 
both on (1) the absolute level of SE around ERP component estimates 
and (2) whether they could reduce SE relative to the raw EEG condi
tions, suggesting higher consistency in the post-processed data across 
individuals. This information combined with the amplitude distortion 
comparison above would indicate which artifact-correction approach 
most consistently and accurately re-captured the simulated ground truth 
values across individuals. 

Across both the clean and artifact-added datasets and all spatial ROIs 
(occipital, frontal, and right temporal), wavelet-thresholding returned 
the lowest SE values for the vast majority of ERP components (14 out of 
18 components evaluated (8 of 9 clean components and 6 of 9 artifact- 
added components); mean SE across components 0.467). Moreover, 
wavelet-thresholding reduced SE relative to the raw data for the ma
jority of components (12 of 18 components evaluated, 7 of 9 artifact- 
added components, 5 of 9 clean components). That is, more frequent 

Table 5 
Statistics for the performance of various artifact rejection methods on simulated data ERP morphology standard error.   

Simulated Raw Data Wavelet Thresholding ICA with MARA.5 ICA with iMARA.2 ICA with ICLabel.8 ICA with Hand Rejection 

Occipital            
Clean N1  0.000  0.870 *0.84 1.033  0.977  1.223 0.984 
Clean N1-P1  0.000  0.352 0.419 1.313  1.468  1.133 1.011 
Clean P1-N2  0.000  0.547 0.553 1.366  1.472  1.205 1.043 
Mean SE (clean)  0.000  0.590 0.604 1.237  1.306  1.187 1.013 
Artifact-Added N1  0.000  0.944 *0.915 0.959  1.130  1.090 *0.846 
Artifact-Added N1-P1  0.000  0.413 0.459 1.394  1.461  1.400 0.583 
Artifact-Added P1-N2  0.000  0.596 *0.59 1.440  1.289  1.313 0.754 
Mean SE (artifact-added)  0.000  0.651 0.655 1.264  1.293  1.268 0.728 
Frontal            
Clean N1  0.000  0.527 *0.521 0.801  0.847  0.649 *0.468 
Clean N1-P1  0.000  0.196 0.207 1.211  1.427  0.839 0.537 
Clean P1-N2  0.000  0.259 *0.241 1.317  1.726  0.944 0.564 
Mean SE (clean)  0.000  0.327 0.323 1.110  1.333  0.811 0.523 
Artifact-Added N1  0.000  0.590 *0.504 0.773  1.021  1.026 *0.431 
Artifact-Added N1-P1  0.000  0.423 *0.223 1.454  1.361  1.464 0.523 
Artifact-Added P1-N2  0.000  0.247 0.248 1.688  1.692  1.499 0.562 
Mean SE (artifact-added)  0.000  0.420 0.325 1.305  1.358  1.330 0.505 
Temporal            
Clean N1  0.000  0.618 *0.581 0.759  0.819  0.760 0.720 
Clean N1-P1  0.000  0.284 0.285 1.211  1.393  0.981 0.657 
Clean P1-N2  0.000  0.390 *0.378 1.380  1.653  1.007 0.609 
Mean SE (clean)  0.000  0.431 0.415 1.117  1.288  0.916 0.662 
Artifact-Added N1  0.000  0.693 *0.655 *0.666  0.956  1.126 *0.606 
Artifact-Added N1-P1  0.000  0.422 *0.41 1.113  1.478  1.474 0.623 
Artifact-Added P1-N2  0.000  0.412 *0.37 1.242  1.588  1.481 0.652 
Mean SE (artifact-added)  0.000  0.509 0.478 1.007  1.341  1.360 0.627  
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and larger reductions in SE occurred in the artifact-added condition 
(clean SE change: 0.002 reduction, artifact-added SE change: 0.041 
reduction). Indeed, this differential SE reduction meant the wavelet- 
thresholded SE in the clean data was very similar to the wavelet- 
thresholded SE in the artifact-added data (second-smallest SE differ
ence between conditions, with iMARA 0.2 showing the smallest differ
ence between conditions (0.022)) but SE values much higher in both 
conditions than wavelet-thresholding (iMARA 0.2 SE overall mean 
1.32). This pattern of results is consistent with successful artifact 
removal from the EEG data via wavelet-thresholding. The ICA with 
manual rejection approach returned the lowest SE values for the 
remaining four ERP components (occipital artifact-added N1, frontal 
clean and artifact-added N1, and temporal artifact-added N1), but 
returned higher mean SE values in both the clean and artifact-added 
conditions relative to both wavelet-thresholded SE values and the raw 
data SE values (e.g. manual rejection mean SE 0.283 larger than clean 
raw SE, and 0.093 larger than artifact-added raw SE). The automated 
ICA options all returned mean SE values over 1, suggesting less precise 
and more variable estimates of the ground truth ERP component am
plitudes. In sum, only wavelet-thresholding successfully reduced stan
dard errors around the ERP component amplitude estimates relative to 
raw data with artifact. 

