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Abstract: Hydrogen peroxide is a low-reactivity reactive oxygen species (ROS); however, it can easily
penetrate cell membranes and produce highly reactive hydroxyl radical species through Fenton’s
reaction. Its presence in abnormal amounts can lead to serious diseases in humans. Although
the development of a simple, ultrasensitive, and selective method for H2O2 detection is crucial,
this remains a strategic challenge. The peroxidase mimetic activity of palladium nanoclusters (PdNCs)
has not previously been evaluated. In this study, we developed an ultrasensitive and selective
colorimetric detection method for H2O2 using PdNCs. An unprecedented eco-friendly, cost-effective,
and facile biological method was developed for the synthesis of PdNCs. This is the first report of the
biosynthesis of PdNCs. The synthesized nanoclusters had a significantly narrow size distribution
profile and high stability. The nanoclusters were demonstrated to possess a peroxidase mimetic activity
that could oxidize peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Various interfering
substances in serum (100 µM phenylalanine, cysteine, tryptophan, arginine, glucose, urea, Na+, Fe2+,
PO4

3−, Mn+2, Ca2+, Mg2+, Zn2+, NH4
+, and K+) were included to evaluate the selectivity of the assay,

and oxidation of TMB occurred only in the presence of H2O2. Therefore, PdNCs show an efficient
nanozyme for the peroxidase mimetic activity. The assay produced a sufficient signal at the ultralow
concentration of 0.0625 µM H2O2. This colorimetric assay provides a real-time, rapid, and easy-to-use
platform for the detection of H2O2 for clinical purposes.

Keywords: palladium nanoclusters; nanozyme; peroxidase mimetic activity; colorimetric detection;
hydrogen peroxide; 3,3′,5,5′-tetramethylbenzidine

1. Introduction

Enzymes are frequently used to catalyze the conversion of biomolecules; however, they require
mild conditions to facilitate the reaction. In contrast, chemical catalysts can easily facilitate reactions
under harsh conditions, such as high pressures, high temperatures, organic solvents, and extreme
pH [1,2]. Enzymes are extensively used in industry, medical, and biological fields owing to their substrate
specificity and high catalytic activities. However, enzymes have some inherent limitations, such as high
preparation and purification costs, low operational stability, sensitivity to environmental conditions,
and difficulties in recycling and reuse [3]. To overcome these limitations, researchers are exploring the
possibility of developing artificial enzyme mimics that are cost-effective and have high stability. Several
studies have explored the development of artificial enzyme (also called nanozyme [3]) mimic materials,
such as ZnO-Pd nanosheets [4], Fe3O4 nanoparticles [5], Cu–Ag on graphene oxide [6], and metal–organic
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frameworks [7]. These nanozymes have enzyme mimetic activity and are widely used for the oxidation
of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) for the detection of H2O2.

The three main reactive oxygen species (ROS) are hydrogen peroxide, superoxide, and hydroxyl
radicals, which are normal products of cellular metabolism [8]. H2O2 is a low-reactivity molecule;
however, it can actively penetrate cell membranes and produce the most reactive form of oxygen, that is,
hydroxyl radicals, through Fenton’s reaction (H2O2 + Fe2+

→ Fe3+ + OH− + OH•) [9]. An abnormal
production of H2O2 can lead to oxidative stress, which is the main contributor to aging [10] and leads to
serious diseases such as diabetes [11], cancer [10], and neurodegenerative Alzheimer’s and Parkinson’s
diseases [12,13]. Furthermore, H2O2 is a potential molecule for various clinically important applications.
The most widespread use of H2O2 is for the oxidation of peroxidase chromogenic substrates to detect
biological molecules. Hence, it is important to develop not only an effective nanozyme to replace the
enzyme, but also a highly sensitive and selective method for the detection of H2O2. This provides
the motivation for developing an effective nanozyme for peroxidase mimetic activity as well as a
highly sensitive and selective colorimetric detection method for H2O2. We previously developed an
ultrasensitive and selective colorimetric detection method for lead [14]. We previously reported the
biosynthesis of triangular and hexagonal gold nanoparticles [15], palladium nanoparticles [16–18],
and HAp nanofibers [19]. The present study reports the biosynthesis of nanoclusters.