Wavelet-thresholding was the best-performing option overall for 
reducing error around the known simulated ERP signal regardless of 
artifact-levels before artifact correction. 

6.2.1.4. Segment retention. Finally, approaches were compared on their 
rates of segment retention as a benchmark for how much artifact 
remained after each artifact-correction approach that would require 
rejecting the entire trial during this pre-processing step. Although trial 
rejection is not a ground truth for presence or absence of artifact, it does 
facilitate comparisons between the approaches on the same trials, as 
relatively more trials retained using the same criteria should indicate 
cleaner underlying data compared to the other approaches. This crite
rion thus provides some information about which artifact-correction 
approaches were most sensitive to the artifact present in the data. We 
explored this question using a common voltage threshold for rejection 
(here, +/− 150 mV in developmental EEG) (Table 6) for the clean EEG 
and artifact-added EEG datasets separately. A pattern of significant 
differences emerged when comparing these datasets using voltage 
thresholds for rejection (clean: F(5) = 8.549, p = 2 * 10− 6, ƞ2

p = 0.363; 
artifact-added: F(5) = 23.509, p = 3.915 * 10− 14, ƞ2

p = 0.610). Specif
ically, in the clean data, wavelet-thresholding, hand-rejection of ICs, and 
MARA0.5 all retained the highest number of trials (not significantly 
different from each other), and significantly more trials than iMARA0.2, 
ICLabel 0.8, and no artifact-correction prior to segment retention ap
proaches (waveleting vs. iMARA p = 0.001, waveleting vs. ICLabel 

p = 0.010, waveleting vs. no correction p = 0.00045; manual rejection 
vs. iMARA p = 0.014, manual rejection vs. ICLabel p = 0.035, manual 
rejection vs. no correction p = 0.007; MARA vs. iMARA p = 0.012, 
MARA vs. ICLabel p = 0.017, MARA vs. no correction p = 0.007) In the 
artifact-added data, wavelet-thresholding, manual IC-rejection, and 
MARA 0.5 again retained the most trials (this time MARA0.5 retained 
the most, significantly more than wavelet-thresholding p = 0.003 but no 
other significant differences between these approaches), all significantly 
more than iMARA0.2, ICLabel0.8, and no artifact-correction approaches 
(MARA vs. iMARA p = 0.00009, MARA vs. ICLabel p = 0.0001, MARA 
vs. no correction p = 0.000008; wavelet vs. iMARA p = 0.0004, wavelet 
vs. ICLabel p = 0.003, wavelet vs. no correction p = 0.000007; manual 
rejection vs. iMARA p = 0.0003, manual rejection vs. ICLabel 0.0004, 
manual rejection vs. no correction 0.0003). The no artifact-correction 
approach retained significantly fewer trials than all artifact-correction 
approaches (p < 0.01 except iMARA p = 0.012), consistent with hav
ing the most rejectable artifact. We note that the MARA0.5 results 
should largely be ignored as this algorithm resulted in extreme ampli
tude reduction in the data, and thus more trials may have been retained 
simply because the entire signal was quite shrunken rather than because 
it was more free from artifact. 

Wavelet-thresholding tied as one of the most successful algorithms in 
terms of trial retention, and was the most successful automated algo
rithm that did not result in drastic amplitude reduction in the signal 
overall. 

Across evaluation criteria for the clean vs. artifact-added dataset 
analyses, wavelet-thresholding consistently performed better than all 
other automated artifact-correction approaches, better than no artifact 
correction at all, and in most cases better than the manual IC rejection 
condition (with noted equivalency in trial retention) (Fig. 5). 

6.2.2. Full-length dataset comparisons 

Full-length EEG datafiles with simulated ERPs embedded were also 
examined to provide further comparison under conditions (more data 
samples per file and the full set of channels) where ICA might perform 
better than in the shorter segments required for above clean vs. artifact- 
added conditions. Here we also compared the soft and hard thresholding 
options for wavelet-thresholding to inform user selection. 

6.2.2.1. Participant rejection 
All methods tested on full-length files retained 100% of the partici

pants. That is, there was no erroneous sample attrition regardless of 
processing strategy. No best performer with this criterion. 

6.2.2.2. ERP morphology distortion 
The mean simulated ERP across files and 95% confidence intervals 

around the mean ERP are illustrated for the three different scalp ROIs in  

Table 6 
Statistics for the performance of various artifact rejection methods on trial retention after segment rejection using HAPPE’s amplitude threshold criteria (− 150 to 
150 mV).   

Mean Standard Deviation Range Mean Standard Deviation Range 

Clean           
Raw Data  55.88  5.10 40–60  93.13  8.50 66.67–100.00 
Wavelet Thresholding  59.13  2.39 51–60  98.54  3.98 85.00–100.00 
ICA with MARA.5  59.75  0.58 58–60  99.58  0.96 96.67–100.00 
ICA with iMARA.2  56.38  4.92 40–60  93.96  8.21 66.67–100.00 
ICA with ICLabel.8  57.75  3.04 49–60  96.25  5.07 81.67–100.00 
ICA with Hand Rejection  59.25  1.13 56–60  98.75  1.88 93.33–100.00 
Artifact-Added           
Raw Data  48.19  7.12 31–57  80.31  11.87 51.67–95.00 
Wavelet Thresholding  55.81  4.61 45–60  93.02  7.68 75.00–100.00 
ICA with MARA.5  59.38  1.31 55–60  98.96  2.18 91.67–100.00 
ICA with iMARA.2  50.06  7.51 32–100  83.44  12.51 53.33–100.00 
ICA with ICLabel.8  51.00  6.60 32–58  85.00  11.01 53.33–96.67 
ICA with Hand Rejection  58.25  1.61 54–60  97.08  2.69 90.00–100.00  
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Figs. 6–8. Notably, the MARA0.5 algorithm for automated IC rejection 
significantly reduced ERP amplitude in the full-length data, and thus is 
not recommended in these conditions. Both wavelet-thresholding op
tions performed best in terms of preserving amplitude while reducing 
the width of the 95% confidence interval relative to all IC options 
including manual rejection of ICs and the no-artifact correction option, 
regardless of the spatial ROI. The wavelet with hard threshold did result 
in slight amplitude loss relative to the soft threshold in these conditions, 
but also resulted in benefits with respect to segment retention rates 
outlined below. 

Wavelet-thresholding with either soft or hard settings performed best 
in terms of reliably reproducing the simulated ERP signal across in
dividuals and artifact-levels. 

6.2.2.3. Segment retention 
Finally, approaches were compared on their rates of segment/trial 

retention as a benchmark for how much artifact remained after each 
artifact-correction approach that would require rejecting the entire trial 
during this pre-processing step. Once again, given MARA0.5 algorithm 
performance in terms of dramatic signal amplitude reduction, the 
MARA0.5 results are largely ignored here for the amplitude-based trial 
rejection test. A pattern of significant differences emerged when 
comparing these approaches using voltage thresholds for rejection (F(7) 
= 25.107, p = 1.39 * 10− 21, ƞ2

p = 0.569). Specifically, as summarized in  
Table 7, aside from MARA0.5, wavelet-thresholding (hard threshold) 
and ICA with hand-rejection retained the most trials (not significantly 
different from each other p = 0.103; wavelet thresholding vs: Adjusted 
Adjust p = 0.002, ICLabel.8 p = 0.024, iMARA.2 p = 4.73 *10− 4, no 