In this study, we developed an eco-friendly, simple, and cost-effective method for the synthesis of
palladium nanoclusters (PdNCs) using phytochemicals (plant extracts). To the best of our knowledge,
no nanoclusters have been exploited for peroxidase mimetic activity thus far. Furthermore, we have
not found previous reports on the use of PdNCs as nanozymes. The biosynthesized nanoclusters
exhibited ultrasensitive and selective detection of H2O2. The novelty of the reported method for the
detection of H2O2, in comparison with previously reported methods, is presented in a tabulated form
in Table 1 [20–33]. The biosynthesis of palladium nanoclusters in itself is a novel achievement, and no
reports are available on the use of biological methods for this purpose.

Table 1. Comparison of various reported methods for H2O2 detection.

Detection Mode Detection
Limit

Operating
Time Ref.

Gold nanoparticle-based colorimetric biosensor assay 1 µM 15 min [20]
Fe2(MoO4)3 micromaterial-MMT-based colorimetric assay 0.7 µM 400 s [21]

Au nanocluster-based fluorescence assay 0.2 µM 8 min [22]
Magnetic mesoporous silica nanoparticle-based colorimetric assay 4.0 µM 20 min [23]

MnO2 nanosheet-modified UCNP-based fluoroimmunoassay 0.9 µM 40 min [24]
Ag2S–MMT-based colorimetric assay 19.16 µM 21 min [25]
Fluorescent NS–carbon quantum dots 4.0 µM 10 min [26]

TPE-BO-based fluoroimmunoassay 0.52 µM 15 min [27]
CD-NP-BE-based fluoroimmunoassay 0.5 µM 60 min [28]

Silver nanoparticles for colorimetric detection 0.09 µM 60 min [29]
Ag-coated TFBG-SPR assay 0.2 µM 20 min [30]

Silver nanoparticle-based colorimetric assay 5.0 µM 40 min [31]
Bimetallic metal-organic framework of the type MOF (Co/2Fe) 5.0 µM [32]

ZnO nanoparticles 50 µM [33]
Biosynthesized palladium nanocluster-based colorimetric assay 0.0625 µM 20 min

2. Results and Discussion

2.1. UV/Vis Analysis

The biosynthesis of PdNCs was determined by measuring their absorbance as a function of
time after the addition of leaf extract to the palladium chloride solution. Erigeron Canadensis L. leaf
extract was used as the reducing and capping agents for the synthesis of nanoclusters (Figure 1a).
The peak observed at 420 nm for the palladium chloride aqueous solution indicated the presence of
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Pd2+ ions. This peak almost disappeared after the synthesis of the nanocluster (Figure 1b) and the
amount of PdNC was estimated based on the amount of the used PdCl2. The formation of nanoclusters
was monitored at different time intervals (0, 5, 15, 30, 60, 90, and 180 min) by scanning the UV/Vis
absorbance spectra of the samples. Figure 1d shows the impact of the incubation time on the color
of the reaction mixture. As soon as the leaf extract was added to the aqueous solution of palladium
chloride, the color intensity increased until an incubation time of 150 min. However, after 180 min
of incubation, no color change was observed visually. The UV/Vis spectra show that the absorbance
increased with increasing incubation time, but the increase was minimal after 180 min compared with
that at 150 min (Figure 1b). Changes in the absorbance spectra at 400 nm as a function of time and
stationary phase were observed after 150 min (Figure 1c). Therefore, the optimum reaction time was
found to be 150 min.Molecules 2020, 25, x FOR PEER REVIEW 4 of 17 
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Figure 1. Biosynthesis of palladium nanoclusters (PdNCs): (a) Erigeron canadensis L.; (b) UV/Vis spectra
of the leaf extract, palladium chloride, and biosynthesis of PdNCs; (c) Absorbance at 400 nm as a
function of time; (d) The impact of incubation time on the color of reaction mixture (LE: leaf extract).