Fig. 5. The resulting VEP waveform from the simulated VEP signal, data with the VEP signal added, and with a variety of artifact-reduction strategies. Excluding the 
simulated signal, all methods were processed using HAPPE’s line-noise reduction, filtering, segmentation, and baseline correction steps. The top row shows the 
waveform for clean (A) and artifact-added (B) data in the frontal ROI. The middle row shows the waveform for clean (C) and artifact-added (D) data in the temporal 
ROI. The bottom row shows the waveform for clean (E) and artifact-added (F) data in the occipital ROI. 
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Fig. 6. A series of plots comparing the simulated ERP signal (in black) with the average generated ERP (in green) for each artifact rejection method in the frontal 
region of interest. The 95% confidence intervals for the generated ERPs are illustrated by dotted teal lines. 
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Fig. 7. A series of plots comparing the simulated ERP signal (in black) with the average generated ERP (in green) for each artifact rejection method in the temporal 
region of interest. The 95% confidence intervals for the generated ERPs are illustrated by dotted teal lines. 
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Fig. 8. A series of plots comparing the simulated ERP signal (in black) with the average generated ERP (in green) for each artifact rejection method in the occipital 
region of interest. The 95% confidence intervals for the generated ERPs are illustrated by dotted teal lines. 
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correction p = 1.17 *10− 7; hand-rejection vs: Adjusted Adjust 
p = 3.88 *10− 8, ICLabel.8 p = 1.17 *10− 4, iMARA 1.1 *10− 5, no 
correction p = 1.9 *10− 7). Wavelet-thresholding with soft threshold 
retained significantly fewer trials than wavelet-thresholding with hard 
threshold (p = 1.1 *10− 7) and ICA with manual IC rejection (p = 3.4 * 
10− 5), but was equivalent to all automated ICA options statistically 
(Adjusted Adjust p = 0.657, iMARA0.2 p = 0.406, ICLabel.8 p = 0.106) 
and retained significantly more trials than the raw condition of no 
artifact-correction (p = 4.93 *10− 7). The no artifact-correction condi
tion retained significantly fewer trials than all methods (all p < 0.001). 
This pattern of results provides further support for the use of artifact- 
correction approaches to improve data quality and data retention. 

The pattern of results over the clean vs. artifact-added and full-length 
datasets suggests that wavelet-thresholding rejects more artifact and 
reproduces the simulated ERP signal more consistently across in
dividuals than any other approach tested in this developmental EEG 
data. Though ICA, especially with manual IC rejection, may prove useful 
under other circumstances for ERP analyses, (e.g. perhaps long, clean 
adult EEG recordings), wavelet-thresholding as tested here in 
HAPPE+ER provides a flexible, accurate, and automated solution for 
artifact-correction across the lifespan. 

7. HAPPEþER comparisons to other automated pre-processing 
pipelines 

Finally, we provide both conceptual and empirical comparisons to 
other automated pre-processing pipelines for ERP analyses. Specifically, 
we address the two recent pipelines also tested in ERP data, EEG-IP-L 
(Desjardins et al., 2021) and MADE (Debnath et al., 2020). 

7.1. Conceptual differences between pipelines 

There are multiple conceptual, goal, and user-related differences 
between available pipelines. The EEG-IP-L pipeline employs lossless 
methods to annotate datasets where artifact is present, and has recently 
been shown to outperform MADE in retaining trials and recovering ERP 
effects (Desjardins et al., 2021). EEG-IP-L offers a suite of useful tools 
and visualizations, especially for advanced users with access and 
knowledge of computing clusters (at time of press, cluster access was 
required for the publicly-available version of EEG-IP-L for researchers in 
the USA). EEG-IP-L uses the ICLabel algorithm we tested in the current 
manuscript, although we tested more lenient automated criteria and 
manual IC rejection in the absence of EEG-IP-L’s prior annotation 
practices and multiple ICA decompositions. EEG-IP-L authors recom
mend manual inspection and editing of ICA for optimal performance (a 
recommendation we agree with based on how automated IC rejection 
has performed in our independent comparisons). In this way, EEG-IP-L 
serves both a different userbase and different pipeline goals from 
HAPPE+ER. 