2.2. Dynamic Light Scattering (DLS) Analysis

The synthesized nanoclusters were analyzed by DLS to determine the size distribution profile.
The size distribution results indicate that the nanoclusters had a Z-average diameter of 64.47 nm
(Figure S1). Particles sized <100 nm are considered useful for various applications owing to their
surface-to-volume ratios. In addition, particles of <100 nm can effortlessly cross the plasma membrane
cells for different types of applications. The stability of nanoparticles is also an important consideration
for various applications. The polydispersity index is dimensionless and scaled such that values smaller
than 0.05 are generally observed with highly monodisperse standards, whereas those greater than
0.7 show that the sample has a significantly wide particle size distribution [34]. The synthesized
nanoclusters exhibited a polydispersity index of 0.053, indicating monodispersion. It has been reported
that the polydispersity index must be less than 0.7 for good quality nanomaterials [35].

2.3. Transmission Electron Microscopy (TEM) Analysis

The morphology, size, and crystalline nature of the synthesized PdNCs were determined using
TEM. Various magnifications were used to obtain the micrographs to better elucidate the nature of
the nanoclusters (Figure 2). The Z-average diameter of the synthesized nanoclusters was determined
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to be 64.47 nm in the DLS analysis (Figure S1), whereas the TEM analysis indicated a diameter of
approximately 57 nm, because the DLS showed the hydrodynamic size of the nanostructures. The TEM
micrographs show that the synthesized nanoclusters had a significantly narrow size distribution of
28–76 nm (Figure 2a,b). The size distribution histogram shows that the synthesized clusters have
a significantly narrow size distribution, ranging from 28 to 76 nm. The histogram also shows that
the average nanocluster belongs to 57 nm (inset in Figure 2b). The inset in Figure 2c shows an
enlarged image of a single nanocluster, revealing that significantly small particles combined to form
the nanoclusters. The high-resolution TEM (HR-TEM) results show that the nanoclusters exhibited the
lattice-fringe characteristic of crystalline materials. The inset of Figure 2d shows these lattice fringes,
clearly revealing the crystalline nature of the nanoclusters; the inter-atomic spacing (d-spacing) was
determined to be 0.22 nm. Few reports have been published for the chemical synthesis of PdNCs,
but all of these syntheses required chemicals that increase the production cost as well as create
environmental problems [36,37]. The method proposed in this study is simple, rapid, cost-effective,
environmentally friendly, and requires no hazardous chemicals. Furthermore, the results show that
the developed method could successfully synthesize nanoclusters of good quality. The nanoclusters
were characterized three months after synthesis, and no agglomeration/aggregation was observed,
confirming the stability of the nanoclusters. The stability of the nanoclusters was further analyzed
by sonicating the colloidal solution of nanoclusters, and the resulting TEM micrographs showed no
notable influence of mechanical shaking on the nanoclusters (Figure S2). DLS analysis was done after
sonication of as-synthesized nanoclusters. The Z-average of as-synthesized nanoclusters is found to be
64.47 nm. After sonication, the Z-average changes to 67.44 nm with broad peaks (Figure S3). Therefore,
sonication has significantly little impact on the size of nanoclusters, which shows that the synthesized
nanoclusters are stable.
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Figure 2. Transmission electron microscopy (TEM) micrographs of the PdNCs at different magnifications:
(a) Wide scan of the sample at 0.2 µm for an overall view; (b) Uniformity of the nanoclusters at low
magnification, the inset shows the nanoclusters size distribution histogram; (c) Scan focused on a
small area of the sample in which the inset shows a zoomed-in view of a single nanocluster; (d) High
resolution (HR)-TEM image showing the crystalline nature of the nanoclusters in which the inset shows
the inter-atomic spacing (d-spacing).

2.4. Selected Area Electron Diffraction (SAED) and X-Ray Diffraction (XRD) Analysis

The selected area electron diffraction (SAED) pattern of the synthesized PdNCs shows the
crystalline nature of nanoclusters. The SAED results also indicate the presence of rings corresponding
to the (111), (200), (220), (311), and (222) planes of palladium with a face-centered cubic structure
(Figure 3a). These planes were further analyzed by XRD using powdered samples of PdNCs obtained
by freeze drying the colloidal solution. The XRD pattern of the PdNCs exhibited distinct reflections
at 2θ of 40.05◦, 46.59◦, 68.10◦, 82.03◦, and 86.59◦, which corresponded to the (111), (200), (220), (311),
and (222) lattice planes of a face-centered cubic (fcc) lattice, respectively (Figure 3b). These reflections
are characteristic of the fcc structure of Pd (JCPDS NO: 87-0641). The reflection at 40.02◦ (111) is
the most intense compared with the other reflections, which indicates the preferred direction for
the growth of nanocrystals [37]. A reflection at a 2θ of 33.59◦ was also observed in addition to the
reflections belonging to PdNCs, which may be a result of residual moieties of the leaf extract [38].
The Debye–Scherrer formula was used to estimate the crystalline size of PdNCs:

D = Kλ/β cos θ (1)

where β is the full-width at half maximum of the diffraction peaks, θ is Bragg’s diffraction angle, K = 0.9
is the Scherrer constant or the shape factor, and λ is the wavelength of Cu-Kα. The crystallite size of
PdNCs was estimated to be 12.66 nm using the diffraction peak associated with crystal plane (111).
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Figure 3. Biosynthesized PdNCs: (a) Selected area electron diffraction (SAED) pattern showing the
presence of rings corresponding to the crystalline nature of nanoclusters; (b) X-ray diffraction (XRD)
pattern (* the reflections due to residual moieties of the leaf extract); and (c) Energy-dispersive X-ray
spectroscopy (EDX) spectrum exhibiting the signal for elemental palladium.

2.5. Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) Analysis

The purity of the biosynthesized nanoclusters was determined by evaluating their elemental
composition via TEM with EDX. The imaging ability of the microscope allowed the selection of the
specimen of interest. The EDX spectrum was obtained in terms of the X-ray counts (cps/eV) versus
energy (keV). A strong signal for elemental palladium is present in the EDX spectrum, showing the
purity of the biosynthesized nanoclusters (Figure 3c). The spectrum also shows a signal for elemental
copper because a copper grid was used for sample preparation. The spectrum includes only elemental
palladium and copper, with no other elemental signals observed, indicating the purity as well as the
synthesis of the palladium nanoclusters. Table S1 lists the detailed EDX analysis results in terms of the
elemental compositions, elemental percentages, series, and k factors.

The oxidation state of the biosynthesized nanoclusters was determined using XPS. The sample
for the XPS analysis was prepared by drying the colloidal solution of nanoclusters on a glass plate.
The XPS spectrum shows a peak at a binding energy of 335.22 eV, which is the characteristic binding
energy of Pd (0) (Figure 4). This clearly indicates that the biosynthesized nanoclusters were zero-valent.
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Figure 4. X-ray photoelectron spectroscopy (XPS) spectrum indicating the binding energy of Pd (0).

2.6. Fourier Transform Infrared (FTIR) Analysis

The nanoclusters were scanned in the range of 500–4000 cm−1 to elucidate the participation of
biological molecules originating from the leaf extract (Figure 5). The FTIR spectrum of the leaf extract
includes a peak at 3450.56 cm−1. This particular peak has broadened and shifted to 3431.27 cm−1 in the
spectrum of PdNCs, indicating –OH stretching. The leaf extract spectrum shows a peak at 2939.44 cm−1,
which corresponds to C-H stretching of CH2 and CH3. This peak has shifted to 2956.80 cm−1 in the
spectrum of the PdNCs, suggesting the participation of C-H stretching vibration in the biosynthesis
of PdNCs. The peak shift between particular functional groups of the leaf extract and nanoclusters
indicates a reduction and stabilization of nanoclusters [39].

The peak at 1649.09 cm−1 in the leaf extract spectrum shifted to 1652.02 cm−1 in the spectrum of
the PdNCs, which corresponds to the stretching vibration of COO−. The leaf extract spectrum also
exhibits a peak at 1450 cm−1, which shifted to 1462.0 cm−1 in the PdNCs’ spectrum, corresponding to
the N-H stretching vibration in the amide linkages of the protein. The peak at 1271.05 cm−1 present
in the leaf extract spectrum, corresponding to the C-N stretching of amines, is not observed in the
PdNCs’ spectrum [40]. The leaf extract and PdNCs’ spectra contain peaks at 1089.75 and 1045.39 cm−1,
respectively, representing a slight shift. These peaks are analogous to that at 1074 cm−1, corresponding
to the presence of flavanones adsorbed on the surface of the nanoclusters. This indicated that the
structure of flavanones is affected as a result of binding with nanoclusters [39].
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2.7. Biosynthesis Mechanism