The MADE software offers a more directly comparable option that 
also aims for fully-automated pre-processing of ERP data. MADE is 
designed for developmental data only while HAPPE+ER is appropriate 

for both developmental and adult ERP data. Still, like HAPPE+ER, 
MADE offers the same set of pre-processing steps for ERP data, with 
several differences in implementation for specific steps described next. 
For bad channel detection, MADE uses FASTER’s criteria for detecting 
bad channels, which evaluates correlation relative to other channels, 
variance of a channel relative to other channels, and Hurst exponent for 
a channel. MADE also rejects channels with large amplitude changes and 
excessive EMG for more than 20% of the recording. HAPPE+ER includes 
correlation relative to other channels, and explicit flat-channel detection 
(which should be caught in FASTER), but further evaluates the power 
spectrum (which can catch EMG-contaminated channels amongst other 
artifacts that shift the power spectrum) and line noise contamination to 
detect further classes of bad channels (some of these may fail FASTER 
criteria or be caught for excessive EMG activity in MADE but are not all 
explicitly targeted). 

Both MADE and HAPPE+ER pipelines also perform artifact correc
tion. MADE employs ICA with automated IC rejection using Adjusted 
ADJUST (Leach et al., 2020), which searches for ocular artifact (blinks, 
EOG artifacts, saccades) and generic discontinuities in the EEG data. 
HAPPE+ER uses wavelet-thresholding, which can theoretically detect 
artifacts across a broader set of classes (e.g. EMG, heart-rate, respiration, 
ocular, discontinuities, movement, etc). Though we tested Adjusted 
Adjust for automated rejection and found wavelet-thresholding out
performed it on simulated ERP data above, this was outside of the 
context of MADE’s pipeline and may not reflect Adjusted ADJUST’s 
performance with MADE’s other pre-processing steps. 

Pipelines also differ in how they perform bad segment rejection. 
MADE performs bad segment rejection by searching for and rejecting 
segments that surpass a voltage threshold over ocular regions first, then 
in greater than 10% non-ocular electrodes, and for segments determined 
to be bad for fewer than 10% of non-ocular electrodes, the data for those 
segments is interpolated using data from nearby channels. HAPPE+ER 
offers the user several approaches to handle bad segments, including 
optional interpolation (interpolation is not optional in MADE), and 
rejection via voltage threshold criteria, similarity criteria (via EEGLAB’s 
jointprob function) to both other segments for that electrode and other 
electrodes for that segment, or the combination of these two similarity 
and voltage criteria. Moreover, users may reject segments using all 
electrodes or evaluate an ERP’s ROI specifically to optimize segment 
retention for that analysis. HAPPE+ER offers a simple re-run function to 
evaluate multiple ROIs for segment rejection within the same dataset if 
ROI-based segment rejection is preferred. 

Finally, MADE does not offer a complement to HAPPE+ER’s gen
erateERP post-processing functionality for generating ERP metrics and 
figures, nor can it easily accommodate low-density EEG data for ERP 
analyses due to reliance on ICA for correction. 

7.2. Empirical differences between pipelines 

Given that HAPPE+ER and MADE pipeline goals are most closely 
aligned in striving for fully-automated ERP pre-processing for a broad 
userbase, we also empirically tested performance on developmental ERP 

Table 7 
Statistics for the performance of various artifact rejection methods on trial retention after segment rejection using HAPPE’s amplitude threshold criteria (− 150 to 
150 mV).   