Erigeron species has been used to cure indigestion, enteritis, hematuria, and epidemic hepatitis [41].
Erigeron species is a rich source of γ-pyranone derivatives, flavonoids, and phenolic acids [42,43],
which play a significant role in the synthesis of nanomaterials. The aqueous solution of E. Canadensis L.
leaf extract was used as a reducing and capping agent for the synthesis of PdNCs.

The possible biosynthesis mechanism of PdNCs is developed on the basis of UV/Vis spectroscopy,
FTIR, XPS, TEM, and EDX. All parts of the plant are rich in polyphenolic compounds, which actively
participate in neutralizing the impact of ROS. High antioxidative properties were shown by flavonoids
and tannins present in the aqueous extract of the E. Canadensis L. leaf. Reduction of Pd2+ to Pd0

by polyphenolic compounds occurred when the leaf extract was added to the palladium chloride
solution. The color of the reaction solution changed as a function of time, which was monitored by
UV/Vis spectroscopy (Figure 1). The complete reduction of Pd2+ into Pd0 took 150 min to incubate.
Subsequently, the neutralized Pd0 experienced nucleation, which produced significantly small-sized
nanoparticles. Finally, these particles took the shape of clusters via non-covalent bonding to stabilize
(Figure 2). Furthermore, the biomolecules present in the leaf extract covered the surface of the
nanocluster and provided high stability. The FTIR illustrated that a peak at 1649.09 cm−1 in the
spectrum of the leaf extract shifted to 1652.02 cm−1 in PdNCs, which corresponds to the stretching
vibration of COO− (Figure 5). Another peak at 1450 cm−1 in the leaf extract shifted to 1462.0 cm−1 in
PdNCs, corresponding to the N-H stretching vibration in the amide linkages of the protein. The peaks at
1089.75 cm−1 (leaf extract) and 1045.39 cm−1 (PdNCs) are analogous to that at 1074 cm−1, corresponding
to the presence of flavanones adsorbed on the surface of the nanoclusters. These peaks evidently
demonstrate the role of biomolecules in the synthesis of nanoclusters. However, more experimental
analyses would be required to understand the comprehensive biosynthesis mechanism.

2.8. Effect of PdNCs’ Concentrations

Additions of as-synthesized nanoclusters of 2–100 µL were considered to analyze the impact
of the concentration of PdNCs on the oxidation of TMB. Figure 6a shows that the color intensity of
the assay solutions increased with an increase in the concentration of nanoclusters; however, above
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50 µL (0.0125 mg/mL) of as-synthesized PdNCs, the color of the assay solutions changed to light
green with a blue color. All the samples were scanned with a UV/Vis spectrophotometer to obtain
the absorbance spectra for determination of the optimum concentration. Figure 6c shows the spectra
for the assays with different concentrations of nanoclusters. The absorbance at 650 nm increased
rapidly with increasing concentration of PdNCs; however, with the addition of greater than 20 µL
of as-synthesized nanoclusters, the absorbance value increased little up to the addition of 50 µL
(Figure 6d). Thereafter, the absorbance decreased with an increase in concentration resulting from the
addition of more than 50 µL of PdNCs. We also analyzed the impact of the synthesized nanoclusters
using the freeze-dried powder of PdNCs in the concentration range from 0.02 to 12 mg/mL (Figure 6e,f).
High concentrations of nanoclusters were applied, but the absorbance was much higher for the case of
the as-synthesized nanoclusters with ultralow concentrations. The reason behind the low oxidation
of TMB was determined from the SEM micrograph. The micrograph shows that a certain amount of
nanoclusters became agglomerated and lost their morphology; however, some amount still retained
their small size, as observed in the SEM micrographs (Figure 6b). We thus conclude that a smaller size of
nanoclusters with ultralow concentration was effective to achieve high oxidation of TMB. Furthermore,
we ran a control assay without H2O2 and observed that, as the concentration of nanocluster increased,
the control assay color intensity also increased because the nanoclusters themselves have a color
(Figure S4). Hence, the experimental results indicate that 10 µL (0.0025 mg/mL) of as-synthesized
nanoclusters is effective for the oxidation of 0.525 mM TMB.Molecules 2020, 25, x FOR PEER REVIEW 10 of 17 
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2.9. Selectivity of Assay