Number of Segments Retained Percent Segments Retained  

Mean Standard Deviation Range Mean Standard Deviation Range 

Raw Data  254.55  134.52 92–625  50.24  15.38 30.67–85.00 
Wavelet Thresholding, Soft  338.10  172.70 152–824  66.75  16.37 39.70–98.75 
Wavelet Thresholding, Hard  412.80  199.42 201–960  81.26  14.63 49.55–99.58 
ICA with adjustedADJUST  345.70  193.84 120–841  65.68  15.20 38.79–94.17 
ICA with MARA.5  496.65  252.26 0–1013  92.50  23.50 0.00–100.00 
ICA with iMARA.2  350.15  187.48 131–808  67.50  16.47 40.61–96.67 
ICA with ICLabel.8  366.40  190.51 135–897  71.00  14.42 48.18–97.08 
ICA with Hand Rejection  440.70  209.93 186–956  84.97  8.52 63.49–98.33  
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data for HAPPE+ER (hard wavelet-threshold option) relative to MADE 
pipeline using the full-length simulated ERP dataset and then real ERP 
datasets from 4-month and 10-month infants. We used the version of 
MADE publicly-available code downloaded on December 20, 2021, and 
though we had to implement code changes to render the code functional, 
we do not believe these changes altered MADE’s functionality beyond 
what the authors intended. We processed the simulated ERP, 4-, and 10- 
month data through both MADE and HAPPE+ER after first excluding the 
rim channels for the data as MADE recommends this for optimal per
formance in their pipeline (channels excluded include ‘E17′ ‘E38′ ‘E43′

‘E44′ ‘E48′ ‘E49′ ‘E113′ ‘E114′, ‘E119′ ‘E120′ ‘E121′ ‘E125′ ‘E126′ ‘E127′

‘E128′ ‘E56′ ‘E63′ ‘E68′, ‘E73′ ‘E81′ ‘E88′ ‘E94′ ‘E99′ ‘E107′). As MADE 
only specifies voltage-related segment rejection, we used HAPPE+ER’s 
voltage criteria only for segment rejection (− 150 and 150 mV for both 
HAPPE and MADE, following MADE’s recommendation for infant data). 
Pre-processed data from both pipelines were processed using 

HAPPE+ER’s generateERPs script as described previously to extract 
mean ERP timeseries, measures of error around the mean (standard 
error, confidence intervals), and peak amplitude values for the N1, P1, 
and N2 components to evaluate N1, N1-P1, and P1-N2 morphology. 

We evaluated pipeline performance on the following criteria: 

1. File retention rates of participant rejection. All files included in an
alyses with simulated and real ERP data were determined by an 
expert to have at least some sufficiently clean and usable trials, thus 
rates of rejecting entire files (i.e. all data or all trials removed) re
flected un-necessary data attrition.  

2. ERP morphology. Specifically, for simulated ERP data, we evaluated 
whether the simulated signal amplitude and timing were recapitu
lated data post-artifact correction, as well as the width of the 95% 
confidence intervals around the mean amplitude prior to segment 
rejection. Morphology comparisons were performed for the 

Fig. 9. A series of plots comparing the simulated ERP signal (in black) with the average generated ERP (in green) between HAPPE and MADE across regions of 
interest. The 95% confidence intervals for the generated ERPs are illustrated by dotted teal lines. 
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simulated ERP over frontal, temporal, and occipital regions of in
terest (ROIs) as before. Better pipeline performance would be indi
cated by closer approximation of the simulated signal amplitude and 
timing, and smaller 95% confidence intervals around the amplitude. 
The same analyses were done for the real ERP data, but these would 
simply indicate pipeline differences rather than indicate superior 
performance in the absence of a ground truth. 

3. Segment retention (sensitivity to artifact). A pipeline that was rela
tively more insensitive to artifact in the data compared to the other 
would be revealed by higher rates of subsequent trial rejection dur
ing processing (as retained artifact would be detected by the trial 
rejection criteria). Here across both simulated and real ERP datasets, 
we used segment rejection voltage criteria (− 150 to 150 mV) to 
evaluate which pipeline preserved more trials as the better- 
performing pipeline, noting that MADE’s criteria should reject 
fewer segments since it includes interpolation for some cases where 
HAPPE+ER would reject segments. 

7.2.1. Simulated ERP analyses 

7.2.1.1. File retention rates. HAPPE+ER retained 100% of the files and 
MADE retained 100% of the files with simulated ERPs embedded. No 
best performer using this criterion. 

7.2.1.2. ERP morphology and error. Pipeline effects on the simulated 
ERP morphology across the three regions of interest (frontal, temporal, 
and occipital) are summarized visually in Fig. 9. Across the scalp, both 
pipelines returned accurate mean simulated ERP morphology with 
minimal distortion. HAPPE returned consistently narrower 95% confi
dence intervals around the mean simulated ERP, suggesting more 
consistent and accurate artifact correction performance across devel
opmental files. 