The selectivity of the assay was determined by exposing it to other relevant and interfering
substances present in serum. The peroxidase mimetic activity of the nanoclusters possesses the specific
characteristic of oxidizing TMB (colorless) into oxTMB (blue color) in the presence of H2O2. This feature
of the assay can help easily distinguish H2O2 from various interfering substances in serum. Various
interfering substances (100 µM phenylalanine, cysteine, tryptophan, arginine, glucose, urea, Na+,
Fe2+, PO4

3-, Mn+2, Ca2+, Mg2+, Zn2+, NH4
+, and K+) were included to evaluate the selectivity of the

assay. Each interfering substance was assayed independently; when H2O2 was present in the sample,
the nanoclusters would oxidize the TMB, the color of the assay changed rapidly from colorless to blue,
and the UV/Vis spectra exhibited a strong peak at 650 nm. Figure S5 shows that no peak was observed
at 650 nm in the case of PdNCs, TMB, and TMB + PdNCs. We also performed the comparative analysis
for TMB oxidation between biosynthesized PdNCs and leaf extract. Figure S6 shows that the strong
absorbance was found at 650 nm, only with nanocluster. Therefore, the leaf extract did not participate
in the oxidation of TMB. The color change was only observed in the assays containing H2O2; the other
interfering substances remained the same color as the blank assay. Figure 7 shows that high absorbance
intensity was found only in the assays containing H2O2 as a strong color developed, whereas other
interfering substances present in serum did not develop a blue color. This reveals that the assay
is highly selective for H2O2. A quantitative analysis of the colorimetric assay was performed by
comparing the absorbance of the sample and blank (Figure 7). This is significant for the determination
of the intensity of the assay color, which represents the quantity of oxidized TMB.
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2.10. Sensitivity of Assay

The significance of the assay depends on its detection sensitivity at a lower concentration of target
molecules. The assay sensitivity was evaluated through the detection of ultralow concentrations of
H2O2 in a sample. Various H2O2 concentrations were used (0.0625–100 µM) to determine the sensitivity
by measuring the absorbance of the assay. The existence of H2O2 in the sample facilitated the oxidation
of the chromogenic peroxidase substrate TMB and provided a blue color to the assay owing to the
formation of oxTMB. It was observed that the absorbance at 650 nm increased with increasing H2O2

concentration. All the assays were incubated at room temperature (22 ◦C) for 20 min, which was
determined to be the optimum incubation time. Figure 8 shows that the lowest detected concentration
was 0.0625 µM, as the absorbance is higher than that of the blank sample at 650 nm. The color intensity
of the assay increased with the increasing concentration of H2O2, and the absorbance at 650 nm
increased with the increasing intensity of the assay color. The oxidation of TMB was quantitatively
determined by considering the absorbance; the absorbance at 650 nm versus the H2O2 concentrations
was plotted to quantify the oxidation of TMB (Figure 8). The assay exhibited a linear response at
low H2O2 concentrations of 5 to 50 µM, and a linear regression correlation coefficient of 0.99424
was obtained (Figure 8 inset). The sensitivity response of assay was evaluated up to 100 µM H2O2.
The lowest H2O2 concentration that could be detected by the naked eye through the assay color
was found to be 40 µM. The results show that the proposed method has a good response at lower
concentrations and a lower detection limit compared with those of previously reported methods
(Table 1). Therefore, the proposed colorimetric assay is an ultrasensitive and selective method.
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3. Materials and Methods

3.1. Materials

Palladium(II) chloride was purchased from Sigma–Aldrich (St. Louis, MO, USA) and used as a
precursor for the synthesis of PdNCs. The chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
was also obtained from Sigma–Aldrich (St. Louis, MO, USA) for evaluation of the peroxidase mimetic
activity of PdNCs. Hydrogen peroxide (H2O2) was purchased from Samchun Chemical Co. Ltd.
(Seoul, South Korea). L- arginine, cysteine, L- tryptophan, and L- phenylalanine were purchased from
Sigma–Aldrich (St. Louis, MO, USA). All other chemicals, including sodium chloride, iron chloride
tetrahydrate, potassium phosphate dibasic, magnesium chloride, calcium chloride, magnesium nitrate
hexahydrate, zinc acetate dehydrate, ammonium sulfate, potassium chloride, urea, and glucose, were of
analytical-grade and were used as received without further purification. Deionized water was used in
all the experiments related to the biosynthesis of nanoparticles and catalytic oxidation of TMB.

3.2. Preparation of Leaf Extract

Fresh leaves of Erigeron Canadensis L. were collected from the campus of Sungkyunkwan University
(Suwon, Gyeonggido, Republic of Korea) (Figure 1a). The leaves were washed several times with
distilled water and dried at ambient temperature to remove the water from the surface of the leaves.
Then, 8.5 g of chopped leaves was dispersed into 100 mL of deionized water in a 200 mL Erlenmeyer
flask and placed on a magnetic stirrer at 500 revolutions per min (rpm) while the dispersion was boiled.
Subsequently, the aqueous solution was allowed to cool at room temperature and was filtered through
Whatman filter paper, yielding the required leaf extract. The extract was stored at 4 ◦C for use in the
biosynthesis of PdNCs.

3.3. Biosynthesis of Nanoclusters

Palladium chloride (2.5 mM) was dissolved in 20 mL of deionized water and placed on a magnetic
stirrer for 1 h at ambient temperature and 600 rpm; the magnetic stirrer temperature was maintained
at 85 ◦C. Then, 1 mL of the as-prepared aqueous solution of the leaf extract was added drop by
drop, followed by stirring under the same conditions for 180 min. The bio-reduction of Pd(II) to
Pd(0) was clearly indicated by a color change from light yellow-brown to a dark brownish color.
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The biosynthesized nanoclusters were analyzed by measuring the absorbance of the colloidal solution
as a function of time.

3.4. Characterization of Nanoclusters

The biosynthesized PdNCs were characterized by ultraviolet-visible (UV/Vis) spectroscopy
(UH-5300, Hitachi, Japan) in the scanning range of 300–800 nm. The size distribution profile of the
PdNCs was analyzed via dynamic light scattering (DLS; Zetasizer Nano S90, Malvern). Fourier
transform infrared (FTIR) spectroscopy (FTS 7000, Varian, Australia) was performed to elucidate
the role of biological molecules in the synthesis of nanoclusters. The morphology, size, d-spacing
(inter-atomic spacing), and crystalline nature of the PdNCs were characterized via transmission
electron microscopy (TEM; JEM-3010, JEOL, Japan). Meanwhile, the elemental composition of the
nanoclusters was identified via energy-dispersive X-ray spectroscopy (EDX). The X-ray diffraction
patterns were determined with an X-ray Diffractometer (X’Pert PRO, PANanalytical, Netherland) with
CuKα radiation (λ = 1.5417 Å). The freeze-dried nanoclusters were further analyzed using scanning
electron microscopy (SEM; Zeiss, EVO 18, Germany). The oxidation state of the PdNCs was evaluated
using X-ray photoelectron spectroscopy (XPS; Thermo Scientific, UK).

3.5. Colorimetric Detection

The peroxidase mimetic activity of as-synthesized PdNCs was investigated through the catalytic
oxidation of the peroxidase substrate TMB. The working solution of H2O2 was freshly prepared by
diluting H2O2 (34.5%/d- 1.135) with deionized water. In a typical reaction (total volume: 1 mL),
0.525 mM (5 µL) of TMB (stock solution prepared in DMSO), 20 mM (up to 50 µL from stock) of
H2O2, and 10 µL of as-synthesized PdNCs were combined; the final volume was reached by adding
0.1 M acetate buffer. The assay solution was incubated for 20 min at room temperature (22 ◦C).
The TMB-H2O2 chromogenic reaction was evaluated by measuring the absorption peak at 650 nm.