7.2.1.3. Segment retention (sensitivity to artifact). Pipelines were also 
compared on their rates of segment retention as a benchmark for how 
much artifact remained after each pipeline’s pre-processing steps 
including artifact-correction (Table 8). Although trial rejection is not a 
ground truth for presence or absence of artifact, it does facilitate com
parisons between the pipelines on the same trials, as relatively more 
trials retained should indicate cleaner underlying data compared to the 
other pipeline. Here using the voltage-based criteria, we compared 
MADE’s retained segments with HAPPE+ER run on the same set of 
channels. HAPPE+ER retained significantly more trials relative to 
MADE (HAPPE+ER vs. MADE t(19) = 5.72, p = 1.6 * 10− 5). That is, 
HAPPE performed better than MADE for the segment retention criteria. 

These comparisons with simulated ERPs embedded in real develop
mental EEG data provide support for the use of HAPPER+ER for robust 
developmental ERP pre-processing. 

7.2.2. Real developmental ERP analyses 
For final comparisons, we also evaluated pipeline performance using 

real infant visual evoked potential data from 4- and 10-month old babies 
(details of paradigm and data collection provided in Supplemental File 
2). 

7.2.2.1. File retention rates 
While HAPPE+ER retained 100% of files, MADE rejected a small 

percentage of files known to have usable data in both the 4- and 10- 
month datasets, representing unnecessary data attrition (Table 9). 
Moreover, we evaluated how many files were effectively usable for an
alyses, here having at least 15 trials of retained VEP data post- 
processing, and using these criteria, both HAPPE+ER and MADE rejec
ted files at 4-months, though MADE rejected far more files at this 
timepoint (MADE: 65% file retention vs. HAPPE+ER: 95% file retention 
rate in this condition). Moreover, MADE rejected files in this condition 
at 10-months of age while HAPPE+ER retained the full sample of usable 
participants (MADE: 88% file retention). Thus, MADE may induce some 
unnecessary file attrition in developmental ERP studies. 

7.2.2.2. ERP morphology 
Next, pipelines were compared with respect to effects on VEP 

morphology across 4- and 10-month datasets using trial number 
matched datasets (matched to whichever pipeline returned fewer trials 
for each participant and including only participants where MADE and 
HAPPE+ER both retained at least 15 trials of VEP) (Fig. 10). Thus, in the 
subsample of files and trials, there were largely no differences in 
morphology or standard errors between pipelines under trial-matched 
conditions visually. Both the hard and soft wavelet thresholds are 
shown in the real developmental data for comparison. We note that 
differences in standard error between pipelines may be expected if the 
ERP morphology without trial-matching were performed given the trial 
retention results described below and the simulated ERP results above 
where all trials were compared. 

7.2.2.3. Segment retention 
Finally, pipelines were compared on their rates of segment retention 

as a benchmark for how much artifact remained after each pipeline’s 
pre-processing steps including artifact-correction (Table 10). Here we 
compared MADE’s retained trials with HAPPE+ER run on the same set 
of channels, as well as HAPPE+ER run in the ROI segment rejection 
setting. Both HAPPE+ER settings retained more trials relative to MADE 
in both the 4-month and 10-month datasets (4 months: HAPPE+ER (all 
channel setting) vs. MADE t(22) = 7.67, p = 1.19 * 10− 7, HAPPE+ER 
(ROI setting) vs. MADE t(22) = 13.60, p = 3.47 * 10− 12; 10-months: 
HAPPE+ER (all channel setting) vs. MADE t(16) = 6.30, 
p = 1.1 * 10− 5, HAPPE+ER (ROI setting) vs. MADE t(16) = 6.52, 
p = 0.7 * 10− 5). HAPPE+ER’s ROI setting retained significantly more 
trials than HAPPE+ER evaluated over all channels at both ages as well 
(4 months: all channels vs. ROI t(22) = 8.84, p = 1.08 * 10− 8, 10 
months: all channels vs. ROI t(16) = 3.75, p = 0.002). Thus, for devel
opmental researchers interested in ERPs that are already localized 
spatially, the HAPPE+ER ROI option for trial rejection may further 
improve the count of usable trials for analyses. 