3.6. Effect of PdNCs’ Concentration

In these experiments, the concentration of a colloidal solution of as-synthesized PdNCs varied
in the range of 2 to 100 µL (0.0005–0.025 mg/mL). The reaction was performed in a total volume of
1 mL composed of 0.525 mM (5 µL) TMB (stock solution prepared in DMSO), 20 mM (50 µL from
stock) H2O2, and varying concentration of as-synthesized nanoclusters. The freeze-dried powder of
the nanoclusters was also used to analyze the impact of concentration. A range of powder samples
(0.02–12 mg/mL) was added to the reaction. The obtained results were compared to determine the
conditions for the nanoclusters in terms of their stability and concentration impact.

3.7. Selectivity of Assay

The selectivity of the assay against various serum-interfering substances was investigated using
100 µM of phenylalanine, cysteine, tryptophan, arginine, glucose, urea, Na+, Fe2+, PO4

3−, Mn+2,
Ca2+, Mg2+, Zn2+, NH4

+, and K+. The color change of the assay was examined with respect to H2O2

visually. The assay was also analyzed by measuring its absorption from 500 to 800 nm by UV/Vis
spectrophotometry. A quantitative analysis of the oxidation of the chromogenic substance TMB was
performed by comparing the absorbance values at 650 nm.

3.8. Sensitivity of Assay

The sensitivity of the assay was determined by determining the lowest detectable concentration
of H2O2. The concentration of nanoclusters in the colloidal solution was estimated by freeze drying
the colloidal solution; however, as-synthesized nanoclusters were applied in the assay. The working
solution of H2O2 was freshly prepared by diluting H2O2 (34.5%/d- 1.135) in deionized water. In a
typical reaction (total volume 1 mL), 0.525 mM TMB (5 µL from a stock solution prepared in DMSO),
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varying concentrations of H2O2 (not more than 100 µL from stock), and 10 µL (0.0025 mg/mL) of
as-synthesized PdNCs were combined; the remaining volume was filled by adding 0.1 M acetate buffer
(pH 5). The concentrations of H2O2 for the determination of the sensitivity of the colorimetric assay
ranged from 0.0625 to 100 µM. A quantitative analysis of the H2O2 was performed by measuring the
absorbance using a UV/Vis spectrophotometer. All the assays were incubated for 20 min at room
temperature (22 ◦C).

4. Conclusions

In this study, we developed an unprecedented biological method for the synthesis of PdNCs
using E. Canadensis L. leaf extract. This is the first report of the biological synthesis of nanoclusters.
The Z-average diameter of the synthesized nanoclusters was found to be 64.47 nm by DLS, whereas a
diameter of 55 nm was obtained by TEM because the DLS analysis showed the hydrodynamic size of
the nanostructures. The synthesized nanoclusters were found to be significantly stable with a narrow
size distribution. Nanoclusters were demonstrated to possess peroxidase mimetic activity that could
oxidize a 3,3′,5,5′-tetramethylbenzidine (TMB) peroxidase substrate. The assay was shown to exhibit
a sufficient signal at an ultralow concentration of 0.0625 µM H2O2. Therefore, the developed assay
provides an easy-to-use platform for the detection of H2O2 for clinical purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/15/3349/s1,
Figure S1: Size distribution profile of biosynthesized nanoclusters, Figure S2. Various magnifications of TEM
micrographs of PdNCs obtained after sonication of colloidal solution of nanoclusters for assessing their stability,
Figure S3. DLS obtained after sonication of colloidal solution of nanoclusters for assessing their stability, Figure S4.
Results for the control assay (without H2O2) showing absorbance at 650 nm in response to the addition of varying
amounts of as-synthesized nanoclusters. Inset cuvettes show impact of nanocluster concentration on intensity of
color without H2O2, Figure S5. Absorbance spectra of 0.525 mM TMB, 10 µL nanoclusters, and the combination of
both; the inset cuvettes show the color, Figure S6. Comparative analysis for TMB oxidation between biosynthesized
PdNCs and leaf extract; Table S1: Elemental compositions of PdNCs obtained with EDX analysis.
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