In summary, across evaluation criteria in this infant VEP dataset, 
MADE resulted in file attrition relative to HAPPE+ER, and while both 
pipelines produced robust ERP morphology in trial-matched conditions, 
HAPPE+ER retained significantly more trials per file than MADE, 
regardless of HAPPE+ER rejection approach. These results may reflect 
HAPPE+ER’s sensitivity to more artifact classes in artifact correction or 
superior performance of wavelet thresholding relative to ICA more 
broadly as we have previously shown. These comparisons in develop
mental data provide support for the use of HAPPER+ER for robust 

Table 8 
Statistics for the performance of HAPPE and MADE on trial retention after segment rejection.   

Number of Segments Retained Percent Segments Retained  

Mean Standard Deviation Range Mean Standard Deviation Range 

HAPPE  412.8  199.42 201–960  81.26  14.63 49.55–99.58 
MADE  309.25  178.63 116–820  59.08  15.29 35.37–95.28  
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Table 9 
Statistics for the performance of MADE versus HAPPE on file retention using amplitude threshold segment rejection criteria.   

MADE - MADE’s Voltage Threshold HAPPE - Voltage Threshold HAPPE - Voltage Threshold on ROI  

Percent Files 
Retained 

Percent Files with at least 15 
Trials 

Percent Files 
Retained 

Percent Files with at least 15 
Trials 

Percent Files 
Retained 

Percent Files with at least 15 
Trials 

4-month 
data  

95.65  65.22  100.00  95.83  100.00  100.00 

10-month 
data  

94.12  88.24  100.00  100.00  100.00  100.00  

Fig. 10. The generated VEP and standard error for 4-month data processed with HAPPE using hard (A) and soft (C) thresholds, 10-month data processed with HAPPE 
using hard (B) and soft (D) thresholds, 4-month data processed with MADE (E), and 10-month data processed with MADE (F). The standard error is represented by the 
dashed lines. In all images the files have been limited to those which MADE retained at least 15 segments and are segment matched (42 epochs for 4-month data, 41 
epochs for 10-month data). 
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developmental ERP pre-processing. 

8. Validating HAPPEþER and pipeline comparisons in user data 

To support testing HAPPE+ER performance in the context of each 
user’s data, and to bolster the ability for scientists to test which pipeline 
of the many emerging options performs best for their data needs, we 
introduce the first of a new set of validation scripts in HAPPE that can be 
found in the add-ons\validate folder, addSimERP.m. This script easily 
enables the user to add the simulated ERP signal described above to their 
continuous baseline/resting-state EEG data as described and used in this 
manuscript. As with the main HAPPE script and generateERPs, the user 
can select either all the channels to add the ERP timeseries or a subset of 
channels using the include/exclude methods described previously. 
While currently only supporting continuous EEG files in.set format with 
channel locations included, the authors intend to enable the script’s 
functionality to include inputs in.mat and.raw formats as well. Similarly, 
addSimERP.m only allows a simulated VEP timeseries to be added to the 
provided data but this selection will be expanded to facilitate a choice of 
other simulated ERP timeseries and enable validation across a variety of 
waveforms. 

9. Implementing HAPPEþER 

HAPPE+ER runs entirely through the MATLAB command line, col
lecting processing parameters without the user needing to navigate or 
alter the pipeline’s code. This reduces the chance of accidentally 
breaking the code, entering incorrect parameters for the desired anal
ysis, and the need to have prior knowledge of coding or MATLAB, 
enabling users of wide range of backgrounds and levels of familiarity to 
easily run the pipeline. To run HAPPE+ER, simply open MATLAB, 
navigate to the HAPPE 2.0 folder, and open the HAPPE 2.0 script. In the 
“Editor” tab at the top of the screen, click “Run” and follow the prompts 
as they appear in the MATLAB command line. After entering all relevant 
inputs to the command line, HAPPE+ER will run automatically through 
completion. 

HAPPE+ER code and user guide are freely available at: https:// 
github.com/PINE-Lab/HAPPE. The data used in this manuscript are 
freely available via Zenodo at: https://zenodo.org/record/5172962. 
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